A NEKRASOV–OKOUNKOV FORMULA FOR MACDONALD POLYNOMIALS

ERIC M. RAINS AND S. OLE WARNAAR

Abstract. We prove a Macdonald polynomial analogue of the celebrated Nekrasov–Okounkov hook-length formula from the theory of random partitions. As an application we obtain a proof of one of the main conjectures of Hausel and Rodriguez-Villegas from their work on mixed Hodge polynomials of the moduli space of stable Higgs bundles on Riemann surfaces.

1. Introduction

In their paper Mixed Hodge polynomials of character varieties [21], Hausel and Rodriguez-Villegas study the non-singular affine variety

\[M_n := \{ (A_1, B_1, \ldots, A_g, B_g) \in \text{GL}(n, \mathbb{C}) : (A_1, B_1) \cdots (A_g, B_g) = \zeta_n I \} / \text{GL}(n, \mathbb{C}), \]

where \(g \) is a nonnegative integer, \((A, B)\) is shorthand for the commutator \(ABA^{-1}B^{-1} \), \(\zeta_n \) is a primitive \(n \)-th root of unity, and \(/ \) is a GIT quotient by the conjugation action of \(\text{GL}(n, \mathbb{C}) \). \(M_n \), which is the twisted character variety of a closed Riemann surface \(\Sigma \) of genus \(g \) with points the twisted homomorphisms from \(\pi_1(\Sigma) \) to \(\text{GL}(n, \mathbb{C}) \) modulo conjugation, has dimension \(d_n = 2n^2(g - 1) + 2 \ (g \geq 1) \). For low values of the rank, \(M_n \) was previously considered by Hitchin [22] (\(n = 2 \)) and Gothen [15] (\(n = 3 \)) in their work on the moduli space of stable Higgs bundles of rank \(n \) on \(\Sigma \). The main focus of Hausel and Rodriguez-Villegas is to extend the computation of the two-variable mixed Hodge polynomial \(H(M_n; q, t) \) by Hitchin and Gothen to arbitrary \(n \), and thus to obtain the Poincaré and \(E \)-polynomials \(P(M_n; t) \) and \(E(M_n) \) corresponding to the one-dimensional subfamilies

\[P(M_n; t) = H(M_n; 1, t) \quad \text{and} \quad E(M_n; q) = q^{d_n} H(M_n; q^{-1}, -1). \]

(For an arbitrary complex algebraic variety \(X \) the mixed Hodge polynomial is defined as the three-variable generating function \(H(X; x, y, t) \) of the mixed Hodge numbers \(h^{p,q,t}(X) \), but since the cohomology of \(M_n \) is of type \((p, p) \) [21 Corollary 4.1.11], \(h^{p,q,t}(M_n) \) vanishes unless unless \(p = q \) and one can define \(H(M_n; q, t) := H(M_n; q, q, t) \). In [21 Corollary 2.2.4] it is also shown that \(H(M_n; q, t) \) does not depend on the choice of \(\zeta_n \) so that \(H(M_n; q, t) \) is indeed well defined.)

Determining \(H(M_n; q, t) \) for arbitrary rank \(n \) and genus \(g \) is a very hard problem. The breakthrough observation by Hausel and Rodriguez-Villegas is that, conjecturally, the mixed Hodge polynomial are related to Macdonald polynomials from the theory of symmetric functions, resulting in an alternative means of computing \(H(M_n; q, t) \) as follows. Let \(\lambda = (\lambda_1, \lambda_2, \ldots) \) be an integer partition identified as usual with its Young or Ferrers diagram. For \(s \) a square (in the diagram) of \(\lambda \), the
arm-length and leg-length \(a(s) = a_\lambda(s) \) and \(l(s) = l_\lambda(s) \) are given by the number of boxes to the right, respectively, below \(s \). That is, if \(s \) has coordinates \((i, j)\) then \(a(s) = \lambda_i - j \) and \(l(s) = \lambda'_j - i \), where \(\lambda' \) is the conjugate of \(\lambda \). For example, the arm-length and leg-length of the square \((3, 3)\) in the partition \((8, 7, 7, 6, 4, 3, 1)\)

are 4 and 3 respectively. Hausel and Rodriguez-Villegas define the genus-\(g \) hook function \(H_\lambda(z, w) \) as

\[
H_\lambda(z, w) = \prod_{s \in \lambda} \frac{(z^{2a(s)} + w^{2l(s)} - 1)^2}{(z^{2a(s)} + w^{2l(s)} + 1)^2}
\]

and use this to define two further families of rational functions \(\{U_n(z, w)\}_{n \geq 1} \) and \(\{H_n(z, w)\}_{n \geq 1} \) by

\[
\sum_\lambda H_\lambda(z, w) T^{[\lambda]} = \exp \left(\sum_{n \geq 1} U_n(z, w) \frac{T^n}{n} \right),
\]

where \(|\lambda| = \lambda_1 + \lambda_2 + \cdots \) is the size of the partition \(\lambda \), and

\[
H_n(z, w) := \frac{1}{n} (z^2 - 1)(1 - w^2) \sum_{d|n} \mu(d) U_{n/d}(z^d, w^d),
\]

with \(\mu \) the Möbius function\footnote{Alternatively, \(\overline{H}_n(z, w) \) may be defined by

\[
\sum_\lambda H_\lambda(z, w) T^{[\lambda]} = \text{Exp} \left(\sum_{n \geq 1} \frac{\overline{H}_n(z, w) T^n}{(z^2 - 1)(1 - w^2)} \right),
\]

where \(\text{Exp} \) is a plethystic exponential \cite{B14}, defined for formal power series \(f(z, w; T) := \sum_{n \geq 1} c_n(z, w) T^n \) as \(\text{Exp} \left(f(z, w; T) \right) := \exp \left(\sum_{r \geq 1} f(z^r, w^r; T^r)/r \right) \).}

Conjecture 1.1 (\cite{21} Conjecture 4.2.1). The mixed Hodge polynomial of \(\mathcal{M}_n \) is given by

\[
(1.2) \quad H(\mathcal{M}_n; q, t) = (tq^{1/2})^{d_n} \overline{H}_n(q^{1/2}, q^{-1/2}, t).
\]

This remarkable conjecture has several further implications. Since \(H(\mathcal{M}_n; q, t) \) is a polynomial with positive coefficients, (1.2) implies that the rational function \(\overline{H}_n(z, w) \) also must be a polynomial with nonnegative coefficients. In the opposite direction, by \(a_\lambda(s) = l_{\lambda'}(s) \) we have \(H_\lambda(z, w) = H_{\lambda'}(w, z) \), which implies the “curious Poincaré duality” \cite{21} Conjecture 4.2.4]

\[
H(\mathcal{M}_n; q, t) = (qt)^{d_n} H(\mathcal{M}_n; q^{-1}t^{-2}, t).
\]

A non-rigorous, string theoretic derivation of (1.2) in the more general case of punctured Riemann surfaces \cite{19,20} has recently been given in \cite{7}.

In the genus-0 case \(\mathcal{M}_n \) has a single point for \(n = 1 \) and no points for higher rank. Hence \(H(\mathcal{M}_n; q, t) = \delta_{n,1} \) and, by (1.1), (1.2) and \(\sum_{d|n} \mu(d) = \delta_{n,1} \), this gives
\(\mathcal{H}(1/2, t^{-1/2})T^{[\lambda]} = \prod_{i,j,k \geq 1} \frac{(1 - q^{i-1}t^{j-1/2}T^{k})^2}{(1 - q^{i-1}t^{j-1}T^{k})(1 - q^{i}t^{j}T^{k})} \).

In this paper we settle this conjecture by proving the following more general combinatorial identity.

Theorem 1.3 \((q,t)-\text{Nekrasov–Okounkov formula} \). We have

\(\sum_{\lambda} T^{[\lambda]} \prod_{s \in \lambda} \frac{(1 - uq^{a(s)+1}t^{l(s)})}{(1 - q^{a(s)+1}t^{l(s)})} \frac{(1 - u^{-1}q^{-a(s)}t^{l(s)+1})}{(1 - q^{-a(s)}t^{l(s)+1})} = \prod_{i,j,k \geq 1} \frac{(1 - uq^{i-1}T^{j}k)^2}{(1 - q^{i-1}t^{j-1}T^{k})(1 - q^{i}t^{j}T^{k})} \).

For \(u = (t/q)^{1/2} \) this is Conjecture 1.2 and for general \(u \) it is a \(q,t \)-analogue of the Nekrasov–Okounkov formula discovered by Nekrasov and Okounkov in their work on random partitions and Seiberg–Witten theory [40]. Indeed, if \(h(s) := a(s) + l(s) + 1 \) is the hook-length of \(s \) and \(\mathcal{H}(\lambda) := \{ h(s) : s \in \lambda \} \) is the set of all hook-lengths of \(\lambda \), then (1.4) for \(t = q \) simplifies to

\(\sum_{\lambda} T^{[\lambda]} \prod_{h \in \mathcal{H}(\lambda)} \frac{(1 - uq^{h})(1 - u^{-1}q^{h})}{(1 - q^{h})^2} = \prod_{k,r \geq 1} \frac{(1 - uq^{r}T^{k})^r}{(1 - q^{r}T^{k})^r}(1 - u^{-1}q^{r}T^{k})^r(1 - q^{r+1}T^{k})^r \),

first found in [24, p. 749] and [8] Theorem 5]. Setting \(u = q^a \) and letting \(q \) tend to 1 this yields the Nekrasov–Okounkov formula [40, Equation (6.12)] (see also [17, Corollary 1.9], [51])

\(\sum_{\lambda} T^{[\lambda]} \prod_{h \in \mathcal{H}(\lambda)} \left(1 - \frac{z^{2}}{h^{2}} \right) = \prod_{k \geq 1} (1 - T^{k})z^{2-k} \).

