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ABSTRACT 

A two-step maximum likelihood procedure is proposed for 
estimating simultaneous probit models and is compared to alternative 
limited information estimators. Conditions under which these 
estimators attain the Cramer-Rao lower bound are stated . Simple tests 
of exogeneity are proposed and are shown to be asymptotically 
equivalent to one another and to have the same local asymptotic power 
as classical tests based on the limitedd information maximum 
likelihood estimator. 



LIMITED INFORMATION ESTIMATORS AND EXOGENEITY TESTS 

FOR SIMULTANEOUS PROBIT MODELS 

1. INTRODUCTION

Douglas Rivers and Quang H. Vuong 
California Institute of Technology 

In this paper we investigate the properties of various 
estimators for probit models where some or all of the explanatory 
variables may be endogenous. A special case of this problem, which 
has received considerable attention, occurs when one endogenous 
variable in a simultaneous equation model with normally distributed 
errors is observed only with respect to sign. Heckman (1978) observed 
that maximum likelihood estimation of the structural parameters is 
quite difficult computationally and proposed a two-stage least squares 
analog which can be computed using standard probit and regression 
programs. Amemiya (1978) suggested alternative estimators based on a 
general method of obtaining structural parameter estimates from 
reduced form parameter estimates. Amemiya also showed that Heckman's 
estimator could be interpreted as a member of this class, but that 
another member of the class (G2SP) improves on the efficiency of the 
Heckman estimator though it involves an increase in the computational 

burden. Lee (1981) suggested a more straightforward version of the 
Heckman estimator (!VP), but showed that it is less efficient than 
G2SP, though somewhat easier to compute. These estimators are also 
applicable to the general problem considered here. 
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At the risk of confusing matters further, we propose another 
estimator, two-stage conditional maximum likelihood (2SCHL), which was 
introduced in Vuong (1984), and which has several advantages over the 
Heckman and Amemiya estimators. 2SCML is easier to compute than G2SP 
and in some cases more efficient, too, though contrary to the linear 
case (Rivers and Vuong (1984)) a general efficiency ordering between 
the estimators is no longer possible. Another advantage is that the 
2SCML procedure incorporates a simple test for the exogeneity of the 
explanatory variables. 

A unifying perspective on the various estimators is provided 
by placing the estimation problem, which has previously been viewed in 
an ad hoc fashion, in a likelihood framework. We restrict our 
attention to limited information estimators which do not impose any 
restrictions on the reduced form equations for the explanatory 
variables. The Cramer-Rao bound for limited information estimators is 
derived and conditions under which the estimators attain this bound 
are discussed. The question of efficient estimation is closely 
related to the construction of optimal tests for exogeneity in probit 
models. Specifically, the efficiency properties of the 2SCML 
estimator enable us to construct analogs of the Wald, likelihood 
ratio, and score tests based on the conditional likelihood function 
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which have the same asymptotic properties as the classical LIML tests 
under the null hypothesis of exogeneity and local alternatives. 

The notation and assumptions used in the paper are stated in 
Section 2. Section 3 describes limited information estimation methods 
for the model, including the new two-stage conditional maximum 
likelihood estimator. and the relative efficiency of the estimators is 
compared in Section 4. Tests for exogeneity of the explanatory 
variables are proposed and compared in Section S. Section 6 concludes 
the paper. Proofs are relegated to the appendix. 

2. MODEL
The model is composed of a structural equation that is of 

primary interest and a set of reduced form equations for the 
endogenous explanatory variables: 

• Yi Y�y + x�ill + ui
(i 1, • . .  , n) 

Yi TT·xi + vi

where Yi• Xli' and Xi are m X 1, k X l, and p X 1 vectors, 
respectively, with Xi and x1i related by the identity: 

Xli = J'Xi 

(2.1) 

(2.2) 

(2.3) 

where J is the appropriate selection matrix. . . Only the sign of Yi is 
observed: 
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• 1 if Yi > 0
Yi (2.4) 

0 • if Yi i 0

The following assumptions are made: 

Assumption 1: (Xi, ui, Vi) is i.i.d. with Xi having finite positive
definite covariance matrix [ and ui and v. having, conditional onxx i 

Xi• a joint normal distribution with mean zero and finite positive 
definite covariance matrix: 

[ auu 
Lvu

Luv ]
Lvv 

Assumption 2: (Identification) Rank ClT,J) m + k.

