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ABSTRACT

This paper applies a mixed engineering and econometric model to
empirically analyze behavioral interaction with new energy-efficient
appliances and thermal improvements, The hypothesis is that energy
efficient technologies lower the effective price of the services
they provide and consequently reduce electricity consumption by
smaller amounts than would be anticipated in engineering estimates,
The approach incorporates prior engineering knowledge about the
interactive effects of weather, appliance efficiencies, and thermal
integrity of dwellings to explore treatment groups in an experiment

conducted in Florida.



PRICE EFFECTS OF ENERGY-EFFICIENT TECHNOLOGIES:
A STUDY OF RESIDENTIAL DEMAND FOR HEATING AND COOLING!

SECTION 1: INTRODUCTION

Since the onset of the energy crisis more than a decade ago, policy
makers and energy planners have strongly supported legislation and programs to
promote installations of energy-efficient technologies. Consequently, there
are now numerous utility and government policies in effect to provide informa-
tion about and reduce the private costs of those technologies. In many in-
stances, the case for those policies has been founded on relatively naive
engineering estimates of the savings that the technologies could deliver.

Meanwhile economists have argued that those engineering estimates of
energy savings are too high. Improvements in electrical equipment efficiencies
and dwelling thermal characteristics are expected to increase the intensity
with which the associated appliances are used, thereby attenuating some of the
expected conservation from higher efficiencies.?

The reasoning is simply that the marginal cost, i.e., the price, of the
service provided by the new (more efficient) appliance will be lower and,
therefore, will induce increased use of that appliance. This paper reports
how we developed models and data sets to test and measure this price effect.
Our evidence supports the hypothesis and provides valuable parameters to
determine how much the effect reduces engineering estimates of potential con-
servation

This analysis was feasible because Florida Power and Light Company (FPL)
recently undertook a pioneering study designed, in part, to test and measure
the price effect for two dominant residential electricity services: air

conditioning and heating. That study, initiated in 1981, sought to determine

how electricity usage levels.-change after homeowners install one of three
technology combinations: (1) upgraded attic insulation, or (2) upgraded
insulation and a high-efficiency central air conditioner with conventional
electric furnaces, or (3) upgraded insulation and a high-efficiency heat pump.
Through a lengthy and sophisticated sampling process, FPL identified a large
random sample of all its residential customers that 1ive in single-family
dwellings and have central electric heat (CEH) and central air conditioning
(CAC)--the all electric customers that account for almost half of its residen-
tial electricity usage. Then, four subgroups were randomly selected from this
large group. One was assigned to be a control group and the other three to
receive, at no charge, one of the three conservation technology combinations.

A distinguishing feature of the FPL study was the random and exogenous
choice to install technology combinations that span a wide range of equipment
efficiencies. This allows comparisons of differences in electricity usage
from among the four customer groups without concerns about possible simultane-
ity of new appliance purchases and their intensity of use after they are
placed into service--a concern that a accompanies any comparative study of
customers who bought and installed their own technologies, Dubin and McFadden
(1984). Such comparative studies are further hampered by the extreme rarity of
installed heat pumps and air conditioners that are state-of-the-art. This is
a special problem because the efficiencies of new heat pumps and air conditioners
have remained fairly constant until very recent years. Consequently, detecting
the price effects of efficiency improvements is difficult or impossible in
such studies due to the small amount of efficiency variation across study
households.

The FPL study has three other especially important features. First, all

households included in the study were monitored with two electricity meters.



One was a recorder that measured total household e]ectrjca] loads every

15 minutes. The other was a regular electricity meter that measured the
monthly kWh usage of the central heat pump or air conditioner. Second, the
study included a thorough engineering-oriented survey that collected detailed
engineering information about each dwelling--especially about its space-condi-
tioning system and attic insulation--as well as socioeconomic and appliance
ownership data. Third, the study incorporated variation in tail-block elec-
tricity rates across study participants. Although all FPL customers are
billed under the same inverted-block electricity rate, some customers are
served through cooperatives or municipal utilities that retail electricity
purchased from FPL. Each retailer adds to the FPL rates a unique flat charge
per kWh as a franchise charge and/or a utility tax. This billing procedure
introduces sample variation in prices, since some sample members are direct
FPL customers and some are served through the retailers.

The FPL service territory is also unique. As shown in Figure 1, it
covers nearly half the land area in the State of Florida, stretching more than
700 miles from north to south and encompassing considerable weather variation.
This is shown in Figure 1 by the substantial differences in heating-degree
days and cooling-degree days at each of its three major weather stations, for
which hourly weather data were available. In addition, electricity is the
dominant residential heating source in the FPL service territory. This is
due, in part, to the general availability of natural gas and, in part, to
annual heating requirements that are very moderate, thus making the annualized
cost of electric heat more competitive.

The data from this experiment offer many obvious opportunities for elec-

tricity demand analyses, but in this paper we concentrate on one of those

options. Our specific purpose is to study the effect of efficient conservation
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technologies on the use of e]ectricity for heating and cooling. Our analysis
is restricted to all-electric residences and to aggregate monthly and annual
kWh consumption. However, with some modification, the technique could be
extended, using this data set, to examine the effects of each technology on kW
demand during peak hours for the utility system. This analysis considerably
improves our understanding of the demand for electricity in air conditioning
and space heating. Both are crucial electrical loads not only to FPL but also
to many other electric utilities because they dominate residential electricity
use during the hours when system demand is highest and, consequently, when
both generating capacity and marginal fuel costs are at their peaks.

Our approach implements the general theoretical notions described above.
We view the "consumed product" as cooled or heated residential space, rather
than as electricity used by air conditioners and furnaces. This perspective
leads to a unique specification of the product price which measures the full
cost to the customer of changing his thermostat setting, rather than a price
that is simply denominated in terms of cost per kWh. This approach requires
application of an engineering model of heat transfer. With this technique we
can incorporate both information about engineering features (dwelling insula-
tion, floor space, equipment efficiencies) and prior engineering knowledge
about the interactive effects about these features on electrical heating and
cooling loads.

In Section 2 we develop the theory and estimation methods to achieve our
objective. Section 3 describes the development of our analysis data set. In
Section 4 we outline our estimation models and report our findings. Section 5
summarizes the approach and implications of the paper. An appendix provides

further details on design features of the FPL experiment.

SECTION 2: SPECIFICATION OF CONDITIONAL DEMAND MODELS

2.1 THEORY

The demand for energy by the household is a derived demand arising from
the production of household services--services that are delivered by household
appliance durables. Therefore, to understand the residential demand for
energy we must understand the residential demand for that durable equipment
and model both simultaneously. This section develops an economic/econometric
framework in which the demand for energy is made conditional on a durable
appliance stock. Our conditional demand analysis has the unique feature that
the durable stock for the largest usage of energy (space and air conditioning)
is set exogenously in the sample design.3

2.1.1 Residential Heating and Comfort

Let U(t,Z) denote the utility derived from consumption of a vector of
goods Z in an environment with ambient temperature t. It is reasonable to
assume that utility is increasing in t up to a temperature t* which provides
biissfu] comfort. Below t* occupants feel too cool and above t* feel too hot.
If heating (or cooling) were free, consumers would set their thermostats at
t*. However, since heating to an interior temperature t* requires a costly
energy input there is a trade-off between the comfort of the ambient space and
the price of obtaining this comfort.