\(^{2}\)Hausel and Rodríguez-Villegas prove (1.3) differently, using a duality of Garsia and Haiman [10] and the Cauchy identity for Schur functions.
In [51] Proposition 6.1 Westbury has shown that for fixed λ and p a sufficiently large integer ($p > |\lambda|$ suffices)

$$\prod_{h \in \mathfrak{H}(\lambda)} \left(\frac{p^2}{h^2} - 1 \right)$$

is the dimension of the irreducible $\mathfrak{sl}(p, \mathbb{C})$-module indexed by the partition

$$\mu := (\lambda_1, \ldots, \lambda_p) + (\lambda'_1 - \lambda''_p, \ldots, \lambda'_1 - \lambda''_2, 0).$$

Using the q-analogue of Weyl’s dimension formula for $\mathfrak{sl}(p, \mathbb{C})$ [48] or Stanley’s hook content formula [43] it is not hard to show that in the q-case

$$\prod_{h \in \mathfrak{H}(\lambda)} \frac{(1 - q^{h+p})(1 - q^{h-p})}{(1 - q^h)^2} = (-1)^{|\lambda|} q^{f(\lambda)(\mu)} s_\mu(1, q, \ldots, q^p),$$

where $l(\lambda)$ is the length of λ (the number of non-zero λ_i) and s_μ a Schur function. We did not find a similar such interpretation of the product in (1.4) in terms of Macdonald polynomials.

The remainder of this paper is organised as follows. In the next section we review some basic material from the theory of Macdonald polynomials and interpolation Macdonald polynomials. These polynomials are then used to prove a number of key identities needed in our proof of Theorem 1.3. This includes the following elegant Cauchy-like identity for principally specialised skew Macdonald polynomials:

$$(1.6) \sum_{\lambda,\mu,\nu,\tau} q^{|\lambda||\mu|} a^{|\nu|} b^{|\tau|} c^{\lambda} d^{\tau} b_\nu(q, t)b_\tau(t, q)Q_{\lambda,\nu}(\mu; q, t)Q_{\lambda,\tau/\gamma}(q^\rho; t, q)$$

$$\times Q_{\mu,\nu}(t^\rho; q, t)Q_{\mu,\tau}(q^\rho; t, q) = \frac{1}{(abcd; abcd)_\infty} \cdot \frac{(-a, -b; q, t, abc; abd)_\infty}{(abc, abd; qt, abcd)_\infty},$$

where

$$(a, q_1, q_2, \ldots, q_m)_\infty := \prod_{i_1, \ldots, i_m \geq 0} (1 - a q_1^{i_1} \cdots q_m^{i_m}),$$

$$(a_1, a_2, q_1, q_2, \ldots, q_m)_\infty := (a_1; q_1, q_2, \ldots, q_m)_\infty \cdots (a_k; q_1, q_2, \ldots, q_m)_\infty,$$

are generalised q-shifted factorials, $q^a := (1, q, q^2, \ldots)$ and $b_\lambda(q, t)$ is Macdonald’s q, t-hook function

$$b_\lambda(q, t) := \prod_{s \in \lambda} \frac{1 - q^{a(s)h(s)+1}}{1 - q^{a(s)+1}h(s)}.$$

Then, in Section 3 we study a function $f_{n,m}$ which may be viewed as a rational function analogue of

$$\sum_{\lambda} \prod_{s \in \lambda} \frac{(1 - u q^{a(s)+1}h(s))(1 - u^{-1} q^{-a(s)}h(s)+1)}{(1 - q^{a(s)+1}h(s))(1 - q^{-a(s)}h(s)+1)},$$

see Proposition 3.3. We determine a number of hidden symmetries of $f_{n,m}$, conjecture its polynomiality, and show that, up to a trivial factor, $\lim_{n,m \to \infty} f_{n,m}$ is given by the product side of (1.4), thus proving Theorem 1.3. In Section 4 we discuss a number of special cases of the q, t-Nekrasov–Okounkov formula, as well as a close link between our work and that of Iqbal, Koççaz and Shabbir [23] on the topological vertex formalism. In the appendix we give an alternative proof of the q, t-Nekrasov–Okounkov formula, suggested to us by Jim Bryan, which is based
A NEKRASOV–OKOUNKOV FORMULA

on Waelder’s equivariant Dijkgraaf–Moore–Verlinde–Verlinde (DMVV) formula for the Hilbert scheme of points in the plane [50].

Acknowledgement. The second author is grateful to Masoud Kamgarpour for pointing out the papers of Hausel and Rodríguez-Villegas [21], and Hausel, Letellier and Rodríguez-Villegas [19, 20] on mixed Hodge polynomials, and to Dennis Stanton for helpful discussions on \(p \)-core partitions. We thank Fernando Rodríguez-Villegas for sending us a preliminary version of his paper [5] with Carlsson, which contains a different proof of Conjecture 1.1 based on the Carlsson–Nekrasov–Okounkov vertex operator [4]. We also thank Amer Iqbal for alerting us to the connection between our work and [23] and Jim Bryan for explaining the work of Waelder, which implies the elliptic Nekrasov–Okounkov formula described in the appendix.

2. Macdonald polynomials

2.1. Partitions. A partition \(\lambda = (\lambda_1, \lambda_2, \ldots) \) is a weakly-decreasing sequence of nonnegative integers such that only finitely-many \(\lambda_i \) are non-zero. The positive \(\lambda_i \) are called the parts of \(\lambda \) and the number of parts, denoted \(\ell(\lambda) \), is called the length of the partition. If \(|\lambda| := \lambda_1 + \lambda_2 + \cdots = n \) we say that \(\lambda \) is a partition of \(n \), and denote this by \(\lambda \vdash n \). As is customary, the unique partition of 0 will be denoted by \(0 \). We identify a partition \(\lambda \) with its Young diagram consisting of \(\ell(\lambda) \) left-aligned rows of squares with \(\lambda_i \) squares in the \(i \)th row. The conjugate of \(\lambda \), denoted \(\lambda' \), is given by reflecting \(\lambda \) in the main diagonal \(i = j \), i.e., its parts are the columns of \(\lambda \). If \(\mu \) is contained in \(\lambda \), that is, \(\mu_i \leq \lambda_i \) for all \(i \) we write \(\mu \subset \lambda \).

Throughout the paper we repeatedly use \(\delta_n := (n-1, \ldots, 1, 0) \), \(\rho_n := (0, 1, \ldots, n-1) \) and \(\rho := (0, 1, 2, \ldots) \). Of course, if \(f(x) \) is a symmetric function, then \(f(t^{\delta_n}) = f(t^{\rho_n}) \). Apart from the arm and leg lengths of a partition defined in the introduction, we also need to arm-colength \(a'(s) = a'_\lambda(s) \) and leg-colength \(l'(s) = l'_\lambda(s) \) of \(s \in \lambda \), given by the number of boxes in \(\lambda \) immediately to the left or above \(s \), respectively. Equivalently, \(a'(s) = j - 1 \) and \(l'(s) = i - 1 \) for \(s = (i, j) \). Finally we recall the following standard statistic on partitions [36]:

\[
\begin{align*}
 n(\lambda) := \sum_{s \in \lambda} l'(s) = \sum_{i \geq 1} (i-1) \lambda_i = \sum_{i \geq 1} \binom{\lambda'_i}{2}.
\end{align*}
\]

2.2. Hook functions. In the introduction we already defined the hook functions \(\mathcal{H}_\lambda(z, w) \) and \(b_\lambda(q, t) \). We will further need

\[
\begin{align*}
 (2.1a) \quad c_\lambda(q, t) &:= \prod_{s \in \lambda} (1 - q^{a(s)} t^{l(s)+1}) \\
 (2.1b) \quad c'_\lambda(q, t) &:= \prod_{s \in \lambda} (1 - q^{a(s)+1} t^{l(s)}),
\end{align*}
\]

so that

\[
 b_\lambda(q, t) = \frac{c_\lambda(q, t)}{c'_\lambda(q, t)}.
\]
and

\begin{align}
(z; q, t)_\lambda := & \prod_{s \in \lambda} (1 - zq^{s}t^{-l(s)}) \\
& = \prod_{i,j \geq 1} \frac{1 - zq^{-1}t^{j} - \lambda'_{i}}{1 - zq^{i-1}t^{j}} = \prod_{i=1}^{n}(zt^{1-i}; q)_{\lambda},
\end{align}

(2.2)

where \((z; q)_{n} := (1 - z) \cdots (1 - zq^{n-1})\) is the usual \(q\)-shifted factorial.

It is easy to check from the definition that

\begin{align}
c'_{\lambda'}(q, t) = c_{\lambda}(t, q),
\end{align}

(2.3)

and hence

\begin{align}
b'_{\lambda'}(q, t) = \frac{1}{b_{\lambda}(t, q)}.
\end{align}

(2.4)

It is also an elementary exercise to verify the relation

\begin{align}
c'_{\lambda'}(1/q, 1/t) = (-1)^{\lambda\lambda'}q^{-n(\lambda')} - \lambda t^{-n(\lambda)}c'_{\lambda}(q, t),
\end{align}

(2.5)

2.3. Macdonald polynomials. Let \(F = \mathbb{Q}(q, t)\) and \(\Lambda_{F}\) the ring of symmetric functions in \(x = (x_{1}, x_{2}, \ldots)\) with coefficients in \(F\). Further denote by \(\Lambda_{n, F}\) the analogous ring over the finite alphabet \(x_{1}, \ldots, x_{n}\). The Newton power sums \(p_{\lambda}\) and monomial symmetric functions \(m_{\lambda}\) are defined as

\[p_{\lambda}(x) := \prod_{i \geq 1} p_{\lambda_{i}}(x)\]

where \(p_{r}(x) := x_{1}^{r} + x_{2}^{r} + \cdots\) and \(p_{0} := 1\), and

\[m_{\lambda} = \sum_{\alpha} x^{\alpha},\]

where the sum is over distinct permutations of \(\lambda\) and \(x^{\alpha} := x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots\). Both families of symmetric functions are bases for \(\Lambda_{F}\).