The model presented here contains, as a special case, 
Heckman's (1978) hybrid model without structural shift. Heckman 
treats the case m = 1 and writes equation (2.2) in structural form 
rather than reduced form. For the purpose of limited information 
estimation we ignore any a priori restrictions on the structural form 
parameters which might imply some restrictions on n or [ • UV 

3. LIMITED INFORMATION ESTIMATION
Four methods of estimation for equations (2.1-2) will be 

considered. The first three methods (LIML. IVP, and G2SP) are known 
and are reviewed only briefly. The other method (2SCML) is new and is 



described in greater detail. 
The parameters in (2.1) are not identified without a further 

normalization. Any normalization will be arbitrary, so the choice of 
normalization is made on the grounds of convenience for the proposed 
estimation technique. For likelihood methods, the most convenient 
normalization is V(y� lxi,Yi) = 1. Rewrite (2.1) in the form:

. , , 

s 

Yi = Yiy + Xlill + ViA + �i (3.1) 

\-1 \ , where A = L.vv L.vu and �i = ui - ViA. Conditional on Xi and Yi' 
�i - N(O,auu - A'l: vvA) so the appropriate normalization is

auu - A'[ vvA = 1 

The normalization (3.2) is different from that imposed by Heckman 
(1978), Amemiya (1978), and Lee (1981) and leads to a slightly 
different parameterization than theirs. 

Limited Information Maximum Likelihood (LIML) 

(3.2) 

The joint density for Yi and Yi conditional on Xi is given by:

h(yi,YilX1:y.p,A.Tf.l:vvl 

(2n) -(m+l) /2(a _ A'\ A) l/21\ 1-1/2 .uu Lvv Lvv 

"' 2 , 1 y. Cf exp {-1/2Cu - 2A'V.u + V .(\- + AA') V.])du] 1 

Ci 
i i L.vv i 

( 3. 3) 
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c i 2 , 1 l-yi X Cf exp {-1/2Cu - 2A'Viu + Vi<L:�v + AA')Vi] ) du ] _.., 

where ci = -(Y�r + X�ill + V�A). The limited information maximum
likelihood estimates are obtained by maximizing the sample log 
likelihood, 

n -Ln<r' p, A, IT. L: vv) = b/og h(y i' Yi lxi;y ,p, A, 11. L: vv)'

with respect to (y,p,A,TT.L:vv>. (This approach to limited

(3.4) 

information is adapted from Godfrey and Wickens (1982).) We denote 
A A 

the LIML estimator as (�L;tL,tL,lTL. [:L>. Since iterative 
maximization of (3.4) requires a fairly messy numerical integration 
(involving all the parameters) at each step, the LIML estimator has 
generally been avoided in favor of less efficient but computationally 
more tractable estimation methods. 

Instrumental Variables Probit (!VP) 
Lee (1981) suggested writing (2.1) in reduced form: 

. , , 
Y1 = <IT•x1>r + x1111 + u1 + v1r

Then the marginal log likelihood for y given X is: 

L* -
n<r • •  11 • • l l> 

n - , b/i log Cl>C< l l•x1>r. + x1111.1

+ (1 - y1> logCl - Cl><<ll•x1>r. + x�ill.>l 

(3.5) 

(3.6 ) 



where <ii(") denotes a standardized normal cdf and: 

r. 

11. 

where 

,,,2 

r/<a + 2r'[ + r'[ y)l/2
uu vu vv 

y/w 

11/<a + 2y'[ + r'[ y)l/2
UU UV VV 

11/w 

1 + (y + l.), [ (y + l.) vv 

A 

Given consistent estimates Tf Cobtained by applying ordinary least 
A 
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(3.7) 

(3.8) 

squares to (2.2)), one then maximizes L�(y•. 11•.TT> with respect to y•

and 11•. The resulting estimators <�zVP.�zVP) are consistent and
straightforward to compute, requiring m linear regressions followed by 
a standard probit estimation.1 

Generalized Two-Stage Simultaneous Probit (G2SP) 
Instead of maximizing (3.6) with respect to r. and 11. 

A 
conditional on TT = TT. Amemiya proposed estimating the reduced form 
(3.5) without imposing any constraints by maximizing: 

• 
Ln('t'•) 

n , , �
l
yi log (f>(Xi't'*) + (1 - yi) log[l - (f>(Xi't'•)]

with respect to 't'• where: 

(3.9) 
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't'• = ITr. + Jll. ( 3 .10) 
A 

Let �. denote the corresponding estimator of 't'• and, as before, TT.
the least squares estimator of TT. Replacing 't'• and Tr by their 
sample estimates in (3.10) yields: 

A 
't'. ( 11,.Jl [ :: l 

. t [ :: l + e 

A 
A - -

+ C't'. - 't'.> - cit. - l l>r. 

A A 

(3.11) 

where � = cTT. J> and e = <�. - 't'.) - err- TT>r •• The estimation
problem has been recast in the form of a linear regression. Ordinary 
least squares applied to (3.11) gives consistent estimates of y• and 
11.. but more efficient estimates can be obtained via generalized least 

A squares. Let V denote a consistent estimator of the asymptotic
covariance matrix of e.2 The Amemiya G2SP estimator is defined by: 

[ :�] • (. ·t-'t1-1M-1�.
11. J

(3.12) 

A Since the covariance matrix of e depends on r •• to compute V 
one needs a preliminary estimate of r.. G2SP requires one more 
computational step ((3.12) in addition to the m reduced form 
regressions and one probit calculation) than two step estimators such 



as IVP and 2SCML (described below). The GLS regression in (3.12) is 
also a bit awkward to perform with standard statistical software. 
While none of these computational difficulties are prohibitive, they 
do appear to have made G2SP less attractive to empirical workers than 
IVP despite its advantage in efficiency. 

