Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array

Pieter-Ewald Share,1 Yehuda Ben-Zion,1 Zachary E. Ross,2 Hongrui Qiu1 and Frank L. Vernon3

1Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA. E-mail: pshare@usc.edu
2Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
3Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA

SUMMARY
Local and teleseismic earthquake waveforms recorded by a 180-m-long linear array (BB) with seven seismometers crossing the Clark fault of the San Jacinto fault zone northwest of Anza are used to image a deep bimaterial interface and core damage structure of the fault. Delay times of P waves across the array indicate an increase in slowness from the southwest most (BB01) to the northeast most (BB07) station. Automatic algorithms combined with visual inspection and additional analyses are used to identify local events generating fault zone head and trapped waves. The observed fault zone head waves imply that the Clark fault in the area is a sharp bimaterial interface, with lower seismic velocity on the southwest side. The moveout between the head and direct P arrivals for events within ~40 km epicentral distance indicates an average velocity contrast across the fault over that section and the top 20 km of 3.2 per cent. A constant moveout for events beyond ~40 km to the southeast is due to off-fault locations of these events or because the imaged deep bimaterial interface is discontinuous or ends at that distance. The lack of head waves from events beyond ~20 km to the northwest is associated with structural complexity near the Hemet stepover. Events located in a broad region generate fault zone trapped waves at stations BB04–BB07. Waveform inversions indicate that the most likely parameters of the trapping structure are width of ~200 m, S velocity reduction of 30–40 per cent with respect to the bounding blocks, Q value of 10–20 and depth of ~3.5 km. The trapping structure and zone with largest slowness are on the northeast side of the fault. The observed sense of velocity contrast and asymmetric damage across the fault suggest preferred rupture direction of earthquakes to the northwest. This inference is consistent with results of other geological and seismological studies.

Key words: Earthquake dynamics; Body waves; Interface waves; Guided waves; Rheology and friction of fault zones; Continental tectonics: strike-slip and transform.

1 INTRODUCTION
The 230-km-long San Jacinto fault zone (SJFZ) is the most seismically active fault zone in southern California (Hauksson et al. 2012) and accommodates a large portion of the plate boundary motion in the region (Johnson et al. 1994; Fialko 2006; Lindsey et al. 2014). Extensive palaeoseismic work indicates that the SJFZ has repeatedly produced large (MW > 7.0) earthquakes in the past 4000 yr (Rockwell et al. 2015, and references therein). Variations of lithological units and geometrical complexities (e.g. Sharp 1967) produce non-uniform distribution of strain and seismicity along the length of the fault (Sanders & Kanamori 1984; Sanders & Magistrale 1997, Hauksson et al. 2012). Recent tomographic studies (Allam & Ben-Zion 2012; Allam et al. 2014a; Zigone et al. 2015) imaged with nominal resolution of 1–2 km large-scale variations of seismic velocities across the fault and significant damage zones at different locations. Internal structural components of the SJFZ have been studied using various seismic arrays that cross the fault at different locations (e.g. Li & Vernon 2001; Lewis et al. 2005; Yang et al. 2014; Ben-Zion et al. 2015; Li et al. 2015; Hillers et al. 2016), along with geological mapping of rock damage and analysis of geomorphologic signals (Dor et al. 2006; Wechsler et al. 2009).

In this study we use several seismological techniques to clarify internal components of the SJFZ at Blackburn Saddle northwest of Anza. The study area is at the head of Blackburn Canyon near the northwestern end of the longest continuous strand of the SJFZ, the Clark Fault (Sharp 1967). The site ruptured during two large earthquakes in the last 250 yr, the M 7.2–7.5 1800 event...
Figure 1. Toppanel: the study region (110 km by 100 km black box) centred on the Clark fault in the San Jacinto fault zone (SJFZ). The San Andreas (SAF), Elsinore faults and Eastern California shear zone (ECSZ) are marked. Waveforms from events (light green circles) within the black box are inspected for FZTW. Events within the red rectangle (110 km by 20 km) are used for delay time and FZHW studies. The yellow triangle shows the location of the BB array. The black squares mark the towns of Anza and Hemet. Bottom panel: A depth section of events projected along the profile A–A′ on top.

(Falisbury et al. 2012) and the M 6.8 1918 earthquake (Sanders & Kanamori 1984). The analyses employ earthquake waveforms recorded for about 1.5 yr by a linear seismic array (BB array, Fig. 1 bottom right inset) across the Clark fault in the study area. We use delay times of P arrivals across the array, fault zone head waves (FZHW) and fault zone trapped waves (FZTW) to image properties of the fault damage zone and bimaterial fault interface. We focus on these structural components because they contain information on likely properties of past and future earthquake ruptures and associated ground motion (e.g. Andrews & Ben-Zion 1997; Dor et al. 2006, 2008; Brietzke et al. 2009; Shlomai & Fineberg 2016).

