A Caltech Library Service

Zeros of the Wronskian and Renormalized Oscillation Theory

Gesztesy, F. and Simon, B. and Teschl, G. (1996) Zeros of the Wronskian and Renormalized Oscillation Theory. American Journal of Mathematics, 118 (3). pp. 571-594. ISSN 0002-9327. doi:10.1353/ajm.1996.0024.

[img] PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


For general Sturm-Liouville operators with separated boundary conditions, we prove the following: If E_(1,2) ∈ R and if u_(1,2) solve the differential equation Hu_j = E_ju_j, j = 1, 2 and respectively satisfy the boundary condition on the left/right, then the dimension of the spectral projection P(E_1,E_2)(H) of H equals the number of zeros of the Wronskian of u_1 and u_2.

Item Type:Article
Related URLs:
URLURL TypeDescription| 10.1353/ajm.1996.0024DOIArticle
Simon, B.0000-0003-2561-8539
Additional Information:© 1995 Johns Hopkins University Press. Manuscript received May 3, 1995; revised August 16, 1995. Research supported in part by NSF Grant DMS-9401491.
Funding AgencyGrant Number
Issue or Number:3
Record Number:CaltechAUTHORS:20170918-100353730
Persistent URL:
Official Citation:Zeros of the Wronskian and renormalized oscillation theory pp. 571-594 | DOI: 10.1353/ajm.1996.0024 F. Gesztesy, B. Simon, G. Teschl
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:81519
Deposited By: Ruth Sustaita
Deposited On:19 Sep 2017 17:28
Last Modified:15 Nov 2021 19:44

Repository Staff Only: item control page