Two-Stage Conditional Maximum Likelihood (2SCML) 
When the joint density for a set of endogenous variables 

factors into a conditional distribution for one and a marginal 
distribution for the remaining variables, each of which takes a 
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convenient form, then frequently estimation can be simplified by using 
the method of conditional maximum likelihood (Vuong (1984)). The 
present problem is a case in point. The joint density (3.3) for yi
and Yi factors into a probit likelihood and a normal density: 

h(y i' Yi lxi ;y, p, A, TI. Lvv>

f(yilYi,Xi;y,p,A,lT>g<Y11x1;TT.[vv>

where: 

f(yilY1,xi;y,p,A,T()

, , , Yi , , , 1-yi q>(Yiy + xlip + ViA) [1 - �(Yiy + xlip + ViA)] 

g(YilXi;TT.[vv>

(3.13) 

(3.14) 
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(211)-m/21[vv1-112exp{-l/2(Yi - TI•xi> ·[�<Yi - TI•xi)}
(3.15) 
A 

The 2SCML estimator is computed in two steps. First, estimators lT
A 

and Lvv are obtained by maximizing the marginal log likelihood for 
Yi, 

n -L�<Tf.[vv> = �/og g(YilXi;ll.[vv> (3.16) 

with respect to lT and [ • Second, the conditional log likelihoodA VV 

for Yi' setting TI = lT, is maximized with respect to the remaining 
parameters: 

A n A f -Ln(y,p,A,lT) = �1
log f(yilYi,Xi;y,p,A,11> (3 .17) 

Both of these steps can be easily carried out with standard regression 
and probit programs: 

(1) 

( 2) 

A A 
Regress Yi on xi to obtain TI. Lvv is estimated in the

-lr:
n A A• A usual way by n Vivi where Vi1=1 

least squares residuals. 

A 
Yi - Tixi denotes the 

A Probit analysis of Yi with Yi, Xli' and Vi as explanatory
AAA variables provides estimates (y,p,A).

4 . ASYMPTOTIC PROPERTIES OF LIMITED INFORMATION ESTIMATORS 
Each of the estimators described in the previous sections is 

strongly consistent and asymptotically normally distributed (Amemiya 
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(1978), Lee (1981), Vuong (1984)). In general, however, only the LIML 
estimator will attain the Cramer-Rao bound, which is given in 
Proposition 1 below. Let 0' = (y'. jl',A.') and 6' = (y',jl') with the 

corresponding LIML estimators denoted ;L and �L. respectively. 

Proposition 1. (Cramer-Rao Bound for Limited Information Estimators) 
Under Assumptions 1 and 2, 

n1f2(;L - 0) � N( 0, V(;L))
where: 

[ 

V(;L) 

H 

[-1 - xx 0 

[ 
l 

-1

i• · [[-1
• ''L w• • • l .,-1

[TI J o lI 0 I m m 

Lxx Lxv
[- -

E [ �z,6 
o<z'.& + v'.A.>2 

Lvx [vv

1 1 
+ v'.A.lll - <llcz'.6 + v'.A.ll 

1 1 1 

(4.1) 

(4.2) 

(4.3) 

[xi] [xi] 'l
vi vi l ( 4.4)

For comparisons with other estimators. we need the asymptotic 

covariance matrix of tL which is the upper lefthand block of V(�L): 
It is shown in the appendix that: 

V(�L) 
--1 --1 - - - --1 - - --1 !H'l[xx + [xx[xv<[vv - [vx[xx[xv>-1[vx[xx (4.5) 

+ 0 .. '[ A.l[-ll-lH}-1
vv xx 

where H = ClT;J] is a submatrix of H. 
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Next, we derive the asymptotic covariance matrix of the 2SCML 
estimator of 0. 

Proposition 2. (Asymptotic Properties of the 2SCML Estimator) Under 
� a. s. Assumptions 1 and 2, e � 0 and

n1/2<� - 0) � N(O,V(;))
where: 

V(�) = cii · c[ - [<A.' ® (Ip;O)')M-10. ® (Ip;o»[1ii1-1

- -

(4.6) 

(4. 7) 

M = [� ® L xx + [A. ® (IP;Oll[H<H'[Hl-1H•[ [A.' ® (IP;O) •] (4.8)

As before, the asymptotic covariance matrix for the 2SCML 
estimator of 6, denoted t, is obtained from the upper left hand block
of vc3): 

,. V(&) rn · c'xx + o. · ® I H'-1 ® \ L p Lvv Lxx (4.9) 

- (].. ® (Ip;O))s[-1so. ® (Ip;O)) ·1-1CA. ® Ip)]-1HJ-l

where: 

-
s = [ [iicii·[ii>-1li ·[ (4.10) 
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- -1 - -1 - - - - -1 - - - -1 [xx Lxx + LxxLxv<Lvv - LvxLxxLxv>-1LvxLxx (4.11) 

With these results, it is a simple matter to determine under 
which conditions the 2SCML estimator will be asymptotically efficient. 
If l = o, then it is evident from equation (4.7) that the variance of 
the 2SCML estimator tis given by: 

A Vo(Q) cii·[ii>-1 (4.12) 

AL which, by inspection of equation (4.2), is equal to vce ) evaluated
for l = O. In this case 2SCML is efficient for the entire vector e 
(including l) which will turn out to be important in constructing 
optimal tests of exogeneity. 