FZHW propagate along a fault bimaterial interface with the velocity and motion polarity of the body waves on the faster side of the interface. These phases are analogous to Pn head waves in horizontally layered media, and they arrive at near-fault stations on the slower side of the fault before the direct body waves. FZHW provide the highest resolution tool for imaging the existence and properties of bimaterial fault interfaces (e.g. Ben-Zion et al. 1992; McGuire & Ben-Zion 2005). On the other hand, misidentification of FZHW as direct arrivals can introduce biases and errors into derived velocity structures, earthquake locations and fault plane solutions (e.g. McNally & McEvilly 1977; Oppenheimer et al. 1988; Bennington et al. 2013). FZTW are slow seismic energy associated with resonance modes within low-velocity fault zone layers. For the antiplane S case they are analogous to surface Love waves of a horizontally layered structure, while for the P case they are analogous to surface Raleigh waves or leaky modes (e.g. Ben-Zion & Aki 1990; Ellsworth & Malin 2011). The generation of FZTW requires a sufficiently coherent zone of damaged rocks that can act as a waveguide (e.g. Igel et al. 1997; Jahnke et al. 2002). These and other less coherent parts of the fault damage zone also produce delay time of direct P and S waves propagating through the fault zone structure (e.g. Lewis & Ben-Zion 2010; Yang et al. 2014; Qiu et al. 2017).

In the next section we provide more detail on the array stations and data. The analysis techniques and results are described in Section 3 using four subsections. The first two subsections contain information on identification of P arrivals from teleseismic and local earthquakes, and related calculations of delay times across the array. The latter two subsections describe identification and analyses of FZHW and FZTW. The results are summarized and discussed in the last section of the paper.

Table 1. Locations of the seven BB stations.

<table>
<thead>
<tr>
<th>Station name</th>
<th>Latitude (°)</th>
<th>Longitude (°)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB01</td>
<td>33.66871</td>
<td>-116.79584</td>
<td>1173</td>
</tr>
<tr>
<td>BB02</td>
<td>33.66897</td>
<td>-116.79544</td>
<td>1167</td>
</tr>
<tr>
<td>BB03</td>
<td>33.66914</td>
<td>-116.79528</td>
<td>1165</td>
</tr>
<tr>
<td>BB04</td>
<td>33.66927</td>
<td>-116.79511</td>
<td>1165</td>
</tr>
<tr>
<td>BB05</td>
<td>33.66946</td>
<td>-116.79480</td>
<td>1169</td>
</tr>
<tr>
<td>BB06</td>
<td>33.66967</td>
<td>-116.79462</td>
<td>1169</td>
</tr>
<tr>
<td>BB07</td>
<td>33.66999</td>
<td>-116.79456</td>
<td>1180</td>
</tr>
</tbody>
</table>

2 Instrumentation and Data

The BB array is part of a PASSCAL deployment (YN) within and around the SJFZ (Vernon & Ben-Zion 2010). The array comprises of 7 Guralp CMG-40T-1 short period three-component sensors installed ~30 m apart (locations in Table 1). The array is orientated normal to the surface trace of the Clark Fault and the middle sensor (BB04) is installed on top of the surface trace of the fault (Fig. 1 bottom right inset). The instruments measure ground velocity and have a flat frequency amplitude response between 1 and 100 Hz with a sampling rate of 200 Hz. Recording started on 2012 November 18 and ended on 2014 April 26.

A catalogue of seismicity up to 2013 for the SJFZ region (White et al. 2016) is used to extract local event waveforms from continuous BB recordings. The catalogue utilizes the Anza network, nearby stations of the Southern California Seismic Network and stations from several local deployments. We extract 80 s long waveforms for events occurring from 2012 November 18 to 2013 December 31, 10 s before and 70 s after the origin times reported in the catalogue. In total, 10 603 of these events are located within a 110 km by 100 km box centred on the array and aligned with the Clark Fault. S wavesforms generated by the 10 603 events are analysed in the FZTW study (Fig. 1). P arrivals and waveforms from 8216 events contained in a smaller region (110 km by 20 km, red box in Fig. 1) are analysed in the delay time and FZHW studies.