Following Macdonald we define the \(q, t\)-Hall scalar product on \(\Lambda_{F}\) as \[\langle p_{\lambda}, p_{\mu} \rangle_{q, t} := \delta_{\lambda\mu}z_{\lambda}\prod_{i \geq 1} \frac{1 - q^{\lambda_{i}}}{1 - t^{\lambda_{i}}},\]

where \(z_{\lambda} := \prod_{i \geq 1} m_{i}(\lambda)!^{m_{i}(\lambda)}\) and \(m_{i}(\lambda) := \lambda'_{i} - \lambda'_{i+1}\). With \(\preceq\) denoting the dominance partial order on partitions (see e.g., \[36, 19\]) the Macdonald polynomials \(P_{\lambda}(q, t) = P_{\lambda}(x; q, t)\) are the unique family of symmetric functions such that \[\langle P_{\lambda}(q, t), P_{\mu}(q, t) \rangle_{q, t} = 0 \quad \text{if } \lambda \neq \mu.\]

We also require the skew Macdonald polynomials \(P_{\lambda/\mu}(q, t)\) defined by

\[\langle P_{\lambda/\mu}(q, t), P_{\nu}(q, t) \rangle_{q, t} = \langle P_{\lambda}(q, t), P_{\mu}(q, t)P_{\nu}(q, t) \rangle_{q, t}.\]

The polynomial \(P_{\lambda/\mu}(q, t)\) vanishes unless \(\mu \subset \lambda\). Moreover, in \(\Lambda_{n, F}\), \(P_{\lambda}(q, t)\) vanishes unless \(l(\lambda) \leq n\).
A second family of Macdonald polynomials $Q_{\lambda/\mu}(x; q, t) = Q_{\lambda/\mu}(q, t)$ may be defined by

$$(2.6) \quad Q_{\lambda/\mu}(q, t) = \frac{b_{\lambda}(q, t)}{b_{\mu}(q, t)} P_{\lambda/\mu}(q, t).$$

Then $(P_{\lambda}(q, t), Q_{\mu}(q, t))_{q,t} = \delta_{\lambda\mu}$, which is equivalent to the Cauchy identity [36 p. 324]

$$(2.7) \quad \sum_{\lambda} P_{\lambda}(x; q, t)Q_{\lambda}(y; q, t) = \prod_{i,j \geq 1} \frac{(tx_iy_j; q)_{\infty}}{(x_iy_j; q)_{\infty}}.$$

For Macdonald polynomials in n-variables we need to principal specialisation formula [36 p. 337]

$$(2.8) \quad P_{\lambda}(t^{\delta_{\mu}; q, t}) = t^{n(\lambda)} \prod_{s \in \lambda} \frac{1 - qt^{a(s)}q_{t^{s}}} {1 - q^{a(s)}t^{s}} = t^{n(\lambda)} \frac{t^{\delta_{\mu}}(t^{\mu}; q, t)_{\lambda}} {c_{\lambda}(q, t)}$$

and the Macdonald–Koornwinder duality [36 p. 332]

$$(2.9) \quad P_{\lambda}(t^{\delta_{\mu}; q, t})P_{\mu}(q^{\lambda}t^{\delta_{\mu}; q, t}) = P_{\mu}(t^{\delta_{\mu}; q, t})P_{\lambda}(q^{\mu}t^{\delta_{\mu}; q, t})$$

for $l(\lambda), l(\mu) \leq n$.

In our proof of (1.6) it will be convenient to adopt plethystic or λ-ring notation [36]. For p_r the r-th power sum, let

$$(2.10) \quad p_r \Bigl(\frac{a-b}{1-t} \Bigr) := \frac{a^r - b^r}{1-t^r}$$

and extend this by linearity to all $f \in \Lambda_F$. The map $\varepsilon_{a,b,t}(f) \mapsto f([a - b]/(1 - t))]$ is a ring homomorphism, and in particular

$$(2.11a) \quad P_{\lambda} \left(\frac{a-b}{1-t} ; q, t \right) = \sum_{\mu} P_{\lambda/\mu} \left(\frac{a}{1-t} ; q, t \right) P_{\mu} \left(\frac{-b}{1-t} ; q, t \right)$$

$$(2.11b) \quad = \sum_{\mu} P_{\lambda/\mu} \left(\frac{-b}{1-t} ; q, t \right) P_{\mu} \left(\frac{a}{1-t} ; q, t \right).$$

We also note that

$$(2.12) \quad f \left(\frac{1-t^n}{1-t} \right) = f(t^{\delta_\lambda}) = f(t^{\delta_{\mu}}) \quad \text{and} \quad f \left(\frac{1}{1-t} \right) = f(t)$$

Let ω_q,t be the automorphism of Λ_F defined by

$$\omega_q,t(p_r) = (-1)^r \frac{1 - q^r}{1-t^r} p_r.$$

Then [36 p. 327]

$$(2.13) \quad \omega_q,t(P_{\lambda/\mu}(q, t)) = Q_{\lambda/\mu}(t, q).$$

If $f \in \Lambda_F$ is homogeneous of degree r then it is readily checked using (2.10) and (2.13) that

$$(2.14) \quad \varepsilon_{a,b,t}(f) = (-1)^r \varepsilon_{a,b,q} \omega_q,t(f).$$

Applying this with $f = P_{\lambda/\mu}(q, t)$ and using (2.13) implies the duality

$$(2.14) \quad P_{\lambda/\mu} \left(\frac{a-b}{1-t} ; q, t \right) = (-1)^{|\mu|-|\tau|} Q_{\lambda/\mu} \left(\frac{b-a}{1-q} ; t, q \right).$$
2.4. Interpolation Macdonald polynomials. In this section we work exclusively in \(\Lambda_{n,F} \), and assume that \(x = (x_1, \ldots, x_n) \) and \(\mu \) is a partition of length at most \(n \). Then the interpolation Macdonald polynomial (or shifted Macdonald polynomial) \(\bar{P}_\mu^*(x; q, t) \) is the unique (inhomogeneous) symmetric polynomial of degree \(|\mu|\) in \(x \) such that
\[
\bar{P}_\mu^*(q^\lambda t^{\delta_n}; q, t) = 0 \quad \text{for all } \lambda \text{ such that } \mu \not\subset \lambda
\]
and
\[
[x^\mu] \bar{P}_\mu^*(x; q, t) = 1.
\]
The polynomials \(\bar{P}_\mu^*(x; q, t) \) were first introduced and studied by Knop, Okounkov and Sahi in \cite{27, 28, 41, 42, 46}, and the choice of defining relations differs slightly from author to author. For example, in \cite{27} the “for all” condition is sometimes replaced by the weaker “for all \(\lambda \neq \mu \) such that \(|\lambda| \leq |\mu|\)” and the normalisation \cite{46} is sometimes replaced by
\[
\bar{P}_\mu^*(q^\mu t^{\delta_n}; q, t) = (-1)^{|\mu|} q^{|\mu|} t^{(n-1)|\mu| - 2n(\mu)} c_\mu(q, t).
\]

Below we have collected a number of results from the theory of interpolation Macdonald polynomials. In \cite{46} Theorem 1.1] Sahi showed that the top-homogeneous degree of \(\bar{P}_\mu^*(x; q, t) \) is the Macdonald polynomial \(P_\mu(x; q, t) \). In other words,
\[
\lim_{a \to \infty} a^{-|\mu|} \bar{P}_\mu^*(ax; q, t) = P_\mu(x; q, t).
\]

For \(\mu \) a partition of length at most \(n \), the interpolation Macdonald polynomials satisfy the stability property
\[
\bar{P}_\mu^*(tx_1, \ldots, tx_n, 1; q, t) = t^{|\mu|} \bar{P}_\mu^*(x_1, \ldots, x_n; q, t)
\]
Okounkov \cite{41} used this to define the \(q, t \)-binomial coefficients
\[
\left[\frac{\lambda}{\mu} \right]_{q,t} := \frac{\bar{P}_\mu^*(q^\lambda t^{\delta_n}; q, t)}{\bar{P}_\mu^*(q^\mu t^{\delta_n}; q, t)}.
\]

Thanks to \cite{27} the left-hand side is independent of \(n \) as long as we take \(n \geq l(\lambda), l(\mu) \). It follows from the vanishing property \cite{27} that \(\left[\frac{\lambda}{\mu} \right]_{q,t} = 0 \) unless \(\mu \subset \lambda \). From a duality of \(\bar{P}_\mu^*(x; q, t) \) given in \cite{42} Theorem IV] Okounkov inferred the duality \cite{41} Equation (2.12)]
\[
\left[\frac{\lambda}{\mu} \right]_{q,t} = \left[\frac{\lambda'}{\mu'} \right]_{1/q,1/t}.
\]

Finally we need the binomial theorem \cite{41} for interpolation Macdonald polynomials, given by
\[
\sum_{\nu} a^{[\nu]} \left[\frac{\lambda}{\nu} \right]_{1/q,1/t} \frac{\bar{P}_\nu^*(at^{\delta_n}; q, t)}{\bar{P}_\nu^*(at^{\delta_n}; q, t)} \bar{P}_\nu^*(x; 1/q, 1/t) = \bar{P}_\lambda^*(ax; q, t).
\]