Another condition which is sufficient for V(t) = V(�L) is that 
k = p - m. In this case, H is square and, by Assumption 2, 
nonsingular. It follows that when k = p - m, we have S = 0 so (4.9) 

reduces to (4.5) and vet) = V(�L). Thus we have: 

Corollary 1. (Efficiency of 2SCML Estimators) Under Assumption (1) 
A AL and (2), V(li) 2 V(li ) with equality if one of the following conditions

holds: 
(i) l = 0 

(ii) k = p - m 

When l = 0, then Y and u are independent conditional on X, so 
that Y may be treated as exogenous in (2.1). Tests for A = O are 
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discussed in the next section. The other condition for efficiency of 
2SCML in the simultaneous probit model is that the number of excluded 
exogenous variables be equal to the number of endogenous variables 
appearing on the righthand side of (2.1), i.e. that equation (2.1) be 
just identified. 

The !VP and G2SP estimators will also generally involve some 
inefficiency, though conditions under which one or both of these 
estimators fail to attain the Cramer-Rao bound and the amount of the 
efficiency loss have not been investigated previously. The asymptotic 
distributions of G2SP and !VP have been derived by Amemiya (1978) and 
Lee (1981): 

where: 

vet!> 

V<�!VP) 

[xx 

n112c�! - 11.> � NC o, vc�!> > ( 4.13) 

nl/2c�!VP - &.> � N( o. vc�!VP)) (4.14) 

f -1 '\ '\ \-1 -1 -1 w {H' [ L.xx - (y•L.vvY• + 2Y•L.vvl•)L.xxl H} (4.15) 

- - - -1 - -w(H•\ H)-lH'\ [\ ( '\ + 2 '\ l )\-l]\ H(H'\ H)-l L.xx L.xx L.xx - 1•L.vv1• Y•L.vv • L.xx L.xx L.xx 

! 
, 2 lo(Xia•) , E , , xi xi ql(Xia•)[l - ql(Xia•)] 

(4.16) 

(4.17) 
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Lee (1981) showed that IVP is never more efficient than G2SP, 
though there are cases in which the estimators are asymptotically 
equivalent, or, even, when Equation (2.1) is just identified, 
numerically identical.3 Since, however, the G2SP estimator of &* is 
not optimal within the limited information class, this comparison is 
less interesting than one between G2SP (or IVP) and LIML. 
Unfortunately, the normalization used by Amemiya and Lee does not 

allow a direct comparison of vet!> and V(�;VP) with the Cramer Rao
bound for & derived following Proposition 1. The bound for &*, 

denoted V(�). is given in Proposition 3. 

A 
Proposition 3. Let�; = �L/[l + ctL + �L) •\"L ctL + �L)]1/2 denoteL vv 
the LIML estimator of & •• 1/2 � D AL Then n (&• - &•) � N(O, V(&•)) where: 

"L AL 2 • ' [ AL "L [ / 2 V(&•) = V(& l/w + [(y• + A•) vvV(y + A  ) vv(T• + A•) w 

... 1 , , , , \L - , 
+ 4<Cy• + A•) 6') (y• + A•))V(vec &v)((y• + A•) (x) (y• + A•))]&•&• 

' ' \" AL A A  - &•(Y• + A•)L vvCov(y + AL,&Ll/w2

""LAL ""L L ' 2 - Cov(& ,y + A ) (y• + A•)&./w • vv (4.18) 

When T + A = o. it follows that the Cramer-Rao bound for &• 

reduces to V(�Ll/w2, i.e., the bound for & divided by w2• It turns 

out that under this condition, Amemiya's G2SP estimator is 
asymptotically efficient as the following corollary states. 

Corollary 2. If T + A o. then vet!> V(�).
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If, however, A = 0 but y F 0 evidently �! does not attain the 
Cramer-Rao bound for & •• while under the same conditions, as shown in 
Corollary 1, the 2SCML estimator twill be efficient for &. On the
other hand, if y + A = 0 but A F 0, then 2SCML will fail to attain the 
Cramer-Rao bound while G2SP will be efficient. Hence, no general 
efficiency ordering between the estimators is possible. In contrast, 
in the case of linear simultaneous equations (i.e., if y• were 
observed), Rivers and Vuong (1984) have shown that G2SP, IVP, and 
2SCML are all numerically equivalent. Since each estimator may be 
viewed as an extension of the two-stage least squares estimation 
principle to the simultaneous probit model, it is somewhat surprising 
to find that they do not even maintain their asymptotic equivalence in 
this case. 