P waveforms corresponding to all M > 5 teleseismic earthquakes (within 30°–100°) contained in the Southern California Earthquake Data Center (SCEDC 2013) that occurred during the study period are extracted from BB data in 30 s windows. A subset of 79 high quality events with sufficiently high signal-to-noise ratio is retained for further analysis (Fig. 2a).
3 METHODS AND RESULTS

3.1 Teleseismic earthquake delay time

The primary factors that contribute to P-wave pick time variations between BB stations are incorrect identification of P-wave arrivals, variations due to propagation paths to different stations and variations in local P velocity structure. The performed delay time analysis provides statistical information on P arrival times determined from waveforms generated by numerous events, with the aim of constraining the local velocity structure.

In the case of teleseismic events, the first step consists of accurately determining P arrival time differences between stations. This is done in two ways. Firstly, for a given event the first P maxima/minima coherent across the array are picked and designated P arrivals (P peak picks in Fig. 2b). They are more readily identified than the first arriving P energy because the latter in almost all cases is low in amplitude and comparable to the noise level. Secondly, relative time delays between stations are obtained using cross-correlation of the 30 s waveforms (Fig. 2c). If the first maximum/minimum has large amplitude and is coherent while the trailing waveform is incoherent across the array, then P peak pick differences give the best estimates of relative arrival times. In contrast, if the first maximum/minimum has low amplitude (more prone to be affected by noise) but entire waveforms are coherent between stations, then cross-correlation is the best method to estimate relative arrival times. The two methods jointly provide a robust way of estimating relative times between stations for a variety of teleseismic P waveforms.

The second step encompasses minimizing time variations due to different propagation paths. Arrival times at different stations in the absence of shallow lateral velocity changes and topography are first approximated using TauP (Crotwell et al. 1999) and the IASP91 model. Although the BB array is located ~1 km above sea level, topography varies little within the array (largest difference is 15 m, Table 1). Therefore, constant horizontal slowness can be assumed and the relative arrival times at the average elevation across the array are equal to times predicted using TauP. For manual P picks the predicted arrival times are removed from picked arrival times for each event. Prior to cross-correlation the same predicted arrival times are used to appropriately shift the time-series.
During the final step relative delays are computed and velocity structure is inferred from the delays. In the case of manual picks, the average of the remaining times for each event is subtracted to produce relative delay times. Next, means and standard errors of the 79 relative delays at each station are computed (red curve in Fig. 2d). In the case of cross-correlation any trend is removed from the data and a bandpass filter between 0.2 and 2 Hz is applied. A template is then created for each event by summing the seismograms across the array. Next, a cross-correlation function is calculated and used to measure the relative delay time from the peak correlation lag. Similar to manual picking, means and standard errors of the 79 relative delays at each station are computed (blue curve in Fig. 2d). Both results using manual picking and cross-correlation show a gradual increase in relative delay from BB01 to BB07, suggesting an increase in subsurface slowness from southwest to northeast. The observed gradual increase in slowness reflects the relatively low dominant frequencies of the teleseismic P waves (0.5–1.5 Hz).

3.2 Local earthquake delay time

We perform a similar analysis using local earthquakes with a slightly modified methodology. First, we process the early P waveforms for all (>10 000) earthquakes with an automatic algorithm (Ross & Ben-Zion 2014). The algorithm uses short-term average to long-term average detectors together with kurtosis- and skewness-based detectors to identify and pick the onset times of P waves (Fig. 3), and FZHW if present. To avoid ambiguity between FZHW and direct P phases, if a FZHW pick is made at any BB station for a given event, then that event is discarded for the delay time analysis. For all remaining events, outlier P picks are systematically removed through the application of the following steps:

1. We discard P wave picks more than 1 s off from predicted arrival times, using an average 1-D model discretized in 1 km layers.

2. Each observed travel time is normalized by the theoretical ray length computed from the 1-D model to obtain average slowness. This minimizes differences in travel times due to station separation and homogenizes travel times associated with different event hypocentres. We then discard picks which have slowness values outside a reasonable range (0.13–0.22 s km$^{-1}$) bounded by the corresponding maximum and minimum velocities (7.73 and 4.57 km s$^{-1}$) of the 1-D model.

3. Events with slowness values at fewer than four stations are removed to focus on observations associated with most of the array stations.

4. A final round of outlier removal is applied using statistical inner and outer fencing. That is, a given slowness value s is considered an outlier and removed if $s < Q1 - 1.5(Q3 - Q1)$ or $s > Q3 + 1.5(Q3 - Q1)$, where $Q1$ and $Q3$ are the slowness values nearest to the first and the third quartile, respectively.