To conclude this section we apply the binomial theorem to prove the following sum over the product of two skew Macdonald polynomials.
Proposition 2.1. For λ and μ partitions,

$$
\sum_{\nu} q^{-\binom{n(\lambda')-n(\mu')}{2} - |\nu|} \binom{n(\lambda)+n(\mu)}{\nu} b_{\nu}(t, q) Q_{\lambda'/\nu}(q^\mu; t, q) Q_{\mu'/\nu}(q^\nu; t, q) = P_{\nu}(t^\mu; q, t) P_{\lambda}(q^{-\mu} t^\nu; q, t).
$$

Proof. Let λ and μ be partitions of length at most n. If we specialise $x = q^{-\mu} t^{\delta_n}$ in the binomial theorem (2.22) and use definition (2.20) of the q, t-binomial coefficient we obtain

$$
\sum_{\nu} q^{-\binom{n(\lambda')-n(\mu')}{2} - |\nu|} \binom{n(\lambda)+n(\mu)}{\nu} \frac{P_{\nu}(a t^{-\frac{\delta_n}{t} q, t)} P_{\nu}(q^{-\nu} t^{-\delta_n}; 1/q, 1/t)}{P_{\nu}(a t^{-\frac{\delta_n}{t} q, t)} P_{\nu}(q^{-\nu} t^{-\delta_n}; 1/q, 1/t)} = P_{\lambda}(a q^{-\mu} t^{\delta_n}; q, t).
$$

By the duality (2.21) we may replace $\binom{\lambda}{\nu}_{1/q, 1/t}$ by $\binom{\lambda}{\nu}_{1/q, 1/t, t, q}$. Also replacing a by $a t^{\mu-1}$, then multiplying both sides by $a^{-|\lambda|}$, and finally letting a tend to infinity using (2.18) results in

$$
\sum_{\nu} t^{(n-1)|\nu|} \binom{\lambda}{\nu}_{t, q} \binom{\mu'}{\nu'}_{t, q} P_{\lambda}(t^{\mu}; q, t) P_{\lambda}(t^{\mu}; q, t) = P_{\lambda}(q^{-\mu} t^{\mu}; q, t).
$$

Next we use [32] p. 323] (see also [11, Equation (3.13)])

$$
\binom{\lambda}{\nu}_{t, q} = t^{n(\mu)-n(\lambda)} c_{\nu}(q, t) Q_{\lambda'/\nu}(t^\mu; q, t)
$$

as well as the principal specialisation formula (2.8) and normalisation formula (2.17), to write (2.24) in the form

$$
\sum_{\nu} (-1)^{|\nu|} q^{-\binom{n(\lambda')-n(\mu')}{2} - |\nu|} t^{n(\nu)+n(\lambda)} \binom{t^{n(\lambda)}; q, t}{t^{n(\lambda)}; q, t}_{\nu} \binom{t^{n(\mu)}; q, t}{t^{n(\mu)}; q, t}_{\nu} \times c_{\nu}(q, t) c_{\nu'}(q, t) c_{\nu}(q, t) c_{\nu'}(q, t) Q_{\lambda'/\nu'}(q^\mu; t, q) Q_{\mu'/\nu'}(q^\nu; t, q) = P_{\lambda}(q^{-\mu} t^{\mu}; q, t).
$$

Simplifying this using (2.3)–(2.4) yields

$$
\sum_{\nu} q^{-\binom{n(\lambda')-n(\mu')}{2} - |\nu|} t^{n(\nu)+n(\lambda)} \binom{t^{n(\lambda)}; q, t}{t^{n(\lambda)}; q, t}_{\nu} \times \frac{c_{\nu}(q, t)}{b_{\nu}(q, t)} Q_{\lambda'/\nu'}(q^\mu; t, q) Q_{\mu'/\nu'}(q^\nu; t, q) = P_{\lambda}(q^{-\mu} t^{\mu}; q, t).
$$

Multiplying both sides by $P_{\nu}(t^{\mu}; q, t) = P_{\nu}(t^{\mu}; q, t)$ and once again using the principal specialisation formula (2.8), we finally arrive at

$$
\sum_{\nu} q^{-\binom{n(\lambda')-n(\mu')}{2} - |\nu|} t^{n(\nu)+n(\lambda)} \binom{t^{n(\lambda)}; q, t}{t^{n(\lambda)}; q, t}_{\nu} \times Q_{\lambda'/\nu'}(q^\mu; t, q) P_{\lambda}(q^{-\mu} t^{\mu}; q, t).
$$
The identity (2.23) follows in the large-\(n\) limit, up to the variable change \(\nu \mapsto \nu'\) and the use of \(b_{\nu'}(q, t)b_{\nu}(t, q) = 1\), see (2.4).

2.5. **Proof of (1.6).** In this section we establish the Cauchy-like identity (1.6) which will be key in our subsequent proof of Theorem 1.3. In fact, we will prove a slightly less-symmetric but equivalent form obtained by the simultaneous substitution

\[(a, b, c, d) \mapsto (Tab, cd, 1/ac, 1/bd).\]

Theorem 2.2. We have

\[
\sum_{\lambda, \mu, \nu, \tau} T|\lambda| b_{\nu}(q, t)b_{\tau}(t, q)Q_{\lambda/\nu}(at^{\rho}; q, t)Q_{\lambda'/\tau}(bq^{\rho}; t, q) \\
\times Q_{\mu/\nu}(ct^{\rho}; q, t)Q_{\mu'/\tau}(dq^{\rho}; t, q) = 1
\]

(B, T)\(_\infty\) \cdot \left(\frac{abT}{acT}, \frac{-cd}{bdT}; q, T\right)_\infty

Before we prove this we need the following \(q, t\)-analogue of a Schur function identity from page 94 of [36].

Proposition 2.3. We have

\[
\sum_{\nu, \lambda} T|\lambda| P_{\lambda/\nu}(x; q, t)Q_{\lambda/\tau}(y; q, t) = 1
\]

\[(T; T)_\infty \cdot \prod_{i,j \geq 1} \left(\frac{tx_{i}y_{j}; q}{x_{i}y_{j}; q}\right)_\infty
\]

Proof. Denote the left-hand side of (2.28) by \(f(x, y)\) and recall the generalisation of the Cauchy identity (2.7) to skew functions [36, p. 352]

\[
\sum_{\lambda} P_{\lambda/\nu}(x; q, t)Q_{\lambda/\nu}(y; q, t) = \prod_{i,j \geq 1} \left(\frac{tx_{i}y_{j}; q}{x_{i}y_{j}; q}\right)_\infty \sum_{\lambda} \prod_{i,j \geq 1} \left(\frac{tx_{i}y_{j}; q}{x_{i}y_{j}; q}\right)_\infty
\]

By the simultaneous variable change \((\lambda, \nu) \mapsto (\nu, \lambda)\) this yields

\[
f(x, y) = \prod_{i,j \geq 1} \left(\frac{tx_{i}y_{j}; q}{x_{i}y_{j}; q}\right)_\infty \sum_{\nu, \lambda} \prod_{i,j \geq 1} \left(\frac{tx_{i}y_{j}; q}{x_{i}y_{j}; q}\right)_\infty
\]

Applying this with \((x, \tau) \mapsto (Tx, \nu)\) it follows that

\[
f(x, y) = \prod_{i,j \geq 1} \left(\frac{(Tx_{i}y_{j}; q)}{x_{i}y_{j}; q}\right)_\infty \sum_{\lambda, \nu} T|\lambda| P_{\lambda/\nu}(Tx; q, t)Q_{\nu/\lambda}(y; q, t).
\]

By the simultaneous variable change \((\lambda, \nu) \mapsto (\nu, \lambda)\) this yields

\[
f(x, y) = f(Tx, y) \prod_{i,j \geq 1} \left(\frac{(Tx_{i}y_{j}; q)}{x_{i}y_{j}; q}\right)_\infty
\]

and thus

\[
f(x, y) = f(0, y) \prod_{i,j \geq 1} \left(\frac{(Tx_{i}y_{j}; q, T)}{x_{i}y_{j}; q, T}\right)_\infty
\]

By \(P_{\lambda/\nu}(0; q, t) = \delta_{\lambda\nu}\) and \(Q_{\lambda/\nu}(y; q, t) = 1\) we finally get

\[
f(0, y) = \sum_{\lambda} T|\lambda| = \prod_{k \geq 1} \left(\frac{1}{(T; T)}\right)_\infty
\]

and the claim follows. \(
\square\)
Proof of Theorem 2.3. If we take Proposition 2.3 replace $\nu \mapsto \mu$, and then make the plethystic substitutions $x \mapsto (a - d)/(1 - t)$ and $y \mapsto (c - b)/(1 - t)$, we get

$$
\sum_{\lambda,\mu} T^{[\lambda]} P_{\lambda/\mu} \left(\left[\frac{a - d}{1 - t} \right]; q, t \right) Q_{\lambda/\mu} \left(\left[\frac{c - b}{1 - t} \right]; q, t \right) = \frac{1}{(T; T)_\infty} \cdot \frac{(abT, cdT; q, t, T)_\infty}{(acT, bdT; q, t, T)_\infty}.
$$

Here the product on the right follows from [36, p. 310]

$$
(2.30) \quad \prod_{i,j \geq 1} \left(\frac{tT x_i y_j; q, t}{T x_i y_j; q, t}_\infty \right) = \exp \left(\sum_{r \geq 1} T^r \cdot \frac{1 - t^r}{1 - q^r} p_r(x)p_r(y) \right),
$$

equation (2.10) and

$$
\exp \left(\sum_{r \geq 1} \frac{z^r}{r(1 - q^r)(1 - t^r)} \right) = (z; q, t)^{\pm 1}.
$$