S. TESTS OF EXOGENEITY 
When Yi and ui are correlated, the usual probit estimator of 

(2.1) is inconsistent for y and � so it is necessary to resort to one 
of the estimators discussed above. If Lvu = o or. equivalently,
A= O, then Yi can be treated as exogenous in (2.1). In this section 
we propose three tests for exogeneity of Yi based on classical 



principles as well as one of the Hausman (1978) variety. All tests 
are based on the 2SCML estimator rather than the LIML estimator so, 
strictly speaking, these are not classical tests. However, as the 
remarks preceding Corollary 1 indicated, under the null hypothesis 
Ho: A. O, 2SCML is asymptotically equivalent to LIML. This enables
us to show that, under H0, the 2SCML-based tests are asymptotically 
equivalent to the classical tests. The 2SCML-based test statistics 
might be preferred over test statistics based on LIML or other 
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estimators on the grounds of computational convenience. In fact, the 
tests statistics discussed below are readily calculated from 
information routinely produced by most probit programs. 

Analogous to the usual Wald, likelihood ratio, and gradient 
tests based on the joint likelihood (3.4) for (yi• Yi)' we construct
similar tests based on the conditional likelihood (3.17) for Yi given 

4 Yi. The modified Wald statistic is given by:

A A 

MW n�·� (�)-1�0 (5.1) 

where V0(A.) is a consistent estimator of the lower righthand block of 
,.. - [- -1 ,. 

V0(0) = (H' H) corresponding to A.. 
ratio statistic is given by: 

CLR 
,.. f A A A lT 2[Ln(y,p, A., ) 

The conditional likelihood

A f - -Ln ( y, p, 0. lT)] ( s .2) 

where (y,p) is the usual maximum likelihood probit estimator of (2.1).
The conditional score statistic is given by: 
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,. f - - ,. cs = 1 aLn(y,p,o,ll> 
n a:v 

A A VOO.)
aLfC:r.:ii'.o.ll>

aA. ( S.3) 

Under H0, 6 is efficiently estimated by the usual probit estimator 

b = (y',p')' while under the alternative the 2SCML estimator t will be
consistent though possibly inefficient. This enables us to form the 
Hausman statistic: 

H A - A A A - - A  -n(6 - 6) ' [V (6) - V(6)] (6 - 6)0 ( S.4) 

where [·]- denotes a generalized inverse and tc&> is obtained from the 
estimated information matrix for LIML under the null: 

�(b) ·[t,
·- 2di(Yiy + XiP > 

X�p) [1 - <l>(Y�y ry l I ·1-

1 

• 1;pn t': ::1 '-''J 

Under the null hypothesis each of the test statistics (S.1)-(S.4) has 
an asymptotic central chi-square distribution with m degrees of 
freedom, where m is the number of endogenous variables included in the 
probit equation (2.1). In fact, under the null hypothesis, the four 
tests are asymptotically equivalent, as shown by the following 
proposition. 

Proposition 4. Under Assumptions (1) and (2) and H0: 
(i) plim MW - CLR = 0 

n� 



(ii) plim MW - CS = 0 n-+» 
(iii) plim MW - H n-+» 0
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Next we consider the behavior of these tests under a sequence 
of local alternatives of the form Hn: A = n-l/2b, where b is an 
arbitrary mXl vector. It is known that the classical LIML-based tests 
have the same Pitman efficiency (Wald (1943), Chandra and Joshi 
(1983)). The next proposition shows that the same result holds for 
the 2SCML-based tests. 

Proposition S. Under AsstBDptions (1) and (2) and the sequence of 
local alternatives Hn: A = n-l/2b, each of the tests statistics MW,

CLR, CS, and H has a limiting noncentral chi-square distribution with 
m degrees of freedom and noncentrality parameter5 b'V (X)-lb.0 

In fact, the limiting distribution of the 2SCML-based 
statistics is the same as the classical LIML-based statistics under 
local alternatives. This result follows from the fact that under the 

A null hypothesis, V0(A) is also the asymptotic covariance matrix of the 
LIML estimator. Estimators without this property, such as IVP or 
G2SP, will have smaller local asymptotic power than either the LIML or 
2SCML-based tests. 

Note that the estimate � (X) used to calculate the modified0 
Wald statistic can be obtained from the information matrix associated 
with the conditional likelihood (3.17). This matrix would ordinarily 
be computed by any probit program used to perform the second stage of 
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the 2SCML estimation procedure (i.e. , the uncorrected information ma-
trix associated with the conditional likelihood function). In view of 
the above result, the modified Wald test might be recommended since it 
reduces the computational burden. 