The picking algorithm initially produced 37 206 P and 2033 FZHW picks for 6573 and 758 events, respectively. After completing the aforementioned steps, 17 592 P picks from 2777 events remained (histogram in Fig. 4). Fig. 4 displays the mean slowness and associated standard errors for the BB array. Similar to the teleseismic results, the largest subsurface slowness is observed for BB07. The increase in slowness from BB01 to BB07 is not as smooth as in Fig. 2d, reflecting the higher dominant frequencies of local P waves (5–25 Hz) compared to the teleseismic data and associated higher sensitivity to small-scale heterogeneities. Following an outlier exclusion process, a significant amount of variability still exists for each station (large error bars in Fig. 4). While picking errors can account for some of this, most of the variability is likely the result of 3-D structure outside the fault zone. One way to more appropriately deal with this is by comparing relative slowness values between stations, rather than absolute slowness. Subsequently, for each event...
we estimate the relative slowness by dividing each non-zero slowness
value by the mean slowness across the array of that event. Then we calculate the mean and standard error of relative slowness
each station individually. These calculations show (Fig. 5a, black line) that BB07 has larger relative slowness compared to BB01
and the error bar for each station calculation is significantly reduced.
In summary, rays propagating to BB07 sample on average structure
that is 0.9–1.2 per cent slower than rays propagating to BB01.
To check whether the results are independent of azimuth, events
are partitioned into north, east and south blocks (Fig. 5b) and for
each corresponding dataset the mean and standard error are com-
puted per station. Same computations are not made for events lo-
cated west of the array due to a lack in seismicity. The relative
slowness of each subset of data is almost identical to the relative
slowness calculated from all data at every station (Fig. 5a). This in-
dexes the general increase in slowness from BB01 to BB07 is
associated with local structure and effects of 3-D variations outside
the fault zone are not significantly present in the relative slowness
data.

3.3 Fault zone head waves

3.3.1 Methodology

FZHW are critically refracted emergent phases that travel along a
fault bimaterial interface with the velocity and motion polarity of
the faster medium (Ben-Zion, 1989, 1990). They arrive before the
impulsive direct P waves at locations on the slower medium with
normal distance to the fault less than a critical distance x_c
given by
\[x_c = r \cdot \tan \left(\cos^{-1} \left(\frac{\alpha_s}{\alpha_f} \right) \right), \]
(1)
where r is the propagation distance along the fault (both along-strike
and up-dip direction) and \(\alpha_s, \alpha_f \) are the average P wave velocities
of the slower and faster media, respectively (Ben-Zion 1989). For
events with focal mechanisms coinciding with the fault, FZHW and
trailing direct P waves have opposite first motion polarities (Ben-
Zion & Malin 1991; Ross & Ben-Zion 2014). Also, FZHW are
radiated from the fault and have horizontal particle motion (HPM)
with a significant fault-normal component (Bulut et al. 2012; Allam
et al. 2014b; Share & Ben-Zion 2016). In contrast, HPM of direct
\(P \) waves points in the epicentre direction. The differential time
\(\Delta t \) between FZHW and direct P waves increases with propagation
distance along the fault and is related to the average velocity \(a \)
across the fault by (Ben-Zion & Malin 1991):
\[\Delta t \approx r \cdot \Delta \alpha/\alpha^2. \]
(2)
where \(\Delta \alpha \) is the differential P-wave velocity. Also, \(\Delta t \) decreases
with increasing normal distance from the fault to zero at the critical
distance \(x_c \).

3.3.2 Results

Using the criteria in Section 3.3.1 we focus on determining which
of the events previously flagged by the automatic detector (and dis-
carded in Section 3.2) produce FZHW. The detector flags P wave-
forms with an emergent phase followed by an impulsive arrival with
a time separation between a minimum value (0.065 s representing
the width of a narrow \(P \) wave wiggle) and a maximum value that de-
pends on hypocentral distance (e.g. 0.8 s over a distance of 40 km).
The latter is calculated assuming a faster side velocity of 5.5 km s⁻¹
and a velocity contrast of 10 per cent based on the tomographic
results of Allam & Ben-Zion (2012). We do not require polarity
reversal between FZHW and direct \(P \) waves because of the mixed
complex focal mechanisms for events in the region (Bailey et al. 2010).

Arrivals from flagged events recorded at different stations are vi-
cually compared to remove erroneous picks such as emergent early
phases similar to the noise. For each event we also inspect the wave-
forms recorded at two reference stations that are part of the regional
network and are close to the BB array (BCCC and RHIL, Fig. 6). If
emergent first arrivals are flagged at both reference stations, those
emergent phases are not FZHW (since head waves exist only on
one side of a fault bimaterial interface) and the event is discarded.
We then search for events in the catalogue within 10 km of the
remaining events and examine them visually for possible additional
FZHW phases. The automatic detector uses settings designed to
primarily minimize false detections, at the cost of reducing detection of events with FZHW, and performing this additional search helps to make up for this shortcoming. The identification steps produces 49 events generating candidate FZHW at all BB stations and only reference station BCCC for events with large enough propagation distance along the fault (Fig. 7, top and middle panels). FZHW picks for these events are adjusted to where associated emergent phases begin to rise above the noise level (Fig. 7, top and middle panels).