Using (2.11) (which also holds with P replaced by Q) gives

$$
\sum_{\lambda,\mu,\nu,\tau} T^{[\lambda]} P_{\lambda/\nu} \left(\left[\frac{a}{1 - t} \right]; q, t \right) Q_{\lambda/\tau} \left(\left[\frac{b}{1 - t} \right]; q, t \right) \cdot P_{\nu/\mu} \left(\left[\frac{d}{1 - t} \right]; q, t \right) Q_{\tau/\nu} \left(\left[\frac{e}{1 - t} \right]; q, t \right) = \frac{1}{(T; T)_\infty} \cdot \frac{(abT, cdT; q, t, T)_\infty}{(acT, bdT; q, t, T)_\infty},
$$

Transforming the sum over μ by the Cauchy identity (2.29) with $(\lambda, \nu, \tau) \mapsto (\mu, \nu, \tau)$, $x \mapsto -d/(1 - t)$ and $y \mapsto c/(1 - t)$ leads to

$$
\sum_{\lambda,\mu,\nu,\tau} T^{[\lambda]} P_{\lambda/\nu} \left(\left[\frac{a}{1 - t} \right]; q, t \right) Q_{\lambda/\tau} \left(\left[\frac{b}{1 - t} \right]; q, t \right) \cdot P_{\nu/\mu} \left(\left[\frac{d}{1 - t} \right]; q, t \right) Q_{\tau/\nu} \left(\left[\frac{e}{1 - t} \right]; q, t \right) = \frac{1}{(T; T)_\infty} \cdot \frac{(abT, cdT; q, t, T)_\infty}{(acT, bdT; q, t, T)_\infty},
$$

where this time we have used (2.30) with $T = 1$. Finally using the duality (2.14) as well as

$$
P_{\lambda/\nu} \left(\left[\frac{a}{1 - t} \right]; q, t \right) = P_{\lambda/\nu}(at^\mu; q, t),
$$

and replacing $(b, d) \mapsto (-b, -d)$, the identity (2.27) follows. \qed

3. Proof of Theorem 1.3

Instead of giving a direct proof of the q, t-Nekrasov–Okounkov formula we will first study a rational function $f_{n,m}$, which may be viewed as a rational function analogue of the sum side of (1.3).

Let

$$
(3.1) \quad f_{n,m}(u, T; q, t) := (-u)^{nm} q^{n(m + 1)} t^{m(n)} \sum_{\lambda,\mu \subset (m^n)} T^{[\lambda]} (-uq^{m(t^n - 1)} - |\lambda| - |\mu|) P_{\lambda}(t^{b_n}; q, t) P_{\mu}(q^{b_m}; t, q)
$$

$$
\times P_{\nu}(q^{b_n}; t, q) P_{\mu}(t^{\lambda} q^{b_m}; t, q).
$$

From the definition we have $f_{n,m}(u, T; q, t) \in \mathbb{Q}(q, t)[u, u^{-1}, T]$.

Conjecture 3.1. The rational function $f_{n,m}(u, T; q, t) \in \mathbb{Z}[q, t, u, u^{-1}, T]$. Moreover, $f_{n,m}(-z/w, T; z^2, 1/w^2)$ is a polynomial in $\mathbb{Z}[z, z^{-1}, w, w^{-1}, T]$ with nonnegative coefficients.
An obvious symmetry of \(f_{n,m} \) is
\[
 f_{n,m}(u, T; q, t) = f_{m,n}(qu/t, T; t, q).
\]

Not as apparent are the following two additional relations:

Lemma 3.2. We have

\[
 \begin{align*}
 f_{n,m}(u, T; q, t) &= T^{nm} f_{n,m}(u/T, 1/T; q, t) \\
 &= f_{n,m}(tT/\mu q, T; q, t).
 \end{align*}
\]

Proof. By the duality (2.9) we get
\[
 f_{n,m}(u, T; q, t) = (-u)^{nm} q^{n(m+1)/2} t^{m(n/2)}
 \times \sum_{\lambda, \mu \subseteq (m^n)} T^{\lambda} (-uq^m t^{n-1})^{-|\lambda|} P_{\lambda}(t^{{\delta}_n}; q, t) P_{\mu}(q^{{\delta}_m}; t, q)
 \times P_{\lambda}(q^{\mu_{\lambda}}; q, t) P_{\mu}(t^{{\delta}_m}; t, q).
\]

Renaming the summation index \(\lambda \) as \(\mu \) and vice versa yields
\[
 \begin{align*}
 f_{n,m}(u, T; q, t) &= (-u)^{nm} q^{m(n+1)/2} t^{n(m/2)}
 \times \sum_{\lambda, \mu \subseteq (m^n)} T^{\mu} (-uq^m t^{n-1})^{-|\mu|} P_{\lambda}(t^{{\delta}_n}; q, t) P_{\mu}(q^{{\delta}_m}; t, q)
 \times P_{\mu}(q^{\lambda_{\mu}}; q, t) P_{\mu}(t^{{\delta}_m}; t, q).
 \end{align*}
\]

Comparing this with (3.3) implies (3.2a).

Next we replace the sum over \(\mu \) in (3.1) by a sum over its complement with respect to \((m^n)\), denoted by \(\mu = (m - \mu_n, \ldots, m - \mu_1) \). Recalling that (see e.g., [2, Equation (4.3)])
\[
 P_{\mu}(x_1, \ldots, x_n; q, t) = (x_1 \cdots x_n)^m P_{\mu}(x_1^{-1}, \ldots, x_n^{-1}; q, t),
\]
this yields
\[
 f_{n,m}(u, T; q, t) = \sum_{\lambda, \mu \subseteq (m^n)} (-T/u)^{|\lambda|} (-uq^m t^{n-1})^{-|\mu|} P_{\lambda}(t^{{\delta}_n}; q, t) P_{\mu}(q^{{\delta}_m}; t, q)
 \times P_{\mu}(q^{-\lambda_{\mu}}; q, t) P_{\mu}(t^{-\delta_n}; t, q).
\]

Since
\[
 P_{\lambda}(t^{{\delta}_n}; q, t) = P_{\lambda}(t^{\rho_n}; q, t) \quad \text{and} \quad P_{\mu}(q^{-\lambda_{\mu}}; q, t) = t^{(1-n)|\mu|} P_{\mu}(q^{-\lambda_{t^{\rho_n}}}; q, t),
\]
this can be further transformed into
\[
 \begin{align*}
 f_{n,m}(u, T; q, t) &= \sum_{\lambda, \mu \subseteq (m^n)} (-T/u)^{|\lambda|} (-uq)^{|\mu|} P_{\lambda}(t^{{\rho}_n}; q, t) P_{\mu}(q^{\rho_m}; t, q)
 \times P_{\mu}(q^{-\lambda_{\mu}}; q, t) P_{\mu}(t^{-\delta_n}; t, q).
 \end{align*}
\]

Applying the symmetry \(P_{\lambda}(x; q, t) = P_{\lambda}(x; 1/q, 1/t) \) (see [30, p. 324]) to (2.9) and then replacing \((q, t)\) by \((1/q, 1/t)\) we obtain
\[
 P_{\lambda}(t^{\rho_n}; q, t) P_{\mu}(q^{-\lambda_{t^{\rho_n}}}; q, t) = P_{\mu}(t^{\rho_n}; q, t) P_{\lambda}(q^{-\mu_{t^{\rho_n}}}; q, t).
\]
Using this in (3.5) and then again swapping λ and μ, we find
\[
 f_{n,m}(u, T; q, t) = \sum_{\lambda, \mu \subset (m^n)} (-tT/u)^{|\mu|}(-uq)^{|\lambda|} P_{\lambda}(t^{\rho_n}; q, t)P_{\lambda'}(q^{\rho_m}; t, q)
 \times P_{\mu}(q^{-\lambda}t^{\rho_n}; q, t)P_{\mu'}(t^{-\lambda'}q^{\rho_m}; t, q).
\]
Comparing the above with (3.5) yields (3.2b). □

Next we compute $f_{n,m}$ in two different ways. First, using the homogeneity of the Macdonald polynomials and the dual Cauchy identity [36, p. 329]
\[
\sum_{\mu} T^{|\mu|} P_{\mu}(x; q, t)P_{\mu'}(y; q, t) = \prod_{i,j} (1 + T x_i y_j),
\]
we can perform the sum over μ. Also using
\[
\prod_{i=1}^{n} \prod_{j=1}^{m} (1 - u^{-1}q^{-\lambda_i-j}t^{i-j-1}) = (-u)^{-nm}q^{-n\left(\frac{m+1}{2}\right)}t^{-m\left(\frac{n}{2}\right)}(q^{m^n})^{1/2}
 \times \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{i-\lambda_i-t^{i-j}}),
\]
this gives
\[
(3.7) \quad f_{n,m}(u, T; q, t) = \sum_{\lambda \subset (m^n)} (-tT/u)^{|\lambda|} P_{\lambda}(t^{\delta_n}; q, t)P_{\lambda'}(q^{\delta_m}; t, q)
 \times \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{i-\lambda_i-t^{i-j}}).
\]
Before we proceed we remark that if $u = t$ then the summand contains the factor
\[
\prod_{i=1}^{n} \prod_{j=1}^{m} (1 - q^{-\lambda_i-t^{i-j}})
\]
This vanishes for all $\lambda \subset (m^n)$ with the exception of $\lambda = 0$. Similarly, if $u = 1/q$ then the summand contains the factor
\[
\prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{i-\lambda_i-1-t^{i-j}})
\]
which vanishes unless $\lambda = (m^n)$. Finally, if we replace T by uT and then let u tend to 0 we are left with
\[
\lim_{u \to 0} f_{n,m}(uT, T; q, t) = \sum_{\lambda \subset (m^n)} (-tT)^{|\lambda|} P_{\lambda}(t^{\delta_n}; q, t)P_{\lambda'}(q^{\delta_m}; t, q),
\]
which can be summed by (3.6). We summarise these three observations in the following lemma, where we have also used that $P_{(m^n)}(x_1, \ldots, x_n; q, t) = (x_1 \cdots x_n)^m$.