Following Brownstone (1980) and Hausman (1979), we assume that the utility
function U(t,Z) is separable in comfort and goods consumption. Further, we
assume that the utility derived from ambient temperature t, has the linear
form a(t* - 1) with a < 0, T < t* so that U(t,Z) = U*[a(t* - 1),Z]. Suppose
that the BTUH heating required to maintain interior temperature t with exterior

temperature t is given by Q(t,t). The consumers' optimization problem is to
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maximize utility U*[a(t* - 1),Z] subject to the budget constraint which allo-
cates wealth W between expenditures on goods Z and on fuel, conditional on the
choice of fuel type. Expenditures on fuel i are (pi/ei)Q(t,t) where p; is the
price of fuel i and e; is the efficiency of the heating system using fuel i.
We write:

maximize U*[a(t* - t),Z] subject to (pi/ei)Q(t,t) +7Z<M (1)
1,2

for which the Lagrangian (with multiplier {) is:

L = U*[a(t* - 1),Z] + L[W - Z - (p;/e;)Q(1,t)] (2)
The first-order conditions are: ’

L, = -Ufa - E(p;/e;)Q,(T,t) = 0 and (3)

L, = us-¢=0 ' so that (4)

“UR/U = pyQ (1,£)/ (cey) (5)

We see from (5) that the marginal rate of substitution between comfort
and other goods depends on the "price of comfort" which itself is a function
of the level of comfort. In our empirical work we approximate the thermal
function by a quadratic in the temperature difference t - t, Q(t,t) = a +
b(t - t) + c(x - t)2. In this case, condition (5) becomes:

-U¥/U% = p;[b + 2c(x - t)]/(aei) (6)

An alternative formulation of the decision problem assumes that the
optimum level of energy is calculated directly by the consumer. Write utility
in the form:

U*[a(t* - 1),2]

U*[a(t* - t) - a(t - t),Z]
U*[a(t* - t) - aG(Q),Z] (N
where G(Q) = t - t is the implicit solution to Q(r,t) = a + b(x - t) +

c(t - t)2. For t < t*, increases in T are associated with greater utility
and greater energy demands. We therefore take the solution to the quadratic

equation in which G'(Q) > 0.

The consumer's optimization problem becomes:

maximize U*[a(t* - t) - aG(Q),Z] subject to

’
(p;/e)Q+ Z < W (8)

The first-order conditions for (8) are:

-aUG' (Q) - UX(p;/e;) = 0 (9
which is equivalent to (6) as Qt(t,t) = (G'(Q))-l.

As Dubin (1984) demonstrate, strong conditions are required
to ensure the existence of an optimization in energy demand which is dual to
the household production formulation. From a theoretical vantage we prefer
the household production approach. Furthermore, no additional complexity is
added when we specify demand systems that correspond to the first-order condi-

tions (5). A minor difficulty arises due to the dependence of price on level

of comfort. In this case we pose the optimization problem using an appropriately

defined rate structure premium (RSP).

Let T denote the solution to (5). Then, the equivalent standardized

problem is:
maximize U*[a(T* - t),Z] subject to
1,2
(pi/ei)Qt(i,t) « T +2Z<W-RSP where
RSP = (Pi/ei)[Q(f,t) - Qt(f,t) . 1) (10)

As the budget constraint in (10) appears in constant prices, standard
econometric specifications for the demand system may be app]ied; The price of
comfort, (pi/ei)QI(i,t), may be approximated by calculating the change in
bil1ing period utilization associated with a degree change in the household
thermostat setting. A convenient way to perform the latter calculations

employs an energy thermal 1oad model for the residence.



2.1.2 Thermal Load Technique

While there are many models available to calculate heating and cooling
requirements, most are designed to be used by contractors and architects on
individual dwellings where detailed measurements are available.? Engineering/
thermal load models calculate the amount of heat entering and leaving the
residence for each hour of the day and are capable of determining loads for
space-conditioning end uses. These calculations require detailed input in-
cluding data on the physical, thermal, and operational characteristics of the
dwelling, as well as location specific hourly temperature data. These models
are highly specialized to determine both static and dynamic heat transfer.

The engineering/thermal load technique has been found quite accurate when
detailed information on building characteristics exist. The methodology
incorporates complex nonlinear relationship between weather, building character-
istics, and thermal loads and thus provides significant a priori information
in our statistical analysis. Furthermore, the technique may be used to assess
the impact of conservation and load management programs that affect building
characteristics, as well as to provide estimates of system 1oad ét estreme
weather conditions.

The limitations of the thermal load technique include its detailed data
requirements and its computational complexity. A model that has been specifi-
cally designed for application to household survey data is developed in Dubin
and McFadden (1983). This thermal model makes reasonable assumﬁtions about
dwelling characteristics and operating practices that are not coded in typical
survey data while utilizing all information about insulation levels, window
counts, etc., which are readily available. The approach also simplifies the
task of providing detailed weather data and is able to process summary measures

.such as temperature means and extremes. The methodology is superior to the
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use of simple degree-day measures while allowing calculations on large samples
of dwellings.

The thermal load technique is combined with billing cycle data in our
study in two unique ways. First, we use the Dubin-McFadden thermal model to
estimate billing cycle load on a household-by-household basis. In this approach,
two households with equivalent building characteristics facing identical
weather patterns would be predicted to have the same energy demand. In this
way we adopt a strategy of incorporating an engineering/thermal projection
into our energy demand analysis. In reality, we realize that the demands may
vary significantly between otherwise identical households due to differences
in income, households size, activity patterns, and the cost of energy. That
is, departures from the engineering estimates are due to socioeconomic sensi-
tivity in the rate of appliance stock utilization.

Secondly, we use the engineering/thermal load techniques to estimate the
cost of comfort. Here the estimated change in energy input required to effect
a one degree change in ambient temperature is multiplied by the marginal price
of the fuel input. In the next section we combine the engineering/economic
approach in an econometrically estimable model.

2.2 ESTIMATION

An econometric conditional demand model is developed by noting that a

household's total electricity consumption in any period is simply the sum of

the electricity used by each appliance in that period:

J ...
e - J Jeyd RJ . 11
Yig = I UECyy 05 (Xyih™) + Zyy + &4y (11)

=1
where Y?t = demand for electricity in period t by household i, UEC;]t = unit
energy consumption of electricity of appliance j in'period t by household i,

6% indicator of appliance j ownership by household i, th = vector of socio-
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economic variables affecting utilization of appliance j by household i, in
period t, B = vector of parameters associated with th, Zi = vector of socio-
economic variables affecting time-independent usage of electricity, y = vector
of parameters associated with Zi’ €5 = error term for household i in period t.

The term Ziy accounts for the presence of electric refrigerators, ovens,
ranges, microwave ovens, freezers, washers, and clothes dryers. For our pur-
poses, the UEC's associated with these appliances are of secondary interest
only and we view B as the parameters of interest.

A pure conditional demand approach approximates the terms UEC‘?t by func-
tions of variables related to the technology of the appliance. A common
specification for the UEC of space conditioning represents this term as a
linear function in square feet, dinsulation levels, héating degree days, etc.