Next we apply HPM analysis on the early P waveforms that are detrended, filtered using a 1–30 Hz one-pass Butterworth filter and integrated to displacement. Similar to previous studies (e.g. Allam et al. 2014b; Najdahmadi et al. 2016), we examine HPM in displacement seismograms with consecutive moving time windows of length 0.1 s (20 samples) that overlap by 1 sample. For each window, all three components of motion are combined in a 20×3 matrix, the covariance of the matrix is computed (Bulut et al. 2012) and the largest eigenvalue and eigenvector of the covariance matrix (major axis of the polarization ellipse) are obtained. We then test to see if the azimuth of the largest eigenvector for windows starting at the FZHW and direct P picks point, respectively, towards the fault and the epicentre direction. The results indicate that for the 49 candidate events there is considerable variability in the particle motion directions. The azimuths calculated from windows containing direct P waves do not consistently point to the epicentres and azimuths calculated for the same event often vary up to ~60° between BB stations. Similar variations are observed for the head waves. The variability in HPM is likely caused by the complex structure beneath the array and changes in topography (Jepsen & Kennett 1990; Neuberg & Pointer 2000).

Instead of determining the onset of direct P waves from characteristics of the polarization ellipse a different approach is used. HPM of P waveforms from events generating FZHW are visually compared with those from reference events without FZHW. The
onset of direct P waves in waveforms with FZHW are chosen to be the times when HPM of those waveforms becomes most coherent with HPM of reference P waves. The reference events are identified with criteria opposite to those used to identify FZHW, namely: (1) FZHW are not picked for any station and 2) first arrivals are impulsive and highly coherent between stations (Fig. 7, bottom panel). The identified reference events are located closer to the recording station and/or more off fault compared to events generating FZHW. For an event generating FZHW, the reference event with the closest hypocentre and a difference in back azimuth less than 20° is used.

Fig. 8 shows a comparison based on this approach of the first 0.5 s of waveforms with FZHW to the first P wave wiggle of reference waveforms. HPM of traces with FZHW contain parts that are uncorrelated (red HPM, Fig. 8 rows 1 and 2) and correlated (blue HPM, Fig. 8 rows 1 and 2) with the HPM of reference traces (blue HPM, Fig. 8 row 3). Un correlated and correlated HPM correspond to FZHW and direct P waves, respectively. As can be seen, uncorrelated and correlated HPM do not necessarily point in the fault and epicentre directions, respectively. This is probably associated with the complex structure and is the case even for reference stations. Similar results are obtained for a total of 24 out the 49 candidate events (locations in Fig. 6). The direct P picks for those events are adjusted accordingly. Differential times Δt computed from adjusted FZHW and direct P picks are greatest for BB07 and decrease towards BCCC (Fig. 7 top and middle panels) for all 24 events.

Additional support for FZHW is given by the ratio of largest eigenvalues calculated for noise, FZHW and direct P waves. Ideally, the largest eigenvalue of a window containing a FZHW will be larger than noise, and the largest eigenvalue corresponding to a direct P wave would be larger still (Bulut et al. 2012; Allam et al. 2014b). Eigenvalues are computed for phases generated by the 24 events and recorded at station BB07. For each event, calculations are made for two non-overlapping time windows of length Δt (for that event), where the first sample of the second window was firstly aligned with the FZHW pick (to compare noise and FZHW) and then shifted to align with the direct P pick (to compare FZHW and direct P wave). On average, the eigenvalue ratio between windows containing FZHW and noise is 26.14 (minimum of 0.21 and maximum of 514.44), and between direct P wave and FZHW windows it is 27.28 (minimum of 1.99 and maximum of 85.61).

Fig. 9 shows the moveout, Δt, between the FZHW and direct P waves versus along-fault distance for the 24 events generating FZHW. The observed moveout is used to estimate an average velocity contrast across the Clark Fault (eq.1) in the study area. The moveout becomes constant for events located >40 km southeast of the array (Fig. 9). This can be explained...
by these events being located more off fault at depth compared to closer events (their epicentres have largest fault normal distances, Fig. 6). Alternatively, if these events are located close to the fault the constant moveout indicates the imaged bimaterial interface is limited laterally and in depth beyond 40 km epicentral distance.