Lemma 3.3. We have

\[f_{n,m}(t,T;q,t) = \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - q^j t^i) \]
\[f_{n,m}(1/q, T; q, t) = T^{mn} \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - q^j t^i) \]
\[\lim_{u \to 0} f_{n,m}(u, uT; q, t) = \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - T q^{-1} t^i) \]

Returning to (3.7), we use

\[\prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{-\lambda} t^{-\lambda_j - 1}) = (-u)^{\lambda} q^{-n(\lambda')} t^{-n(\lambda)} - |\lambda| \]
\[\times \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{j-i-1}) \prod_{s \in \Lambda} \frac{(1 - uq^{a(s)+1} t^{l(s)})(1 - u^{-1} q^{a(s)} t^{l(s)+1})}{(1 - uq^{a(s)+1} t^{l(s)})(1 - uq^{a(s)} t^{l(s)+1})} \]
together with the principal specialisation formula (2.8) to obtain the following result.

Proposition 3.4. The rational function \(f_{n,m} \) can be expressed as

\[f_{n,m}(u, T; q, t) = \prod_{i=1}^{n} \prod_{j=1}^{m} (1 - uq^{j-i-1}) \]
\[\times \sum_{\lambda \subseteq (m^n)} \left(1 - q^{a(s)+1} t^{l(s)}(1 - uq^{a(s)} t^{l(s)+1}) \right) \frac{T^{\lambda}}{s \in \Lambda} \frac{(1 - uq^{a(s)+1} t^{l(s)})(1 - u^{-1} q^{a(s)} t^{l(s)+1})}{(1 - q^{a(s)} t^{l(s)+1})} \]

As an immediate application of the proposition we have

(3.8) \[f(u, T; q, t) := \lim_{n,m \to \infty} f_{n,m}(u, T; q, t) \]
\[= (uq; q, t)_{\infty} \]
\[\times \sum_{\lambda} T^{\lambda} \prod_{s \in \Lambda} \frac{(1 - uq^{a(s)+1} t^{l(s)})(1 - u^{-1} q^{a(s)} t^{l(s)+1})}{(1 - q^{a(s)} t^{l(s)+1})} \]

For our second computation of \(f_{n,m}(u, T; q, t) \) we start with the representation given in (3.5) and twice apply the finite form of Proposition 2.1 given by (2.26). Then

\[f_{n,m}(u, T; q, t) = \sum_{\lambda, \mu, \nu, \tau \subseteq (m^n)} (-uT/u)^{\lambda} (-uq)^{|\mu|} q^{-|\tau|} t^{-|s|} \]
\[\times \frac{(t^m; q, t)_\lambda (t^n; q, t)_\mu}{(t^n; q, t)_\tau b_\nu(t, q)} \frac{(q^m; t, q)_\lambda (q^n; t, q)_\mu}{(q^n; t, q)_\tau b_\nu(t, q)} \]
\[\times Q_{\lambda/\tau}(t^p; q, t) Q_{\lambda/\tau}(q^p; t, q) Q_{\mu/\nu}(t^p; q, t) Q_{\mu/\nu}(q^p; t, q). \]
Since we do not know of a suitable finite analogue of \((2.27)\), we next let \(n\) and \(m\) tend to infinity, and use \(b_{\lambda}(q,t)b_{\mu}(t,q) = 1\) as well as the homogeneity of the Macdonald polynomials. This yields

\[
f(u,T; q,t) = \sum_{\lambda,\mu,\nu,\tau \subseteq (m^n)} T^{\lambda} b_{\nu}(q,t)b_{\tau}(t,q) Q_{\lambda/\nu}(-u^{p+1}/u; q,t) Q_{\lambda/\tau}(q^{p+1}; t,q)
\]

\[
\times Q_{\mu/\nu}(-ut^{p}; q,t) Q_{\mu'/\tau}(q^{p+1}; t,q).
\]

By \((2.27)\) with \((a,b,c,d) = (-t/u, 1, -u, q)\) the sum evaluates in closed form as

\[
f(u,T; q,t) = \frac{1}{(T; T)_\infty} \frac{(u u^{-1} t T; q,t)_\infty}{(q T, t T; q,t)_\infty}
\]

\[
= \frac{(u u^{-1} t T; q,t)_\infty}{(T, q t T; q,t)_\infty}.
\]

Equating this with \((3.8)\) and dividing both sides by \((u; q,t)_\infty\) results in \((1.4)\). We leave it as an open problem to extend the above to a formula for \(f_{n,m}(u, T; q,t)\).

4. Special cases of the \(q,t\)-Nekrasov–Okounkov formula

The Nekrasov–Okounkov formula \((1.5)\) contains many classical identities as special cases. For \(\mu = 0\) it yields Euler’s formula for the generating function of partitions. For \(z = 2\) only the staircase partitions \(\delta_n\) for \(n \geq 1\) contribute to the sum and \((1.5)\) simplifies to Jacobi’s identity for the third power of the Dedekind eta function \(\eta(\tau)\). More generally, for \(z = p\) with \(p\) a positive integer, \((1.5)\) it is related to Macdonald’s expansion \([35\text{ pp. 134 and 135}]\) for the \((p^2 - 1)\)th power of \(\eta(\tau)\). In a different vein (see e.g., \([17]\)), by setting \(z^2 = -x/T\), taking the \(T \to 0\) limit, and then extracting coefficients of \(x^n\), the Nekrasov–Okounkov formula simplifies to

\[
\sum_{\lambda \vdash n} \prod_{s \in \lambda} \frac{1}{h(s)^2} = \frac{1}{n!},
\]

which is a well-known identity related to the Robinson–Schensted–Knuth correspondence \([29,45,47]\), the Frame–Robinson–Thrall formula \([9]\) and the Plancherel measure on partitions \([3]\).

Some of the above-mentioned special cases have nice generalisations to the Macdonald polynomial or the \(t = q\) (i.e., Schur) level. For example, if we replace \(u\) by \(-u/qT\) in \((1.4)\), then let \(T\) tend to 0 and finally extract coefficients of \(u^n\) we obtain a \(q,t\)-analogue of \((4.1)\)

\[
\sum_{\lambda \vdash n} \frac{q^{n(\lambda')}}{c_{\lambda}(q,t)c_{\lambda'}(q,t)} = \frac{1}{(u; q,t)_\infty}.
\]

As an identity this is not actually new and also follows from the binomial theorem \([25,37]\)

\[
\sum_{\lambda} \frac{t^{n(\lambda)}(a; q,t)_{\lambda} P_{\lambda}(x; q,t)}{c_{\lambda}(q,t)} = \prod_{i \geq 1} \frac{(ax_i; q)_\infty}{(x_i; q)_\infty},
\]

but the point is that it is contained in \((1.4)\).
Another interesting special case corresponds to \(u = q^{-p} \) for \(p \) a positive integer. Then the summand of (1.4) contains the factor
\[
\prod_{s \in \lambda} \left(1 - q^{a(s) - p + 1} t^{l(s)} \right),
\]
which vanishes unless \(\lambda = (\lambda_1, \lambda_2, \ldots) \) is a partition such that \(\lambda_i - \lambda_{i+1} \leq p-1 \) for \(1 \leq i \leq l(\lambda) \). In other words, consecutive parts should differ by at most \(p - 1 \) and also the smallest part has size at most \(p-1 \). If we denote this set of partitions by \(D_p \) (for example, \(D_1 = \{0\} \), \(D_2 = \{ \lambda : \lambda' \text{ is strict} \} \), and the number of partitions in \(D_p \) of length \(l \) is \(p^l - p^{l-1} \), then
\[
(4.3) \quad \sum_{\lambda \in D_p} T^{[\lambda]} \prod_{s \in \lambda} \frac{(1 - q^{a(s) - p + 1} t^{l(s)})(1 - q^{a(s) + p} t^{l(s)} + 1)}{(1 - q^{a(s) + 1} t^{l(s)})(1 - q^{a(s)} t^{l(s)} + 1)} = \prod_{i=1}^{p-1} \frac{(q^{i-p} t; q t)_\infty}{(q^i t^i t; q t)_\infty}.
\]
A much stronger restriction results if we take \(q = t \) in (4.3). Then partitions with hook-lengths equal to \(p \) vanish. Partitions with no such hook-lengths are known as \(p \)-cores and play an important role in the modular representation theory of the symmetric group, see e.g., [39, 45]. Thus, with \(C_p \) denoting the set of \(p \)-cores,
\[
(4.4) \quad \sum_{\lambda \in C_p} T^{[\lambda]} \prod_{h \in \mathcal{H}(\lambda)} \frac{(1 - t^{h-p})(1 - t^{h+p})}{(1 - t^h)^2} = (T; T)_\infty \prod_{1 \leq i < j \leq p} (t^{-i} t^i; T)_\infty (t^{-i} t^i; T)_\infty.
\]
The set of 2-cores is given by \(C_2 = \{ \delta_n : n \geq 1 \} \), and for \(p = 2 \) we thus recover the Jacobi triple product identity \([13]\)
\[
\sum_{n \geq 1} (-1)^n T^n \frac{1^n - t^{1-n}}{1 - t} = (T; T)_\infty (t t; T)_\infty (T/t; T)_\infty.
\]
More generally, (4.4) is the Macdonald identity for the affine root system \(A^{(1)}_{p-1} \) \([35]\) specialised as
\[
e^{-\alpha_0} \mapsto T t^{1-p}, \quad e^{-\alpha_1}, \ldots, e^{-\alpha_{p-1}} \mapsto t,
\]
where \(\alpha_0, \ldots, \alpha_{p-1} \) are the simple roots. This can be seen using a well-known parametrisation of \(p \)-cores due to Klyachko \([26]\) and “Bijection 2” from the work of Garvan, Kim and Stanton \([12]\). For more details we also refer to [8, 18]. Identity (4.3) should thus be regarded as a generalisation of the Jacobi triple product identity and the specialised Macdonald identity of type \(A \).