To illustrate this approach we write:

NN I R |
”Ec_it'“it“ * Vit (12)
where Hgt = vector of characteristics of appliance j for household i in period

t, od = vector of parameters associated with Hqt, Vgt

3 = error term in linear

specification of UEC. Combining (11) and (12) we obtain:
e = 3 sicn adyoxnd. gl G
Yig = I O dOKGBT) + Zyy + ey + Vyg 13

where:

Vi = ;_g olvi o phy
j=1
The purpose of the engineering/econometric approach is to minimize the
measurement error ;it through a thorough thermal modeling of the space condi-
tioning appliance technology. We argue that the engineering/econometric
approach is superior to the pure conditional demand methodology because it

efficiently and effectively incorporates all relevant engineering data and

emphasizes the structure of the estimated equation.
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In our estimation we recognize the time-series cross-section structure of
the billing data and exploit the correlation of individual effects over time
to increase efficiency. Specifically, we assume that the disturbances in each
bi11ing period are homoscedastic and uncorrelated which implies:
E(ste;) = OitIN’ t=1,2,...,T where
€y = (elt’GZt""’eNt)l denotes the column vector
of distrubances for individuals (i = 1,2,...,N) in period if Regarding the
covariance matrix of the disturbances at two different time periods:
E(ets;) = otsIN t,s =1,2,...,T
Note that the diagonal elements are the covariances of individual

behavior over time E(e ) and that the off-diagonal elements

itfis

E(Eitejt) give the contemporaneous cross-sectional covariances, assumed to
be zero. The complete covariance structure has the Seemingly Unrelated

Regression (SUR) form: V(e) = I ® I, with = (ots) and & = (51’82”"’5T)"

Viewing the time-series cross-section of individual billing data as a SUR
econometric system permits important tests regarding the structure of indivi-
dual demand over time. It is possible, for example, that the disturbances in
individual demand behavior are equi-correlated over time. This hypothesis is
equivalent to the random effects model and lends itself to simple econometric
estimation. Alternatively, it is possible that ZT has an autoregressive

structure in which E(e, ) = plt-sl- In this case, the correlation between

t8is
individual disturbances is strongest in adjacent billing periods and diminishes
over time. This pattern might be caused by an unobserved weather or price
component.

Finally, the data in our study permit the co-estimation of the usage of

air conditioning and space conditioning. We are, therefore, able to separate

the total usage in (11) into its components:
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SH _ ,cnSHSH, SH_ SH SH

Yip = UECT6] (X3pB™) + &3t (14)
AC _ ,._ACLAC, AC AC AC

Yit = UEC{6; (XSB )+ EitA and (15)
e _ JSH , LAC

Vit S Vie * Yie t 4y (16)

Equations (14), (15), and (16) are consistent with equation (11) where j = SH
or AC denote space and air conditioning, respectively.

Estimation of the joint system is accomplished under the (SUR) framework
where we allow possible correlation in the disturbances for space and air con-
ditioning usage. The error structure for (14) and (15) is then

et =M ® Iy

AC)

AC
V(e & ® Iy

E(eSHeACy - S @ 1

which is consistent with a fully specified seemingly unrelated regression in
which separate equations are estimated for each billing period and each space

conditioning type
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SECTION 3: DATA DEVELOPMENT

This section describes how we developed our analysis data sets to estimate
equations (14) and (15). Those equations include three types of variables:
household and pure data, actual electricity usage, and unit energy consumption
(UEC) values for air conditioning and heating.

3.1 HOUSEHOLD AND PRICE DATA

Detailed household data were available from three sources. The first was
the energy audit and interview data from the survey that included 2,000 cus-
tomers. This survey included detailed engineering data such as the configura-
tion, capacity and amperage of central air conditioners and heat pumps. It
also included details on dwelling characteristics such as square footage,
attic insulation levels, and types of walls and floors. Finally, it included
a complete inventory of appliance ownership and socioeconomic data.

A second source was an "inspection report" which provided engineering
data for new conservation technologies that were installed during the study.
The third was the '"change reports" which provided new appliance and socio-
economic data for new occupants of dwellings included in the study.

We developed our electricity price data using both the billing records
for study participants and the FPL rate structure (Table 1). This was neces-
sary since FPL customers pay slightly different rates depending on their
location within the service territory. In certain localities flat charges per
kWh are added to customers' bills as a franchise charge (in municipalities
that retail power that is purchased from FPL) and as a local tax. These
charges are unique to localities which may impose either, neither, or both
We determined the amount of these surcharges for each customer by first calcu-

lating the amount of each customer's bill using just the basic FPL rate. The
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Table 1... FPL RESIDENTIAL RATE STRUCTURE

Billing yeara

Rate component . 1982 1983

Fixed charge ($/month) 5.09 5.15
Energy charge (¢/kWh)

First 750 kWh 5.599 5.842
Over 750 kwh 6.617 6.842

3The 1983 billing year began with readings on and after December 23, 1982.
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surcharge is the difference between this amount and the amount of the bill
divided by the amount of kWh consumption. The average tail-block rate among
participants was about 7.8¢/kWh for 1982 and 8¢/kWh for 1983, so the average
surcharge was about 1.2¢/kWh (cf. Table 1).
3.2 ELECTRICITY USAGE VARIABLES

A heat pump provides both heating and air conditioning--it can transfer
indoor heat to the outdoors or outdoor heat to the indoors. At temperatures
above the so-called "balance point"--between 35°F and 40°F--heat pumps can
extract enough heat from the outdoor air to maintain comfortable indoor tempera-
tures. Below that point, heat supplied by the outdoor unit is supplemented by
heat from some other backup source to meet heating requirements. Usually,
that source is a set of resistance heating coils, very similar to a conventional
electric furnace.

These features impose important limitations on our kWh usage data for
heat pumps, i.e., the heating, ventilation, and air conditioning (HVAC) readings
from the meters on the outdoor heat pump units. In the months when some
heating is used, it is possible that those readings represent only part of the
heating load, the rest being due to the resistance backup. In addition, it is
not uncommon to use both air conditioning and heating during a winter month in
Florida. So the readings may include some air conditioning usage for those
months as well. Consequently, the HVAC readings from heat pumps are unambiguous
for only the summer months when all HVAC usage is measured and represents only
air conditioning. For the three summer months, July through September, we
adopted adjusted HVAC readings from both heat pumps and straight cool units as
a measure of kWh usage for air conditioning.

Because of these ambiguities, we dropped participants with heat pumps

from our sample for the fall, winter, and spring quarters. Our measures of
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air conditioning usage, XAC, in those quarters were adjusted HVAC usage for
only those participants with straight cool units.

We had to adjust the HVAC readings for split systems because they excluded
the indoor fan component of the electrical load. Based on discussions with

HVAC engineers we adjusted those values by a factor.$

f = x/(x-w)
where
f = multiplication factor,
X = ratio of the system design capacity rating (in Btus per hour) to the
EEE rating, where both ratings are determined at design conditions,
w = wattage of the indoor fan.

The design capacities and the EER ratings of each air conditioner and
heat pump were available from the FPL survey data. Wattage estimates for the
indoor fan motors were approximated for us by FPL engineers and were based on
typical motor horsepower ratings for fan motors in systems of various capaci-
ties. We applied essentially this same procedure to adjust the HVAC readings
for usage by the pump motor in water-based systems.

We converted both these adjusted values of kWh usage for air conditioning
and the total kWh usage values (from the whole-house meters) to aveage daily
values for each billing month, dividing by the number of days in the corres-
ponding billing month

To determine electricity usage for space heating, we substituted these
two average daily usage values into equation (16), along with an estimate of
baseline usage correspondsing to the Zy terms.® The solution to this equation

H for equations (14) and (15). Our estimate of baseline

is our measure of XS
usage for each household was the average difference for a summer day between

its total electricity use and its use for air conditioning.? Section 4 reports
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an analysis of the contribution of various end-use appliances to these baseline
usage values.