3.4 Fault zone trapped waves

3.4.1 Methodology

Relatively uniform low velocity fault damage zones can act as waveguides and generate constructive interference of S, P and noise phases giving rise to FZTW (e.g. Ben-Zion & Aki 1990; Igel et al. 1997, Jahnke et al. 2002; Hillers et al. 2014). These phases have been observed in various fault and geologic settings in California (Li et al. 1994; Peng et al. 2003; Lewis & Ben-Zion 2010) including the SJFZ (Li & Vernon 2001; Lewis et al. 2005; Qiu et al. 2017), Turkey (Ben-Zion et al. 2003), Italy (Rovelli et al. 2002; Calderoni et al. 2012; Avallone et al. 2014), Japan (Mizuno & Nishigami 2006) and New Zealand (Eccles et al. 2015).

FZTW appear on seismograms as high amplitude, long duration, low frequency phases that follow direct arrivals and are observed only at stations that are within or very close to the trapping structure (e.g. Li & Leary 1990; Ben-Zion et al. 2003; Lewis & Ben-Zion 2010). In this study the focus is on identifying and analysing Love-type FZTW that follow the direct S wave (Ben-Zion 1998). The first step in identifying events generating candidate FZTW is automatic detection (Ross & Ben-Zion 2015). The detection algorithm is based on the dominant period, wave energy, ratio between absolute peak amplitude and average amplitude, and delay between the absolute peak and S pick within a 1 s window starting at the S pick for each station. In order to minimize false detections due to site amplification, the energy in a longer 6 s window is also computed. The computations are done on vertical and fault-parallel component velocity seismograms. An outlier detection is used to flag station(s) with calculated values for the short time windows after the direct S wave significantly larger than the median values of all stations. This detection method works best if the number of stations with no FZTW phases outnumber the ones with FZTW phases.

After candidate FZTW are detected they are visually inspected. Any anomalous phase flagged for a given event at only one station is discarded as a possible FZTW. This is because trapping structures are typically ~100 m wide (e.g. Li & Vernon 2001; Lewis et al. 2005; Qiu et al. 2017) so FZTW should be observed at multiple stations of the dense array. Noise components observed at a single or several stations are also sometimes flagged as possible FZTW and are discarded during visual inspection. Waveforms generated by events similar in size and within 20 km from those generating the remaining FZTW are inspected to identify additional candidates. Waveforms from events producing clear FZTW are inverted for parameters of the trapping structure, using the genetic inversion algorithm of Michael & Ben-Zion (1998) with a forward kernel based on the analytical solution of Ben-Zion & Aki (1990) and Ben-Zion (1998). This inversion process explores systematically the significant trade-offs between the key parameters governing properties of FZTW (e.g. Peng et al. 2003; Qiu et al. 2017).

3.4.2 Results

The automatic detection algorithm of Ross & Ben-Zion (2015) flagged potential FZTW within waveforms from 624 events, with 94 per cent of all detections shared between stations BB04 to BB07. The flagged waveforms are visually inspected, erroneous picks are discarded and additional FZTW phases are identified. Newly identified FZTW waveforms are only observed for stations BB04 to BB07. This procedure leads to identification of 16 events that produce high quality waveforms with FZTW (Fig. 10). All but one of the events are located north-northeast of the array and most are at considerable distance from the Clark fault (Fig. 10 left). The generation of FZTW by events at considerable distance from the fault indicates that the trapping structure extends primarily over the top few km of the crust (Ben-Zion et al. 2003; Fohrmann et al. 2004).

The velocity waveforms generated by two example events (tw1 and tw2, Fig. 10) with clear FZTW phases are pre-processed for inversion. The waveforms are corrected for the instrument response, rotated to the fault-parallel component, bandpass filtered at 2–20 Hz and integrated to displacement (Figs 11a and 12a). As a final step, the seisograms are convolved with 1/it12 to convert a point source response to that of an equivalent line dislocation source (e.g. Igel et al. 2002; Ben-Zion et al. 2003). The inverted model parameters are: (1–3) S velocities of the two quarter spaces (assumed different based on Section 3.3.2) and the fault zone layer, (4–5) width and Q value of the fault zone layer, (6) location of contact between the fault and left quarter space, and (7) propagation distance within the fault zone layer. Estimates of the location where energy enters the low velocity layer (virtual source) and the travel time outside this layer are derived from the seven parameters. The allowable bounds for the first six parameters and incremental changes allowed in each are shown in Table 2.