6. CONCLUSION
In this paper we have compared alternative limited information 

estimators for simultaneous probit models. Three considerations 
guiding the choice between estimators are: (1) efficiency, (2) 
computational convenience, and (3) usefulness for testing. On grounds 
other than computational convenience, the limited information maximum 
likelihood estimator would be preferred. Of the computationally 
simpler estimators, however, the proposed two-stage conditional 
maximum likelihood estimator was shown to have attractive properties. 
Although no general efficiency ordering between these estimators is 
possible, conditions were stated under which these estimators attain 
the Cramer-Rao bound. In particular, the efficiency of the 2SCLM 
estimator under the null hypothesis of exogeneity allowed us to 
construct several simple exogeneity tests for probit models. These 
tests were shown to be asymptotically equivalent to one another and 
have the same local asymptotic power as the classical LIML-based 
tests. 



APPENDIX 

From Equation e3.14) the first partial derivatives of the 
log-density, log re. I. ;.), of Yi given (Yi.Xi) are:

a1og r/a6 = mi(yi - q>i)Zi'
alog r/aA = mi(yi - q>i)Vi' 
aiog r/avecTI = - mi(yi - q>i)eA <i>Xi)'
a1og r/a vech [vv = o, 
where vec and vec h are the operators that stack the columns of a 
matrix and a symmetric matrix (see, e.g., Henderson and Searle 
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e1979)), and mi= di/[q>i(l - q>i)] with di and q>i being defined in the
text. 

It follows that the second partial derivatives of log re.I.;> 
are: 

a21og r/a6a6' diziz� + Cyi - q>i>zieami/a6'),
a21og r/a6aA' = - diziv� + eyi - q>i>zieami/aA'),
a21og r/a6avec TI• = dieA'<i> zix�> + (yi - q>i)Zi(ami/avec TI•>
a21og f /a6avech [ vv = 0 

? , a-1og r/aAaA' = - di Vivi + (yi - q>i)Vi(ami/aA') 
2 - , -a log r/aAavec 11 • = di (A' (i) Vi xi) + (yi - q>i)Vi cam/avec 11 ·> , 

- mi (yi - q>i) (Im IX> xi) 
a21og r /aAavech [ vv = o
a21og r/avec TI avec TI' di(H' (i)XiX�) - (yi - q>i)(A(i)Xi)(ami/avec TI>
a log f/avec TI avech = O 2 [' vv

a21og 
where 

r/avech [v avech [� = o 
2 di= di/(!Ji(l - q>i))
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Since E(yilYi,Xi) = q>i' then E(yi - !Ji) = O. Using the fact
that 

zi 
[ Yi l = 

[�· 1ml [Xi! 
xli J o vi 

and the definitions of H and [ given in the text, it follows that the
matrix of expectations of second partial derivatives of log re.I.;. )  
with respect to a = (9,vec lT,vech [vv> is given by: 

0 vec TT vech [vv 
li·[ii • 

0 

Af(a) = - 1 - [A@ CIPo>l[H n• ® [xx 0 I 
0 0 0 

From Richard (1975), the matrix of expectations of second 
partial derivatives of log g(.I.;.) with respect to a is: 

0 vec TI
0 0 

Ag(a) = -I 0 [�! ® [xx
0 0 

vech [vv

i.,i.:-· ; i.:-•,.. ]2 vv vv 

where R is a matrix such that vech [ = R vec [ • vv vv 

(A.1) 

(A.2) 
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The Cramer-Rao lower bound for a is therefore - [Af + Ag]-1•

PROOF OF PROPOSITION 1: To obtain the Cramer-Rao lower bound for 9, 
it suffices to compute to upper-left block of - [Af + Ag]-1• Using the
formula for a partitioned inverse, we have: 

Var 3L = [H' c[ LO.'® (IP;O) ') [(A.A.' ®Lxx>

+ [�! ® Lxx>l-10. ® Lxx>l-10. ® (IP;O)) [nii1-1

Taking the inverse of the matrix in braces, we obtain after some 
matrix algebra: 

--1 
Var aL = [H'{[ +(A.'® (Ip;O))(L vv@ L.:�)(A.(21) (Ip;0))}-1Hl-l

which gives the desired result. 

Q.E.D. 

To establish Equation 4.5, we use the following identity which 
is straightforward to prove: 

rNll N - N(O;Im) '[(0;1m)N(0;1m) ·1-1co:Im)N = l 
-1 - NllNllNll

0 

o1 
o! (A.3)

where N is any partitioned matrix [Nij]' i,j = l,l, and Nll is a m  X m 
non-singular matrix, 

Let N be chosen so that v<iL) = {H'NH}-l (see Equation (4.l)).
In what follows the subscript 1 indicates partitioning with respect to 

l4 

e, (or X) while the subscript l indicates partitioning with respect to 
(vec ll, vech [ ) (or V) depending on the context. Then using thevv 
formula for a partitioned inverse, the definition of H, and the above 

identity, we obtain for the lower bound of �L: 

V(�L) , -1 -1{H (Nll - Nll(Nll) Nll)H} 
-

rn·c[xx + o.·[ A.>[-11-1Hl-1vv xx 

TT [-xx [--1 where H = [ ;J] and is the top-left block of • Equation
(4.5) now follows from the formula for a partitioned inverse. 