3.3 UNIT ENERGY CONSUMPTION

Unit energy consumption (UEC) estimates for heating and cooling are
engineering approximations of electricity use for those end-uses during a
certain time period. Since our electricity usage variables are average daily
values during billing months, our goal was to construct UECs for the same
periods.

Figure 2 is a simple schematic of our method. As shown, two types of
intermediate variables are developed to construct UEC estimates: thermal
(heating and cooling) loads (Btus/hr) and unit operating efficiencies. Although
several costly and sophisticated models are available to estimate thermal
loads, most are not well suited to our purposes and data. We chose to implement
the Dubin-McFadden model which produces reasonable estimates of thermal loads
that are integrated over periods at least 24 hours long.

The thermal model generates hourly estimates of heating or cooling loads
that are aggregated to project total daily and monthly loads. The basic form
of the model equations is

Q(t,t) = max[0, Btu] (17)
where

Btu = a + bA + cA2, A0

0, A<O

>4
[}

t-t for cooling, and

t-t for heating

The parameters a,b, and c are household-specific functions of dwelling, climate,

and occupants characteristics such as
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Thermal Heating/Cooling
mode] load: Btu/hr
Efficiency Adjusted
adjustment efficiencies:
procedure COP(t), EER(t)

A/

HVAC
electrical
loads: UEC

(kwh/hr)

Figure 2. Method to construct UEC estimates for HVAC electricity usage.
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. Square footage and number of stories,

. Amount of attic, wall, and floor insulation,

. Number, type, and size of windows and doors,

. Prevailing wind speed and ground temperatures within a season, and

. Number of occupants
Equation (17) was evaluated for each study participant and for each hour of
the 12-month period included in our analysis.

The second type of intermediate variable was the operating efficiency
estimates for heating and cooling. They approximate the kWh required per Btu
of heating or cooling load. Because HVAC equipment efficiencies are sensitive
to temperature variations they were also calculated for each hour of the
12-month study period.

The operating efficiency numbers most commonly used by HVAC equipment
retailers are energy efficiency ratios (EERs) for air conditioning and coeffi-
cients of performance (COPs) for heating. Both values are measures of heat
transferred per unit of energy (electricity) consumed at specific design
(indoor and outdoor temperature and humidity) conditions. Specifically,
design EER is

EERX = heat rejection (Btu/hr)
heat input (watts)

and design COP is

heat output (Btu/hr)

X =
cop heat input (Btu/hr)

Since most heating and cooling takes place when temperatures are quite
different from design conditions, it was necessary to represent EER and COP as
functions of temperature and design values, i.e., as

EER(t) = f(EER*,t) and

COP(t) = q(COP*,K*,t)
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where EER(t) and COP(t) are temperature-sensitive measures of EER and COP, and .
K* is the design heating capacity. We constructed these functions as piecewise
linear approximations of typical unit performance data presented in Collie
(1979). These functions represent the decline in efficiencies as temperatures
become extreme: EER declines and COP rises with temperature over the relevant
temperature ranges.®

To construct hourly estimates of kWh requirements for heating and cooling,

the hourly values of equation (17) were divided by

Eg EER(t) * 103 and

Ejj = COP(t) * 3.413 (18)
Then these hourly estimates were aggregated over all the hours in each billing
month to obtain the UEC estimates for each customer.

This sequence of operations was completed for two assumed thermostat set-
tings for heating, and two for cooling. The FPL survey data showed that the
average study participant kept his thermostat at about 77°F in summer and 68°F
in winter. However, there was considerable customer-to-customer variation in
these reported settings. After examining the reported range of settings, we
chose to compute UECs at 67°F and 70°F for heating and at 75°F and 78°F for
cooling.

We computed the "price of comfort"--see equation (6)--as the cost of
changing thermostat settings by one degree, which is unique for each customer
in each month. The estimates are the product of the FPL tail-block electricity
rate (adjusted for franchise charges and local taxes) and the projected change
in kWh requirements for a one-degree thermostat change. The latter was approx-

imated as the average difference per degree change between the two UEC esti-

mates for each season

22
Since it was necessary to assume single reference values of UEC for
estimating equations (14) and (15), we selected the estimate based on 70°F for

heating and the estimate based on.75°F for cooling.
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SECTION 4: ESTIMATION MODELS AND FINDINGS

This section reports our estimation models (Section 4.1) and results
(Section 4.2). These models are designed primarily to test whether residential
customers use less electricity for heating and cooling as the service price
increases, and to determine the effects of income and household occupancy on
those end uses. One version of the models is designed to test whether the
so-called Hawthorne effect is a significant factor, i.e., whether the mere
fact that study participants knew they were being experimented upon (and
benefited from that fact) had an effect independent of the nature of the
experiment.® We also seek to measure the extent to which conservation behaviors
persist from season to season. Finally, we report conditional estimates of
electricity usage for purposes other than space conditioning, and verify our
technique for approximating electricity usage for heating
4.1 ESTIMATION MODELS

For estimation we divided both sides of equations (14) and (15) by our

estimates of UEC.10 The corresponding estimation equations are:

UAt =0 toog PCOOLt +a, INCOME + ag NOCCPT + eAt (19)
UH, = By + B, PHEAT, + B, INCOME + B, NOCCPT + eH, (20)
where
va, = YEC/UECKC for month ¢
uH, = v3H/uecsH
PcooL, = P, (AUECEC/at) = P, ARC
PHEAT, = P (AUECS"/a1) = Py ASH
Pt = FPL tail-block rate plus surcharges
AAC,ASH = change in kWh required per degree change of the thermostat

setting for heating and cooling, respectively
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INCOME = an index for family income where 1 refers to income below
$10,000 per year; 2, $10,000 to $20,000; 3, $20,000 to $30,000;
4, $30,000 to $40,000; 5, $40,000 to $45,000; and 6, above
$45,000

NOCCPT = the number of occupants in the dwelling
a,B = regression coefficients

error terms.

eAt,th
Table 2 reports mean values of these regression variables for each of the four
calendar quarters included in our analysis.

In preliminary regressions we considered other models with interactions
between income and price and with separate variables to designate the number
of occupants by age group. Generally, those models were not as effective as
the simpler versions of equations (19) and (20).11

We did, however, use another version of these two models to test the
so-called Hawthorne effect, i.e., in this case, the hypothesis that even after
accounting for prices, income, and demographics, there are remaining differ-
ences among the electricity usage of the four study groups. This would occur
if, for example, customers who received new air conditioners or heat pumps
systematically altered their usage not only because of the change in the price
of comfort but also simply because they obtained a windfall capital gain. To
test this we also estimated versions of equations (19) and (20) with indicator
variables for each treatment group.

4.2 FINDINGS

We estimated both equations (19) and (20) using the Seemingly Unrelated
Regression (SUR) procedure. To avoid severe data losses we applied SUR within
each of the four calendar quarters of the study. Data losses occur any time
that one of the regression variables is missing for the period covered by SUR.