The genetic inversion algorithm maximizes the correlation between sets of observed waveforms (seven each in this study) and synthetic seisograms generated with the solution of Ben-Zion & Aki (1990) and Ben-Zion (1998), while exploring systematically a large parameter-space. This is accomplished by calculating fitness values associated with different sets of model parameters and
migrating in the parameter-space overall in the direction of larger fitness values. The fitness is defined as $(1+C)/2$ where C is the cross-correlation coefficient between observed and synthetic waveforms. When C varies over the range -1 (perfect anti-correlation) to 1 (perfect correlation), the fitness value changes from 0 to 1.

Fig. 11(b) shows synthetic (blue lines) waveform fits produced during 10 000 inversion iterations (testing 10 000 sets of model parameters). Fig. 11(c) displays the fitness values (dots) calculated by the inversion algorithm for the final 2000 iterations. The curves in Fig. 11(c) give probability density functions for the various model parameters, calculated by summing the fitness values of the final 2000 inversion iterations and normalizing the results to have unit sums. The model parameters associated with the highest fitness values (solid circles in Fig. 11c) are used to produce the synthetic waveform fits of Fig. 11(b).

Fig. 12 presents corresponding inversion results for the second example event. The best-fitting and most likely parameters of the trapping structure produced by inversions of waveforms generated by different events should be similar. This is the case for the results in Figs 11 and 12 and inversion results of several other high quality waveforms with FZTW. Based on the inversion results, the fault/damage zone is estimated to start beneath station BB04 (the local coordinate system is centred on BB04), extend about 130–200 m to the NE, have a Q value of 10–20, an S velocity reduction of 30–40 per cent relative to the neighbouring rock and a depth extent of 3.3–4 km. The latter range is estimated by dividing the most likely total propagation distance within the fault zone by $\sqrt{2}$ to account for a horizontal propagation component.

4 DISCUSSION

The different types of analysis presented in Section 3 can be combined to produce a detailed model for the internal structure of the SJFZ in the study area (Fig. 13). Both the local and teleseismic delay time analyses show larger slowness beneath BB07 compared to BB01. The change in slowness observed in the teleseismic data is gradual compared to the more abrupt change based on the local earthquake seismograms (compare Fig. 2d with Figs 4 and 5a). The difference can be explained by the fact that teleseismic arrivals are associated with longer wavelengths leading to smoother results. The small-scale variations of slowness based on the local P waves likely reflect local structural variations such as near surface sediments and small-scale topography.

Stations BB04-BB07 with the lowest P wave velocities record also fault zone trapped S waves so they are within the core damage zone of the fault. The broad distribution of events generating FZTW (Fig. 10) implies that the trapping structure is relatively shallow (Fohrmann et al. 2004). Inversions of waveforms including FZTW indicate (Figs 11 and 12) that the trapping structure extends to a depth of ~3.5 km and has width of ~200 m wide, Q value of 10–20 and S velocity reduction of 30–40 per cent. These parameters are similar to properties of trapping structures at other sections of the SJFZ (Lewis et al. 2005; Qiu et al. 2017), San Andreas fault at Parkfield (Lewis & Ben-Zion 2010), Karadere branch of the North Anatolian fault (Ben-Zion et al. 2003) and other active strike-slip faults and rupture zones. Suggestions of trapping structures at the SJFZ and other locations that extend to the bottom of the seismogenic zone (e.g. Li & Vernon 2001; Li et al. 2004, 2007)
were not supported by more quantitative subsequent analyses using larger data sets (e.g. Peng et al. 2003; Yang & Zhu 2010).

The FZHW observed at the BB array and reference station BCCC (Fig. 7) reveal a fault bimaterial interface that extends at least ∼40 km to the southeast and to a depth of ∼20 km (depth of deepest event within 40 km generating FZHW, Fig. 6). The bimaterial interface extents also to the northwest but is more limited in space, because no events beyond ∼20 km to the northwest produce FZHW. An average P velocity contrast of 3.2 per cent across the interface is calculated from the moveout between the FZHW and direct P waves with increasing along-fault distance (Fig. 9). This contrast is not as large as across the San Andreas fault south of Hollister (McGuire & Ben-Zion 2005), but is comparable to values obtained for the San Andreas fault around San Gorgonio Pass (Share & Ben-Zion 2016), Hayward fault (Allam et al. 2014b) and North Anatolian fault (Najdahmadi et al. 2016). The obtained value reflects an average velocity contrast over the top 20 km of the crust. The velocity contrast typically decreases with depth (Ben-Zion et al. 1992; Lewis et al. 2007), so the contrast may be double in the uppermost 7.5 km or so of the crust.