PROOF OF PROPOSITION l: From Vuong (1984) the asymptotic covariance 
matrix of the lSCML estimator 3 is: 

A V(9) f f _-l f -1{All - AllM All} 

- - g + f f -1 f where M - All Al1CA11> All" 
From the formulas (A.l) and (A.l) for Af and Ag derived 

earlier, we have: 

f -,[-All = - H H 
f All [tt '[ {A.'® CIP:O> '} :Ol

Since A�l is block diagonal, it is easy to see that M is also block
diagonal with first block equal to M as given by Equation (4.8). 
Equation (4.7) follows. 
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Q.E.D. 
To establish (4.9), we use the partitioned inverse formula. 

Let G be chosen so that vcii = {H'G-1H} (see Equation (4.7)). We 

obtain using the definition of H and the identity (A.3) where N is
taken to be G-l: 

v<�> = £H'CG11 _ a12ca22>-1a211H1-1

{H'(G )-lH}-1 11 
1 .. 

where G- = [G1J]. It now suffices to compute G11• We have: 

- -
G = £[ - L (').. ' @ CIP;O) ')M-1(>. ® (Ip;O)) [1-l

= i- -l + (>.' 00 (I ·O) ') [(\-l 00 \ )L - p' Lvv - Lxx 
- 0. ® CIP;O>lS[-1sC>.'@ (IP;O) ')J-1(>.@ CIP;O))

where the second equality follows from the formula for the inverse of 
P - R'QR, and the definition (4. 1 1) of S. Equation (4.9) follows. 

To derive the lower bound for s •• we need the Jacobian of the 
transformation from (9,vec TT, vech \ ) to 1>.. We have Lvv 
w = [l + Cy + >.) •\ (y + >.))1/2 so that:Lvv 

aw/ay = c1tw> Lvv<>. + y).
aw/a>.= (1/w>[vv<>. + y), 
aw/a vech[ vv = Cl/2w)Q' [(>. + y) ® (').. + y)] • 

where vec \ = Q vech [ • Thus:Lvv vv 

ay./ay· = c1tw>Im - c1tw3>y<>.' + y'>[vv.
ay./a>.• = - Cl/w3Jy(>.' + y•)\ ,Lvv , 3 ay./avech Lvv = - c1/2w )y[(').. + y) • ® c>. + y) ·10. 
a11./a11' 
a11./ay • 

(1/w)Ik' 
(1/w3lfl('J..' + y')Lvv•

a11./a>.' = - Cl/w3lflC>.' + y'l[ ,vv 
\' 3 a11./avech Lvv = - Cl/2w )fl[C>. + y)' ® C>. + y) ']Q, 
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all the remaining partial derivatives being zero. The Jacobian of the 
transformation, 

J = ca1>./ae• ;  a1>.fa vec IT·: a1>./avech,. L Lvv 

is readily obtained. 

PROOF OF PROPOSITION 3: The lower bound for I>• is readily derived
from the lower bound for 6 since: 

vc��> = J • vc�1> • J'.

Using the fact that a1>./avechTT = 0 and that V(�) is block diagonal 
in vech \ (see Equations (A.1)-(A.2)), we have: Lvv 

vc�;> = c a1>./ae • > vc�1> ca1>./ae> 
+ ca1>./avech L' )V(vech [1 ) (a&./avech L ) . vv vv vv 

From the above partial derivatives, it follows that 

w · a1>./ae• = [Im+k;OJ - Cl/w2ll>C>.' + y'lLvv[Im;O;ImJ.



In addition, we have: 
,. ,. 

Q(V(vech [ �)Q' = V(vec [ �>. 

Equation (4.18) then follows using the fact that & • = &/w. 
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Q.E.D. 
To prove Corollary 2, we note that the following properties 

hold when y + A. = 0: 

2 Ci> w = 1 • r. = y, A.• = A., 
(ii) Z�& + V�A. = X�a., 

(iii) \ = \ • \ = o.Lxx Lxx Lxv 

Part (i) follows from the definition of w (see Equation (3.7) and 
(3.8)). Part (ii) follows from Equation (3.10). The first equation 
of (iii) follows from Equations (4.4) and (4.16), while the second 
equation follows from Equation (4.4) by taking expectations 
conditional on Xi and by invoking Assumption 1. 

PROOF OF COROLLARY 2: From Equation (4.18) it follows that, when 
y + A. = 0, we have: 

vc�L> • V(�L)/w2, 
--1 {H' [ \ +(A.'\ A.)\-1]-lH)-1, 
Lxx Lvv Lxx 

where the second equality follows from Parts (i) and (iii) above, and 
Equation (4.5). 

vctA>• 

On the other hand, from Equation (4.15) we have: 

--1 
{H' [Lxx ((y' +A.')\ (y +A.) _ (A.'\ A.)\-1]-lH}-1 Lvv Lvv Lxx 

where we have used w2 = 1. The desired property follows from Part 
(iii). 
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Q.E.D. 