Since most (327) of the 504 customers have missing usage data for at least one
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Table 2... MEANS OF REGRESSION VARIABLES
Quarter

Oct-Dec Jan-Mar Apr-Jdun Jul-Sep
Variable 1982 1983 1983 1983
UA 0.43 0.51 0.35 0.51
UH - 0.69 -- -
PHEAT -- 0.19 - --
PCOOL 0.56 0.23 0.20 0.46
INCOME 3.70 3.61 3.67 3.58
NOCCPT 3.14 3.09 3.17 3.26
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month, we chose calendar quarters as reasonable representations of periods in
which electricity consumption patterns are most correlated

Tables 3 through 6 report the regression coefficients and t-statistics
from each of the four quarterly regressions. The upper set is without indi-
cator variables for treatments in the experiment. The lower set includes the
indicators: IU for insulation upgrade, HEAC for a high-efficiency air condi-
tioner and insulation upgrade, and HEHP for a high-efficiency heat pump and
insulation upgrade. Each table also reports two overall regression statistics:
R2 and weighted mean square error for the system. Generally the RZ values
were unimpressive, reflecting a large amount of unexplained variation in the
ratio of actual to projected electricity use for HVAC. Nonetheless, the
regressions were all statistically valid in the sense that the R2 values for
each system were significantly different from zero at the .0l level.12

In Table 7 we report elasticities that correspond to the regression coef-
ficients from the first set of coefficients in these tables.13 The elastici-
ties are calculated at the mean values of the regression variables. Except
for two late fall months, November and December, and an early spring month,
May, when cooling equipment is used less intensively, all of the price elas-
ticity coefficients are highly significant. Even in the three months when
they are not significant, the estimates have the correct sign but are near
zero. Other estimates range in magnitude from -0.84 in February to -0.12 in
the hottest months, August and September. Generally, elasticities are higher
in those months when cooling is least required, i.e., when cooling degree days
are smaller. This seems reasonable since occupants may be more willing to
shut off their air conditioning when outdoor temperatures are in the high 70s
and low 80s during only midday periods than when temperatures get into higher

ranges and stay relatively high all night.
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Table 4. SPRING REGRESSION EQUATIONS

Regression coefficients
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Table 3. WINTER REGRESSION EQUATIONS
Regression coefficients
Month Intercept PHEAT PCOOL INCOME  NOCCPT U HEAC
Without Treatment Indicators
January 0.90** -1.87** - 0.01 0.04
(5.34) (-5.22) (0.14) (1.03)
0.42 -- -1.29**  0.08 0.02
(1.45) (-3.11) (1.25) (0.33)
February 1.01%* -1.47% -- -0.01 0.02
(8.07) (-6.48) (-0.74) (0.69)
3.59%* - -28.61%%  0.22 0.05
(1.94) (-3.75) (0.52) (0.10)
March 1,01%* -1,74*%* - -0.04 0.03
(6.28) (-5.08) (-1.13) (0.88)
1. 20** - -6.03** 0,19 -0.09
(2.13) (-3.54) (1.49) (-0.59)
. With Treatment Indicators
January 0.91** -1.88** -- +0.00 0.04 -0.12 0.28*x
(5.03) (-5.24) (0.11) (0.89) (-1.02) (2.06)
0.25 -- -1.40** 0.09 0.04 0.51%* -0.29
(0.81) (-3.32) (1.42) (0.61) (2.41) (-1.17)
February 1.00** -1.48%* -- -0.02 0.01 -0.09 0.29**
(7.60) (-6.58) (-0.79) (0.51) (-1.12) (3.07)
2.45 - -30.40** 0.29 0.17 3.33%* -1.78
(1.24) (-3.92) (0.68) (0.37) (2.48) (-1.15)
March 0. 98** -1,73** - -0.04 0.03 -0.04 0.24*
(5.73) (-5.05) (-1.15) (0.79) (-0.37) (1.92)
1, 21% -- -6.39** 0.21 -0.07 0.30 -0.75
(1.99) (-3.66) (1.56) (-0.47) (0.72) (-1.54)
Note: A1l coefficients are from the SUR systems whose weighted RZ = 0.051

and 0.072 for the systems with and without treatment indicators,
respectively. Total observational units = 252. Significance levels
are denoted by asterisks: 10 percent (*) and 5 percent (**).
T-statistics are in parentheses. The dependent variable for each
regression is the ratio of actual kWh usage to projected kwh usage,
or UEC values.

Month Intercept PCOOL INCOME NOCCPT IV HEAC
Without Treatment Indicators
April 0.39*%* -1.00** 0.08%*  -0.04
(3.05) (-3.60) (2.72) (-1.32)
May 0.05 -0.05 0. 05%* 0.01
(0.76) (-0.48) (3.43) (0.63)
June 0.21** -0.32*%* 0.67** 0.04%**
(3.18) (-3.50) (4.40) (2.57)
With Treatment Indicators
April 0.45%* -1.09** 0.08** -0.04 -0.04 -0.15
(3.27) (-3.80) (2.72) (-1.29) (-0.46) (-1.48)
May 0.08 -0.04 0. 05%* 0.01 -0.06 -0.03
(1.09) (-0.31) (3.36) (0.52) (-1.30) (-0.51)
June 0.22*%* -0.31* 0.06** 0.04%* -0.02 - -0.00
(2.97) (-3.18) (4.35) (2.50) (-0.43) (-0.03)
Note: A11 coefficients are from the SUR systems whose weighted RZ = 0.080

and 0.0854 for the systems with and without treatment indicators,
respectively. Total observational units = 282. Significance levels
are denoted by asterisks: 10 percent (*) and 5 percent (**).
T-statistics are in parentheses. The dependent variable for each
regression is the ratio of actual kWh usage to projected kWh usage,
or UEC values.
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Table 5. SUMMER REGRESSION EQUATIONS
Regression coefficients
Month Intercept PCOOL .INCOME  NOCCPT b(I] HEAC _HEHP
Without Treatment Indicators
July 0.29%* -0.17**  0.06** 0,03**
(5.79) (-2.44) (5.33) (2.50)
August 0.36** -0.14*%*  0,04*%* 0,03**
(7.89) (-2.84) (3.91) (2.99)
September 0.35** -0.12*%*  0,05*%* 0.03**
(7.73) (-2.69) (4.60) (3.0&)
With Treatment Indicators
July 0.27* -0.17**  0.06** 0,03** 0.03 0.07 0.01
(4.81) (-2.24) (5.32) (2.55) (0.80) (1.60) (0.19)
August 0.35%* -0.13*%*  0,04*%* (,03** -0.00 0.07 0.02
(6.90) (-2.41) (3.86) (2.89) (-0.08) (1.57) (0.56)
September 0.35% -0.12*%%  0,05*%*% 0,03** -0.01 0.06 -0.00
(6.89) (-2.35) (4.55). (3.02) (-0.29) (1.33) (-0.03)
Note: A11 coefficients are from the SUR systems whose weighted RZ = 0.049

and 0.056 for the systems with and without treatment indicators,
respectively. Total observational units = 396. Significance levels
are denoted by asterisks: 10 percent (*) and 5 percent (**).
T-statistics are in parentheses. The dependent variable for each
regression is the ratio of actual kWh usage to projected kWh usage,
or UEC values.

Table 6. FALL REGRESSION EQUATIONS
Regression coefficients
Monfh Intercept PCooL INCOME NOCCPT Iu HEAC
Without Treatment Indicators
October 0. 30** -0,32%* 0.05** 0.04**
(4.15) (-3.54) (3.49) (2.80)
November 0.08 -0.02 0.03%* 0.02
(1.27) (0.23) (2.47) (1.35)
December 0.04 -0.00 0.04** 0.01
(0.50) (-0.00) (2.36) (0.88)
With Treatment Indicators
October 0. 28** -0.29** 0. 05%* 0.04** 0.01 0.04
(3.65) (-2.99) (3.35) (2.70) (0.20) (0.74)
November 0.08 -0.00 0.03*x 0.02 -0.00 0.02
(1.14) (-0.05) (2.40) (1.30) (-0.05) (0.34)
December 0.02 -0.01 0. 04** 0.02 0.04 -0.01
(0.27) (-0.11) (2.42) (0.97) 0.79 (-0.23)
Note: A1l coefficients are from the SUR. systems whose weighted RZ = 0.064

and 0.070 for the systems with and without treatment indicators,
respectively. Total observational units = 214, Significance levels
are denoted by asterisks: 10 percent (*) and 5 percent (**).
T-statistics are in parentheses. The dependent variable for each
regression is the ratio of actual kWh usage to projected kWh usage,
or UEC values.
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The pricé elasticities of demanq for electricity used in space heating
are relatively high for all three winter months. The estimates range from
-0.52 to -0.81.