After completion of an earlier version of this paper, Amer Iqbal informed us of his joint work with Kozçaz and Shabir \([23]\) on the refined topological vertex. This is defined as the rational function
\[
C_{\lambda\mu\nu}(t, q) := q^{n(\mu') + n(\nu') + \frac{1}{2}(|\lambda| + |\mu| + |\nu|) t^{-n(\mu)} c_\nu(q, t)^{-1} \times \sum_{\eta} t^{-|\eta|} s_{\lambda'/\eta}(t^\rho q^{-\nu'}) s_{\mu/\eta}(q^\rho t^{-\nu'}),
\]
(where \(s_{\lambda/\mu} \) is a skew Schur function) and reduces to the ordinary topological vertex \([11, 13]\) for \(t = q \). In their paper Iqbal et al. use geometric considerations as a heuristic to generate identities for the refined topological vertex. This in turn leads to numerous \(q, t \)-hook-length formulas, see [23, Section 6]. As remarked in
their paper, these identities are not rigorously proved, but checked up to some fixed order in the parameters using a computer. Their Example 3, arising from a 5-dimensional $U(1)$ gauge theory is, up to a renaming of the variables, precisely our\(^3\).

Macdonald polynomials can also be applied to deal with the other identities from [23], and below we discuss in detail [23, Example 4] arising from a 5-dimensional supersymmetric $U(1)$ gauge theory with two hypermultiplets.

Proposition 4.1. We have

\[
(4.5a) \quad \sum_{\mu, \nu} \frac{(-u)^{|\nu|}(-v)^{|\mu|}q^{n(\mu') + n(\nu')}}{c_\mu(q, t)c_\nu(q, t)c_{\mu'}(q, t)c_{\nu'}(q, t)} \prod_{i,j \geq 1} (1 - wq^{i-k}j^{i-k})
\]

\[
(4.5b) = \sum_{\lambda} \frac{(-uvt)^{|\lambda|}q^{2n(\lambda)}}{c_\lambda(q, t)c_{\lambda'}(q, t)} \prod_{i,j \geq 1} (1 - uq^{i-1}j^{i-1}) (1 - vq^{i-1}j^{i-1})
\]

\[
(4.5c) = \frac{(u, v, wq, uv, wq; q, t)_\infty}{(uwq, vvq, wq; q, t)_\infty}
\]

By applying the ‘flop transition’ to this theory, see [23, p. 450], Iqbal et al. also obtained the following companion identity.

Proposition 4.2. We have

\[
(4.6) \quad \sum_{\lambda} \frac{w|\lambda|t^{2n(\lambda)}}{c_\lambda(q, t)c_{\lambda'}(q, t)} \prod_{i,j \geq 1} (1 - uq^{i-1}j^{i-1}) (1 - vq^{i-1}j^{i-1})
\]

\[
= \frac{(ut, vt, uw, vw; q, t)_\infty}{(w, uwq, vvq; q, t)_\infty}
\]

For reasons that will become clear later, we first prove the second proposition.

Proof of Proposition 4.2. By (2.2) the claim may also be stated as

\[
(4.7) \quad \sum_{\lambda} \frac{w|\lambda|t^{2n(\lambda)}}{c_\lambda(q, t)c_{\lambda'}(q, t)} = \prod_{i,j \geq 1} \frac{(uw, vvq; q, t)_\infty}{(w, uwq, vvq; q, t)_\infty},
\]

where $(a_1, \ldots, a_k; q, t)_\lambda := (a_1; q, t)_\lambda \cdots (a_k; q, t)_\lambda$. The shortest proof of this is to start with the Cauchy identity (2.4) and carry out the plethystic substitutions $x \mapsto (w - uw)/(1 - t)$ and $y \mapsto (1 - v)/(1 - t)$. By [36, p. 338]

\[
P_\lambda \left(\frac{a - b}{1 - t}; q, t \right) = a^{|\lambda|t^{n(\lambda)}}(b/a; q, t)_\lambda c_\lambda(q, t),
\]

and the simple relation $Q_\lambda = b_\lambda P_\lambda$ (see (2.6)) the identity (4.7) immediately follows.

It is in fact not hard to show that (4.7) and hence also (4.6) admit a bounded analogue in which λ is summed over partitions of length at most n. To this end we recall the symmetric rational function $R_\lambda(x; b; q, t)$ defined by the branching formula [31],

\[
R_\lambda(x_1, \ldots, x_n; b; q, t) = \sum_{\mu \subseteq \lambda} \frac{(bx_n/t; q, t)_\mu}{(bx_n; q, t)_\lambda} P_{\lambda/\mu}(x_n; q, t)R_{\mu}(x_1, \ldots, x_{n-1}; b; q, t)
\]

\[^3\text{In the subsequent paper [23] Iqbal et al. prove this for } t = q \text{ using the cyclic symmetry of the ordinary topological vertex.}\]
and initial condition \(R_\lambda(-;b;q,t) = \delta_{\lambda,0}\). Note that \(R_\lambda(x;0;q,t)\) and \(R_{\{i\}}(x;b;q,t) = x^i/(b^i x;q)^i\). According to [31] Corollary 5.4 the function \(R_\lambda(x;b;q,t)\) admits the following \(\ast_n\) analogue of the classical \(q\)-Gauss sum:

\[
\sum_\lambda t^{n(\lambda)} \left(\frac{c}{ab} \right)^{\lambda} \frac{R_\lambda(x; c, q, t)}{c_\lambda'(x, q, t)} = \prod_{i=1}^n \frac{(cx_i/a, cx_i/b; q)_\infty}{(cx_i, cx_i/abc; q)_\infty}.
\]

Specialising \(x = t^k\) using [31] Proposition 4.4

\[
R_\lambda(t^k; b, q, t) = \frac{t^{n(\lambda)}(t^n; q, t)_\lambda}{(bt^{n-1}; q, t)_\lambda} c_\lambda(q, t),
\]

and replacing \((a, b, c) \mapsto (u, v, uv)\), yields

\[
\sum_\lambda \frac{u^{\lambda}|t^{2n(\lambda)}(t^n, u; q, t)_\lambda}{(uv; t^n; q, t)_\lambda c_\lambda(q, t)c_\lambda'(q, t)} = \prod_{i=1}^n \frac{(uv^{i-1}, vwt^{i-1}; q)_\infty}{(wt^{i-1}, uvwt^{i-1}; q)_\infty},
\]

where we note that \((t^n; q, t)_\lambda = 0\) unless \(l(\lambda) \leq n\). In the large-\(n\) limit this gives (4.7).

Proof of Proposition [4.7]. In the following we denote the double sum in (4.5a) by LHS. Replacing \(\mu \mapsto \mu'\) and using (4.3) as well as

\[
(4.8)
\]

\[
P_\lambda(t^\rho; q, t) = \frac{t^{n(\lambda)}(t^n; q, t)_\lambda}{c_\lambda(q, t)}
\]

(this is the large-\(n\) limit of (2.8)), we get

\[
\text{LHS} = \sum_{\mu, \nu} (-u)^{|\mu|}(-v)^{|\nu|} q^{n(\nu')} t^{n(\nu')} \frac{P_\mu(q^\rho; t, q)P_\nu(t^\rho; q, t)}{c'_\mu(t, q)c'_\nu(q, t)} \prod_{i,j \geq 1} (1 - wt^{-\nu} t^{j-\mu}).
\]

In order to decouple the sums over \(\mu\) and \(\nu\) we apply the dual Cauchy identity (3.6) with \((x, y, T) \mapsto (q^{-\nu} t^\rho, q^{T-\rho}; t^{j-\nu} - wtq)\). Then

\[
\text{LHS} = \sum_{\lambda, \mu, \nu} (-wqt)|\lambda|(-u)^{|\mu|}\nu' q^{n(\nu')} t^{n(\nu')}
\]

\[
\times \frac{P_\mu(q^\rho; t, q)P_\nu(q^{T-\rho}; t, q)P_\lambda(t^{j-\nu} t^\rho; q, t)}{c'_\mu(t, q)c'_\nu(q, t)}
\]

By a double application of the Macdonald–Koornwinder duality (2.9) (with \(\rho_n \mapsto \rho\) this can be transformed into

\[
\text{LHS} = \sum_{\lambda, \mu, \nu} (-wqt)|\lambda|(-u)^{|\mu|}\nu' q^{n(\nu')} t^{n(\nu')}
\]

\[
\times \frac{P_\lambda(q^\rho; t, q)P_\mu(q^{T-\rho}; t, q)P_\nu(t^\rho; t, q)}{c'_\mu(t, q)c'_\nu(q, t)}
\]