The existence of FZHW at reference station BCCC and not at station RHIL implies slower regional structure southwest of BB07 than
Figure 12. Fault model inversion results for event tw2. The layout and steps are the same as Fig. 11.

northeast of it. This is consistent with tomographic results for the SJFZ region based on local earthquakes and ambient seismic noise (Allam & Ben-Zion 2012; Zigone et al. 2015; Fang et al. 2016). The inferred contrast is also consistent with the surface geology, showing pre mid-Cretaceous banded gneisses on the southwest side of the fault juxtaposed against mid-Cretaceous tonalitic rocks on the northeast (Sharp 1967). The tomographic results show a reversal in the sense of velocity contrast across the Clark Fault to the northwest of the array, which explains the lack of FZHFW from events farther than ∼20 km in that direction. The bimaterial interface is closest to BB07 because the moveout between the head and direct P waves decreases from that station. The region beneath BB04–BB07 has low P velocities based on the teleseismic and local delay times (Figs 2d, 4 and 5a) and acts as a trapping structure for S waves (Figs 11 and 12). Based on the results from the different data sets and analyses, the head waves propagate along a bimaterial interface that is at the edge of the core damage zone in the top few km and merges with the main Clark fault at depth (Fig. 13). The best available geological data places the main Clark fault trace directly beneath BB04. The trapping structure and zone with largest delay times exist primarily in the crustal block with faster seismic velocity at depth.

The sense of velocity contrast across the Clark fault at depth and theoretical results on bimaterial ruptures (e.g. Weertman 1980; Ben-Zion & Andrews 1998; Ampuero & Ben-Zion 2008; Brietzke et al. 2009) suggest that earthquakes in the area tend to propagate to the northwest. This is consistent with observed directivities of small to moderate events on the section southeast of the array (Kurzon et al. 2014; Ross & Ben-Zion 2016), along-strike
Table 2. Upper and lower bounds placed on, and incremental change allowed in, the parameter space during inversions of events tw1 and tw2 (Figs 11 and 12). Density is fixed at 2.5 g cm$^{-3}$ during inversion. FZ, fault zone; QS, quarter space; S, shear; Q, quality factor and FZ centre is the contact between the left QS and FZ layer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ S velocity</td>
<td>0.7 (km s$^{-1}$)</td>
<td>4.5 (km s$^{-1}$)</td>
<td>0.1 (km s$^{-1}$)</td>
</tr>
<tr>
<td>Left QS S velocity</td>
<td>3.5 (km s$^{-1}$)</td>
<td>5.0 (km s$^{-1}$)</td>
<td>0.2 (km s$^{-1}$)</td>
</tr>
<tr>
<td>Right QS S velocity</td>
<td>3.15 km s$^{-1}$</td>
<td>5.5 (km s$^{-1}$)</td>
<td>0.2 (km s$^{-1}$)</td>
</tr>
<tr>
<td>FZ Q</td>
<td>1</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>Left QS Q</td>
<td>200</td>
<td>200 Fixed</td>
<td></td>
</tr>
<tr>
<td>Right QS Q</td>
<td>200</td>
<td>200 Fixed</td>
<td></td>
</tr>
<tr>
<td>FZ centre</td>
<td>-100 m</td>
<td>100 m</td>
<td>10 m</td>
</tr>
<tr>
<td>FZ width</td>
<td>100 m</td>
<td>300 m</td>
<td>10 m</td>
</tr>
</tbody>
</table>

Figure 13. Conceptual model for the Clark fault at Blackburn Saddle based on results presented here.

asymmetry of aftershocks in the area (Zaliapin & Ben-Zion 2011) and small reversed-polarity deformation structures in the Hemet stepover region to the northwest (Ben-Zion et al. 2012). Persistent occurrence of bimaterial ruptures with preferred propagation direction is expected to produce more damage on the side with faster velocity at depth (Ben-Zion & Shi 2005). This is in agreement with the observations summarized in Fig. 13 and geological mapping near Hog Lake southeast of the array (Dor et al. 2006).

Stations at larger distance from the fault may record, in addition to the phases analysed in this work, also P and S body waves reflected within a low velocity fault zone layer (Yang et al. 2014) and waves reflected from bimaterial fault interfaces to off-fault stations (Najjahmadi et al. 2016). A recent deployment of a longer aperture array across the Clark fault at the same location of the BB array (Lin et al. 2016) provides opportunities for analysing these and other signals indicative of the inner structure of the fault. This will be done in a follow up work.

ACKNOWLEDGEMENTS

The study was supported by the National Science Foundation (grant EAR-1620601) and the U.S. Department of Energy (awards DE-SC0016520 and DE-SC0016527). The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center. The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The manuscript benefitted from comments by two anonymous referees.

REFERENCES