A11 of these price elasticity estimates confirm the notion that home-
owners will use their air conditioning and heating more intensively when the
effective price of comfort is lower. Based on these results, we should expect
that the pure engineering approach overestimates the conservation potential of
various strategies. For example, engineering models often assume that a per-
centage improvement in thermal efficiency--i.e., a percentage reduction in UEC
values--will translate into an identical percentage reduction in electricity
usage, i.e., that

nY,UEC =1 = d1nY/d1nUEC.

However, it can easily be shown from equations (19) and (20) that, while

assuming only UEC and A vary due to thermal improvements,

Ny,uec = 1 * My,p * M\, uEC (21)

where

My, UEC = d1nA/d1nUEC.
A separate set of regressions showed that the value of nA,UEC for cooling
varies from about 0.1 during summer months up to 0.15 in nonsummer months.
For heating it varies between about 0.1 and 0.16. These values imply, using
equation (21), that actual conservation for cooling would be as much as 13 per-
cent below engineering estimates for nonsummer months, but only about 1 or
2 percent below those estimates during peak summer months.l? This seasonal
difference naturally derives from the low price elasticities in the peak
summer season. These results illustrate that actual energy savings due to
thermal improvements and improvements in HVAC equipment efficiencies are below

those estimated from engineering models. Attenuation of these engineering
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Table 7. ELASTICITIES OF DEMAND FOR ELECTRICITY
IN SPACE COOLING AND HEATING

Elasticity
Month Price INCOME NOCCPT

Cooling
January -0.59%* 0.60 0.15
February -0. 84** 0.33 0.06
March -0. 68** 0.73 -0.27
April -0.58** 0.83*x -0.35
May -0.07 0.75*%* 0.12
June -0, 35%* 0.56** 0.29**
July -0.16** 0.41% 0.17*
August -0.12** 0.26** 0.18%*
September -0.12%* 0.30%* 0.18%*
October ~0.41** 0.42%* 0.30**
November -0.03 0.45** 0.24
December -0.00 0. 62** 0.21

Heating
January -0.52%* 0.03 0.19
February -0.81%* -0.13 0.11
March -0, 73** -0.25 0.18
Note: A1l elasticities and significance levels are based on barameters of

the regressions without treatment indicators.
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effects is due to behavioral responses to lower effective prices of comfort
levels.

It is notable that responses. are less pronounced during system peak
months. That is, one should expect to see larger percentage reductions in
electricity consumption and kW demand for air conditioning--due, say, to high
efficiency units--during peak summer months than during other months. Conse-
quently, these results anticipate improved annual load factors for high-effi-
ciency air conditioning compared to existing units.15

Overall, these results probably account for electricity savings that are
below engineering expectations in our simple comparisons of average usage
between treatment groups and the control group. Equation (21) demonstrates
that expected energy savings must account for the consumption effects of re-
ductions in the cost of comfort.

The income elasticities for cooling range between 0.30 and 0.83 are sta-
tistically significant for all nonwinter months. The income elasticities for
heating are less plausible, but none are significantly different from zero.

The number of household occupants seems to have 1ittle effect during
months when 1ittle cooling is required. However, the coefficients are statis-
tically significant in all months from June to October, all relatively heavy
cooling months. The elasticity estimates vary from 0.17 to 0.30 for those
months, e.g., indicating that adding a third person to a two-person household
would increase electricity use for cooling by 9 to 15 percent

Hawthorne Effects

The Tower set of regressions in Tables 3 through 6 include treatment
indicators. For the fall, winter, and spring, heat pump customers were excluded
so only the insulation upgrade (IU) and the group (HEAC) with a high-efficiency

air conditioner and an insulation upgrade are compared to the control group in
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those months. To test for differences among treatment groups, we conducted a
Chow test of the hypothesis that all treatment indicator coefficients are
simultaneously zero in each of the four systems. The computed F-statistics
for those tests were 0.213, 0.0, 0.414, 0.036 for the winter, spring, summer,
and fall regression systems, respectively. Those values were well below the
critical F-values, even at the 10 percent significance level. Based on these
tests, we cannot reject the hypothesis that all of the treatment indicator
coefficients are zero. In other words, after accounting for household-to-
household differences in weather, HVAC efficiencies, thermal integrity of
dwellings, service price, income, and demographic factors, the treatment group
indicators fail to account for a significant amount of additional variation in
electricity usage. Overall, this indicates either that there is no Hawthorne
effect or, less likely, that it exists and is about the same in each treatment
group, despite the large differences in the value of the equipment gi&en to the
participants.

Despite this overall finding, it is instructive to examine more closely
the results of the winter regressions for two reasons. First, it was during
the winter months that customers in the HEAC group were found, in simple com-
parisons of means, to have considerably higher overall electricity usage than
the control group, even though their electricity usage for air conditioning
was about the same. Second, the computed F-value for the Chow test in the
winter regression was closest to the critical F-value, although it was still
less than 20 percent of that value. Nonetheless, some of the individual
treatment indicator coefficients were statistically significant (Table 3).
Specifically, the HEAC treatment indicator was significant and positive in the
space heating equation for all three winter months. These results suggest
strongly that customers in the HEAC group increased their electricity use for

heating during winter months, over and above the average customer's response
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to other factors explicitly accounted for in each regression equation. The
same may have been true for cooling electricity use by the insulation upgrade

group in two of the three winter. months.

Correlation of Conservation Behaviors

To determine whether customers who conserve on electricity usage during
summer months also do so during the winter, we conducted two analyses: (1) a
simple calculation of correlation coefficients and (2) an examination of
correlations among residuals from estimates of a system incorporating equa-
tions (19) and (20).

The questionnaire data from the FPL study provided information on reported
daytime and nighttime thermostat settings for each customer. We calculated
correlation coefficients among these settings and among kWh usage values for a
representative winter and summer month: February and September. Since we
included all customers whether they had heat pumps or straight-cool units,
only the total kWh usage values were meaningful for February. Both total and
HVAC kWh were used for September

The calculated correlation coefficients are reported in Table 8. The
results show what we would expect

. Summer daytime thermostat settings are highly and positively corre-

lated with summer nighttime settings, and negatively correlated with
winter daytime and nighttime settings. In simple terms, people who
keep their homes relatively cool in summer also keep them relatively
warm in winter. Similar correlations exist for other thermostat

settings.

High thermostat settings in summer are strongly associated with
lower kWh usage during both summer and winter.

. Similarly, high thermostat settings in winter are generally associ-
ated with high usage in both winter and summer

. Finally, as expected, there is a very strong positive correlation
between summer and winter usage values.
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Table 8. SIMPLE.CORRELATIONS AMONG THERMOSTAT SETTINGS

AND SELECTED USAGE VALUES

Correlation coefficients

Thermostat setting

Summer  Winter Winter
Variable night day night

kWh usage

September

February
Total AC total

Thermostat setting

Summer day 0.67** -0,12** -0.08
Summer night -0.02 -0.15*%
Winter day 0.54*%*

Winter night
kWh uéage

September total

September AC

-0.18**  -0,21**  -0,20%*
-0.18*%*  -0,19%* -0, 15%*
-0.01 0.01 0.09*
0.11* 0.09* 0.12*

0.88* 0.72%*
- 0,53%*

*Significant at the 5 percent level.
**Significant at the 1 percent level.
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These correlations alone confirm our gxpectation that conservation attitudes--
or the lack of them--are consistent from season to season.