PROOF OF PROPOSITION 4: First we derive some useful identities and 
establish some additional notation. Expanding the partial derivatives 

of the conditional log likelihood function around (S,O) gives: 

0 
a f A A 

n-1/2 Ln(& , A.)
aa 

f -
n-1/2aLn(&,O) 

aa + 
2 f - !" -1 -la Ln(&,o> 1/2 & - & n aeae• n ,... A. 

+ op(l)

aa 
- & - & !,. -1 (H'[H>n1/2 � + op(l) 

Since aL�(S,Ol /a& = O: 

nl/2[�: •] 
A. J 

- - f -
CH' [iii-1n-1/2aLn(&,o> 

aa + o O>p (A4) 



-(H�[Hl)-lH�j Lxv

Lvv ,. f -
Vo(A) n-

1/2 aLn(&,O) 
aA + o (1)p 

Im 
where: [IT JlHl = Im 0 

Therefore: 

nl/2c� - &> [-
j

- Lxv 
cii�[ii1>-1H� - nl/2(). + opo>

L vv 

f -
I ,. aL (&,0) ">-1 1 2A + o (1) 1/2 n = v (A n p n -- o 

To prove (i) and (ii), observe that: 

CLR = 2n-1/2aL
fc&.o> [� _ &l 
ae• nl/2 

A A J

A - 2 f - " -
& - & 1a L (&,0) & - & [ l'[ l [ 1 + n t l n - a�ae • t l + op ( 11

-laL�(�.O) ,. aL�C&.o> 
= n aA' VoCA> aA + op(l)

29 

(AS) 

(A6) 
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,. A -1" = CS + o (1) = nA'V (A) A + o (1) = MW + op(l) p 0 p (A7) 

where the second and fourth equalities follow from (A4) and (A6), 

respectively. 
The proof of (iii) follows an argument similar to Holly 

(1983). By Hausman's (1978) lemma and (AS): 

[xv - - rxv [-1 r-1 A - -• - A - -• - _, A H = nA' _ •tt1 rn1[tt1)-1VC& - &)-CH1[H1)-1H1 _ A + op(l)Lvv Ln 

!Lxvl' _,[- -1 - L xv Lxv [-1 r-1 (H�[H1>-1H� _ V0(�) _ = nt _ Hl ( Hl 1 ) 
L vv 

Lxv 
-
lx cii�[ H1>-lli� I - � + Op(l)

L vv 

,. ,. _
,. nA'P[P'V (A)P] P' A + c (1)0 p 

in an obvious notation. Since 

.... [ .... rank[P'Vo(A)P] = rank V0(A)]

Lvv Lvv 

Ii -· ...-- -1
1 (HlLHl) 

,. and V0(A) is nonsingular, lemma 2.2.S(c) in Rao and Mitra (1971)
implies that, for any choice cf generalized inverse, 
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P[P'V(t)P]-P' Vo(�)-1

Therefore: 

H A A -lA nA'V (A) A + o (1)0 p MW + op(l). (AS) 
Q.E.D. 

PROOF OF PROPOSITION 5: Let a= Ce,vec lT,vech \" ) denote again the'-vv 
complete set of parameters. Then it can be verified that, under 
assumptions 1 and 2, the regularity conditions of Parzen (1954) or 
Sweeting (19SO) are satisfied so that: 

-1/2 aL (a) /aa n n 
D 
� N(O,-Af(a)-Ag(a))

uniformly in a. It follows that Theorem 2 of Vuong (19S4) holds 
uniformly in a, i.e.: 

n112c$.-e) � N(O, [Af1 (a) - Af2<alM(al-1A:{1 (ali-1>

uniformly in a. (Here the subscript 1 indicates partitioning with 
respect to 0 and the subscript 2 indicates partitioning with respect 
to the remaining parameters.) Under the sequence of local 
alternatives Hn: A = n-l/2b, it follows that:

nl/2'-;_ D A � N(b, V (A)) 0 

The expansions (AS) and (A6) are still valid under local alternatives 
so that CA7) and (AS) also hold. The desired result follows 
immediately. 

Q.E.D. 
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FOOTNOTES 

1. Heckman originally proposed solving (2.1) for one of the observed
• • endogenous variables, replacing Yi by an estimate of E(yilX1)

·-(e.g • •  Xi&n from equation (3.9) below), and applying least 
squares. 

2. Let V denote the asymptotic covariance matrix of e, i.e., nl/2e
D ,. a.s. 
� N(O,V) and V � V element by element.

A 3. If (2.1) is just identified, H is almost surely nonsingular, so 
AA �lA A &• = H �.. Also the columns of Xn and X1 span the column space

A�P A of X, so & is a nonsingular transformation of �.. Hence,
"A "IVP &. = &. .

4. The modified Wald Statistic differs from the usual Wald Statistic

5. 

in two respects. First, A is estimated by 2SCMLE instead of LIML.
Second, the covariance matrix of t is estimated under the null
rather than the alternative.

If u1, . . •  ,um are independent normal random variables with 
m 2 E(uj) = µj and V(uj) = 1, then �
1
uj has a noncentral chi-square

m distribution with noncentrality parameter }" µ2.
1=1 j 
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