If we replace \(x \mapsto x/a\) in the binomial formula (4.2) and then take the large \(a\) limit, we obtain the following \(q, t\)-analogue of Euler’s \(q\)-exponential sum (see also [32] p. 294):

\[
\sum_\lambda \frac{(-1)^{\lambda} q^{n(\lambda)} P_\lambda(x; q, t)}{c_\lambda(q, t)} = \prod_{i \geq 1} (x_i; q)_\infty.
\]
This can be used to carry out the sums over μ and ν, resulting in

$$
\text{LHS} = \sum_\lambda (-wqt)^{|\lambda|} P_\lambda(t; q, t) P_{\lambda'}(q^\theta; t, q) \prod_{i \geq 1} (uq^{i-1}t^{-\lambda_i}; q)_\infty (vq^{-\lambda_i}t^{i-1}; q)_\infty
$$

$$
= \sum_\lambda \frac{(-wqt)^{|\lambda|} q^{n(\lambda')} t^{n(\lambda)}}{c_\lambda(q, t) c_{\lambda'}(q, t)} \prod_{i, j \geq 1} (1 - uq^{i-1}t^{-\lambda_i} - vq^{-\lambda_j}t^{j-1}) (1 - vq^{-\lambda_i}t^{-j} - vq^{-\lambda_j}t^{j-1}),
$$

where in the second step we have again used (4.38) followed by (2.23). This proves the equality between (4.38) and (4.39). In fact, the entire proof is now done since the equality of (4.5b) and (4.5c) is equivalent to the identity (4.6) arising from the flop transition. Indeed, by (2.2) the second half of Proposition 4.1 can also be stated as

$$
\sum_\lambda \frac{(-wqt)^{|\lambda|} q^{n(\lambda')} t^{n(\lambda)}}{c_\lambda(q, t) c_{\lambda'}(q, t)} (u/t; q, q)_\lambda (v/t; q, q)_\lambda = (wqt, uwq; q, t)_\infty (vwt, vwt; q, t)_\infty.
$$

Since

$$(z; q)_\lambda = (-z)^{|\lambda|} q^{-n(\lambda')} t^{n(\lambda)} (z^{-1}; q)_\lambda$$

this is (4.5d) in which (u, v, w) has been replaced by $(u/t, q/v, vwt)$. \hfill \square

Appendix A.

Jim Bryan suggested an alternative derivation of (1.4) based on the equivariant DMVV formula for the Hilbert scheme of n points in the plane, $(\mathbb{C}^2)^{[n]}$. This formula was first conjectured by Li, Liu and Zhou in [33] and subsequently proved by Waelder [30] as a consequence of the equivariant MacKay correspondence.

Let (u_1, u_2) be the equivariant parameters of the natural torus action on $[\mathbb{C}^2]^{[n]}$, and set $t_1 := e^{2\pi i u_1}$ and $t_2 := e^{2\pi i u_2}$. Let $\text{Ell}((\mathbb{C}^2)^{[n]}; u, p, t_1, t_2)$ be the equivariant elliptic genus of $(\mathbb{C}^2)^{[n]}$, where $p := \exp(2\pi i \tau)$ and $u := \exp(2\pi i z)$ for $\tau \in \mathbb{H}$ and $z \in \mathbb{C}$. Treating u, p, t_1 and t_2 as formal variables, the equivariant DMVV formula [30, Theorem 12] expresses the generating function for the elliptic genera as a product:

$$(A.1) \quad \sum_{n \geq 0} T^n \text{Ell}((\mathbb{C}^2)^{[n]}; u, p, t_1, t_2)
$$

$$
= \prod_{m \geq 0} \prod_{k \geq 1} \prod_{\ell, n_1, n_2 \in \mathbb{Z}} \frac{1}{(1 - p^m T^k u^{-1} t_1^{n_1} t_2^{n_2})^{c(\ell, m, n_1, n_2)}}.
$$

The integers $c(m, \ell, n_1, n_2)$ on the right are determined by the equivariant elliptic genus of \mathbb{C}^2, given by a simple ratio of Jacobi theta functions:

$$(A.2) \quad \text{Ell}(\mathbb{C}^2, u, p, t_1, t_2) = \frac{\theta(u t_1^{-1}, u^{-1} t_2; p)}{\theta(t_1^{-1}, t_2; p)}
$$

$$
= \sum_{m \geq 0} \sum_{\ell, n_1, n_2 \in \mathbb{Z}} c(m, \ell, n_1, n_2) p^m u^{n_1} t_1^{n_1} t_2^{n_2},
$$

where

$$
\theta(u; p) := \sum_{k \in \mathbb{Z}} (-u)^k p^{(k^2)} = (u, p/u, p; p)_\infty
$$

and

$$
\theta(u_1, \ldots, u_k; p) := \theta(u_1; p) \cdots \theta(u_k; p).
$$
In [33] an explicit formula in terms of arm and leg-lengths is obtained for the generating function (over \(n \)) of elliptic genera of the framed moduli spaces \(M(r, n) \) of torsion-free sheaves on \(\mathbb{P}^2 \) of rank \(r \) and second Chern class \(n \), see [38]. Since \(M(1, n) \) coincides with \((\mathbb{C}^2)[n] \) this implies [33] Equation (2.4); \(\mu \mapsto \lambda' \)

\[
\sum_{n \geq 0} T^n \text{Ell}((\mathbb{C}^2)[n]; u, p, t_1, t_2) = \sum_{\lambda} T^{\lambda_1} \prod_{s \in \lambda} \frac{\theta(u t_1^{-a(s)-1}, t_2^{-1}; t_2^{a(s)+1}; p)}{\theta(t_1^{-a(s)-1}, t_2^{-1}; t_2^{a(s)+1}; p)}.
\]

Combining [A.1] with [A.3] we can derive an elliptic analogue of the Nekrasov–Okounkov formula as follows. Define a second set of integers \(C(m, \ell, n_1, n_2) \) by

\[
C(m, \ell, n_1, n_2) = \sum_{m \geq 0} \sum_{\ell, n_1, n_2 \in \mathbb{Z}} C(m, \ell, n_1, n_2) p^m u^\ell w_1^{n_1} w_2^{n_2}.
\]

From the invariance of the left-hand side under the substitutions \((u, t_1, t_2) \mapsto (u, t_2, t_1)\) and \((u, t_1, t_2) \mapsto (u^{-1}, t_1^{-1}, t_2^{-1})\) it follows that

\[
C(m, \ell, n_1, n_2) = C(m, \ell, n_2, n_1) = C(m, -\ell, -n_1, -n_2).
\]

By [A.2] and \(\theta(u; p) = (1 - u)(pu, pu^{-1}; p)_{\infty} \),

\[
\text{Ell}(\mathbb{C}^2, u, p, t_1, t_2) = \frac{(1 - ut_1^{-1})(1 - u^{-1}t_2)}{(1 - t_1)(1 - t_2)} \cdot \frac{(pu_1^{t_1^{-1}}, pu_2^{t_2^{-1}}, pu_1^{t_2^{-1}}; p)_\infty}{(pt_1^{t_1^{-1}}, pt_2^{t_2^{-1}}, pt_1^{t_2^{-1}}; p)_\infty} = \frac{(1 - ut_1^{-1})(1 - u^{-1}t_2)}{(1 - t_1^{-1})(1 - t_2^{-1})} \sum_{m \geq 0} \sum_{\ell, n_1, n_2 \in \mathbb{Z}} C(m, \ell, n_1, n_2) p^m u^\ell w_1^{n_1} w_2^{n_2} = \sum_{m \geq 0} \sum_{\ell, n_1, n_2 \in \mathbb{Z}} \sum_{i, j \geq 1} D(m, \ell, n_1 + i, n_2 - j) p^m u^\ell w_1^{n_1} w_2^{n_2},
\]

where

\[
D(m, \ell, n_1, n_2) := C(m, \ell, n_1 - n_2 + 1) - C(m, \ell, n_1, n_2) + C(m, \ell - 1, n_1, n_2 + 1) - C(m, \ell + 1, n_1 - 1, n_2).
\]

Comparison with [A.1] yields

\[
c(m, \ell, n_1, n_2) = \sum_{i, j \geq 1} D(m, \ell, n_1 + i, n_2 - j).
\]
Hence
\[
\prod_{m \geq 0} \prod_{i,j,k \geq 1} \prod_{\ell,n_1,n_2 \in \mathbb{Z}} \frac{1}{(1 - p^m T^k u^\ell t_1^{n_1} t_2^{n_2})^3} = \prod_{m \geq 0} \prod_{i,j,k \geq 1} \prod_{\ell,n_1,n_2 \in \mathbb{Z}} \frac{1}{(1 - p^m T^k u^\ell t_1^{n_1-1} t_2^{n_2+j-1})^3} \times \frac{1}{(1 - p^m T^k u^{\ell+1} t_1^{n_1} t_2^{n_2+j-1})^3}.
\]

Equating the right-hand sides of (A.1) and (A.3), using the above rewriting of the form, and finally replacing \((t_1, t_2) \mapsto (q^{-1}, t)\) yields
\[
\sum_{\lambda} \prod_{s \in \lambda} \frac{\theta(q^{a(s)+1} t^{l(s)}; q^{a(s)} t^{l(s)+1}; p)}{\theta(q^{a(s)+1} t^{l(s)}; q^{a(s)} t^{l(s)+1}; p)} = \prod_{m \geq 0} \prod_{i,j,k \geq 1} \prod_{\ell,n_1,n_2 \in \mathbb{Z}} \frac{1}{(1 - p^m T^k u^{\ell+1} t_1^{n_1-1} t_2^{n_2})^3} \times \frac{1}{(1 - p^m T^k u^{\ell} t_1^{n_1-1} t_2^{n_2+j})^3} C(km, \ell, n_1, n_2).
\]

Since the left-hand side of (A.4) trivialises to 1 when the elliptic nome \(p\) tends to 0,
\[
C(0, \ell, n_1, n_2) = \delta_{\ell,0} \delta_{n_1,0} \delta_{n_2,0}.
\]
In the \(p \to 0\) limit the above result thus simplifies to (1.4).

References

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
E-mail address: rains@caltech.edu

School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
E-mail address: o.warnaar@maths.uq.edu.au