To examine this question further, we estimated a system of equations in-
corporating equations (19) and (20). However, we included only the space
heating equation for the months December through April and only the space
cooling equation for the remaining months. We also eliminated all customers
with heat pumps. Then we estimated all 12 equations as a complete system
using SUR, and examined the intercorrelations among the residuals from those
regressions. If conservation behaviors are consistent, we would expect posi-
tive correlations between the residuals of the heating and cooling equations.

This expectation is realized as shown in Table 9. In all cases, the
correlations between residuals are positive and in all but one case they are
statistically significant. So the evidence from this analysis supports the
findings of the simple correlations: conservation behaviors are peréistent
year-around.

Conditional kWh Estimates for Non-HVAC Appliances

Separate meter readings on air conditioning and total e]ect}icity usage
provided a residual usage value for all other appliances. This was the value
that we used, along with air conditioning usage readings, to estimate kWh
usage for space heating in winter months. However, availability of these
residual values also provides an opportunity to attribute the residual usage
to the appliances in each dwelling.

To do this, we regressed the residual value on indicator variables that
represent the appliance holdings of each household. The regression was a
combined cross-section and time series model for all summer months and excluded
the very small number of customers without either or both an electric range

-and an electric water heater. The regression was highly significant and had

INTERCORRELATION OF RESIDUALS FROM REGRESSIONS OF MONTHLY
HVAC kwh USAGE BY THE FPL STRAIGHT COOL CUSTOMERS
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an R2 value of 0.32. Table.1l0 shows the estimated regression coefficients
which represent the average daily kWh usage associated with the major remain-
ing household appliances.

The table also shows FPL engineering estimates of average daily usage
from an FPL customer information brochure. As shown, the statistical estimates
are, in many cases, strikingly similar to the FPL engineering estimates. The
major differences are observed for electric clothes dryers, freezers, and
color televisions. Actual usage for clothes dryers and color TVs seems higher
and usage for freezers seems lower than FPL estimates, at least for this
particular population of customers. Generally, the favorable comparisons of
our statistical estimates with the FPL estimates gives some assurance that our
estimates of residuals are valid and appropriate for use in estimating space

heating loads.
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Table 10. COMPARISON -OF STATISTICAL AND ENGINEERING ESTIMATES
OF AVERAGE DAILY kWh USAGE BY APPLIANCE CATEGORY

FPL
Average daily engineering
Appliance category kWh usage estimatest
Swimming pool pump 15, 21%* 12.50
Sprinkler system pump 0.43 0.93
Electric dishwasher 1.52 3.00
Electric clothes dryer 8. 25%* 2.60
Manual and/or frost-free 4,41%* 2.6 - 6.83
refrigerator
Manual and/or frost-free 1.73% 4.5 - 6.27
freezer
Color television 6.21** 1.0
Attic or whole-house fan 1,03% 1.0

A1l other appliances, 2.13 To-
excluding central
heating and central

cooling

Note: Based on a pooled time-series cross section regression for_all experi-
ment customers, Summer 1983.

*Significantly different from zero at 5 percent level of statistical
significance.

**Significantly different from zero at one percent level of statistical
significance

fTypical Energy Requirements of Electric Household Appliances, Florida Power
and Light Company.
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SECTION 5: SUMMARY AND CONCLUSIONS

This analysis has demonstrated empirically a critical behavioral interac-
tion with new energy-efficient appliances and thermal improvements: these
technologies Tower the effective price of the services they provide (or are
associated with) and, consequently, reduce electricity consumption by smaller
amounts than anticipated in engineering estimates. Specifically, we estimate
that, for the particular FPL residential customers we studied, actual conserva-
tion for cooling would be as much as 13 percent below engineering estimates
during nonsummer months but only about 1 or 2 percent below those estimates
during the peak summer months. We estimated that conservation for heating
would be in the range of 8 to 12 percent below engineering estimates.

Our approach used a mixed engineering and econometric model that was
particularly effective for incorporating prior engineering knowledge about the
interactive effects of weather, appliance efficiences, and thermal integrity
of dwellings. We found that, after accounting for differences among these
factors from one treatment group to another in the FPL experiment which pro-
vided the underlying data, there were no remaining overall differences attrib-
utable to a so-called Hawthorne effect of each treatment. Such an effect may
have been plausible in this study since customers in treatment groups were, in
some cases, given rather valuable heating and cooling equipment free of charge.
However, there is one caveat to this finding: during winter months customers
who received high efficiency air conditioners may have used unusually high
amounts of electricity for space heating.

In separate analyses, we analyzed correlations between reported daytime
and nighttime thermostat settings during summer and winter, and between those

values and kWh usage in representative summer and winter months. We also
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examined the correlation of residuals between cooling and heating usage equa-
tions. Both analyses supported the notion that individual customers who con-
serve electricity are persistent in that behavior during all months. They
keep their houses warmer in summer and cooler in winter.

Finally, we conducted a conditional demand analysis of differences between
total and air conditioning load in summer months. This analysis produced
appliance usage estimates that generally compared quite favorably with FPL
engineering estimates and validated our approach to approximating space heating

loads.
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APPENDIX A: EXPERIMENTAL DESIGN

FPL residential customers were selected and enrolled into the study
through a large-scale screening and survey effort. Late in 1981 FPL mailed a
one-page questionnaire to about 15,000 of its residential customers living in
single-family dwellings. Their responses indicated whether their houses had
or could accommodate any insulation in their attics and whether they had
central, all-electric heating and cooling systems. Then, in early 1982, FPL
randomly selected 2,000 customers from among those of the 15,000 that had
central, all-electric systems. Those 2,000 customers were then visited by an
energy auditor who collected engineering data on each dwelling and its heating
and cooling equipment, as well as appliance and socioeconomic data. Later in
1982 FPL drew four random samples, totaling 504 customers, from among the
sample of 2,000. One of those four was a control group whose members received
$50 each to participate in the study. Customers in the other three groups
were given one of the following conservation technology combinations:18

Attic insulation upgrades to achieve insulation effectiveness
of at least R-19, or

. Both attic insulation, if not already at least R-19, and a high-
efficiency central air conditioner, or

. Both attic insulation, if not already at least R-19, and a high-
efficiency central heat pump.

Although the sample selection and assignment to study groups was random,
customers in the FPL study were stratified, i.e., divided into strata or sub-
groups and then randomly selected in equal numbers from each subgroup. The
strata were defined according to the location, the existing attic insulation
level, and the historical electricity usage associated with each dwelling.
The study included 6 past usage levels in the South, roughly the area in the

Miami weather region in Figure 1; and 6 in the North, the rest of FPL's service
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territory. Within each of the 12 region-usage strata, customers were further
divided according to their prior insulation levels. Those insulation categor-
ies are shown in Table A-1, along with the number of study participants in
each, for each of the four study groups.

Four customers in each prior insulation category were randomly selected
from each of the 12 region-usage categories for Study Groups I and II. For
technical reasons, several households were eliminated from among the remaining
customers in the sample of 2,000. Then, 12 customers were randomly selected
from each region-usage category without regard to their prior insulation
levels. Six were randomly assigned to Study Group III and six to Study Group IV.
The customers eliminated from these two groups had either a heat pump already
in place or a type of system that was quite difficult to replace.l”?

Besides the selection constraints already mentioned, all of the study
participants had to meet several other conditions, e.g., available space and
wiring had to be compatible for installing electricity meters and customers
with more than two central systems were excluded. These conditions and their
effects on customer selection probabilities are detailed in Clayton (1983).

A recording meter was installed on the whole-house electricity load of
all experiment participants. This produced data on total electricity consump-
tion every 15 minutes for the duration of the study, October 1982 through
December 1983. Another simple watt-hour meter (the usual type for residences)
was attached to the outdoor unit. For so-called split systems, the metered
load included the compressor and outdoor fan motor, but excluded the indoor
fan motor and resistance heating coils (if any). For so-called package systems,
the readings included the compressor and both fan loads.!® Readings for water-
based systems excluded the water pump motors as well.l® The watt-hour meters
on both the whole-house and outdoor units were read at the end of billing months

and on the working day nearest the last day of each calendar month.Z20
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Table A-1. SIZE AND DISTRIBUTION OF FPL STUDY GROUPS
BY PRIOR INSULATION LEVELS
Prior insulation categorya
Study group R<10  10<R<13  13<R<19  R>19  'Total
I Control 48 48 48 72 216
IT Insulation upgradeb
Add R-19 48 - - - 48
Add R-11 - 48 48 - 96
IIT Insulation upgrade and 72 72
high-efficiency air
conditioners
IV Insulation upgrade and 72 72
highEefficiency heat
pump

3Insulation is measured by its resistance or R-factor.
bEach customer with attic insulation below R-19 received the minimum of two
increments, either R-19 or R-11, to achieve at least on R-19 rating.

CCustomers in this portion of the study were randomly selected without regard
to their prior insulation level. Only those with less than R-19 received an
upgrade.
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2kwh consumption is simply the product of the capital stock (kW capacity)
times the rate of utilization (the proportion of time the appliance is used)
times the inverse of efficiency (the amount of electrical service or work
produced per kWh of input) or kwh =S - U/E. Typical engineering models
assume that S and U remain constant. Simple economic theory suggest that when
E is increased U will also increase.

3Issues of simultaneity are discussed in Dubin and McFadden (1984).

4Examples are NBSLD, developed by the National Bureau of Standards;
DOE-2, developed by Lawrence Berkeley Laboratory for the Department of Energy;
BLAST, developed by the Army Civil Engineering Research Laboratory; and the
residential building model developed by the Ohio State University for the
Electric Power Research Institute.

5This factor is theoretically sensitive to variations in temperatures,
but a separate analysis showed that very 1little accuracy was sacrificed by
assigning constant values to the factor.

8These estimates were developed for each billing month, but only for
customers with straight-cool central units.

"This approach assumes that non-HVAC uses of electricity are relatively
constant over time, an assumption supported by internal FPL data. For example,
samples of FPL's residential customers seemed to use about the same amount of
electricity from month-to-month for electric clothes dryers, pool pumps, and
water heaters.

8The COP of resistance heating is always 1 whereas COPs for heat pumps
are about 2.7 at design conditions. As temperatures fall, overall COP declines
for two reasons: (a) more resistance backup must be used and (b) the compressor
unit itself operates less efficiently (and shuts down completely at very cold
temperatures). Our estimate of EER(t) is

EER(t) = EER* + 0.07 (95-t)
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approximated from the data in.Collie (1979, p. 36). Our estimate of COP(t) is

COP(t) = (1-SHP) + SHP - COP** .
where

COP** = COP* + 0.025 +« Min[t-47,0] + 0.01 - Max[t-47,0],
SHP = Min[K(t)/Q(t,1),1],
K(t) = K* + h - Min[t-47,0] + g - Max[t-47,0],
h = -0.7175 + 0.011312 K* + 0.0000781 (K*)Z,
g = -0.09525 + 0.0012708 K* + 0.0003038 (K*)2, and

K* = design capacity of the heating system, in thousands of Btus per hour
(Q is defined accordingly); K* is zero for simple resistance heating
systems.

This equation reflects approximate changes in the COP of the heat pump portion
of the heating system, as well as the share of the heating load, SHP, that is
met with the heat pump. The COP of the overall heating system is the share-
weighted sum of the COP of the backup resistance heating and that of the heat
pump portion of the system, COP**, The parameters h and g are based on simple
regressions of data in Collie (1979, p. 34) and reflect the effects of ambient
temperature variations on the actual capacity of the heat pump portion. The
coefficients used to develop COP** are approximated from data in Collie (1979,

p. 35).

9The Hawthorne effect was first suggested by a 1928 study of factory
workers in Hawthorne, New Jersey. Workers' productivity appeared. to increase
regardless of changes--some actually expected to be counterproductive--in
their working conditions (Roethlisberger and Dickson, 1939).

10Note that our estimates of UEC are adjusted to reflect the estimated
efficiency of the heating and cooling units.

11g0ther regression specifications were considered as well, using data for
a single month of the summer season. These included a double logarithmic ver-
sion of equations (19) and (20), as well as other linear versions such as a
model with UEC values on the right-hand side and only actual usage or Y values
on the left-hand side. Although all versions gave similar results, the ratio
model reported here was preferred because its parameters are easy to interpret
directly and because it performed as well as the others in terms of traditional
statistical measures.

12Equivalent - to an F-test on all nonintercept parameters in each system.

13The elasticity of electricity use with respect to the electricity price
can be developed from equation (19). Since

av*C/op = o) \ACuECAC,

AC -1
n =31nY""/31nP = a, UA ~ PCOOL
YAC,P 1
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Therefore, nYAC P1s identical to NYA, PCOOL"
)
Similar calculations are appropriate for other elasticities.

14For example, in February, equation (21) is approximately 1 + (-.84)(0.16)
= 0.87, which implies that the reduction in actual usage is 13 percent of the
engineering estimate.

15l oad factor is average annual kW demand (instantaneous usage) divided
by kW demand at the time of system peak

187 high-efficiency air conditioner was defined as a unit with an energy
efficiency rating (EER) of 10 or greater; and a high-efficiency heat pump as a
unit with an EER of 8 or greater. An EER is the heat (in Btus) that a properly
sized unit can remove from a house per watt of electrical energy input at
design (certain temperature and humidity) conditions.

17These included both water-based and so-called package air-conditioning
systems.

185p1it systems are the most common. The outdoor unit contains a compressor,
a condensor coil, and the outdoor fan. This unit is connected to the indoor
unit via two refrigerant lines (supply and return). The indoor unit has an
evaporation coil and a fan that forces warm indoor air past the coil which
absorbs heat into the continuous supply of 1liquid refrigerant that circulates
through it. Package systems have the same components. The main difference is
that they incorporate both the indoor and outdoor components into a single box
or package. This package, which is Tike a window unit in design, is connected
directly to the duct system for the whole house.

19yater-based systems are unique in that the outdoor coil is submerged in a
continuous flow of water, which serves the same purpose as outdoor air in con-
ventional systems. That is, the water absorbs or yields heat depending on
whether the unit is operated in the cooling or heating mode. A water pump is
required to supply the water from a lake or other source.

20Bi11ing months are the approximately 30-day periods that begin on the
date each customer's meter is read. Meters are usually read on 20 or 21
working days of each month, so there are a corresponding number of billing
cycles in each month





