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Supplementary Text 
 

S1: Kinematic source inversion by Ye et al., 2016a 
Ye et al., 2016a have applied a uniform kinematic source inversion method to a large 

number of large subduction zone thrust earthquakes of the past three decades. They use P-wave 
(and in a few cases SH-) displacement records in the frequency band 0.005-0.9Hz, and 
theoretical Greens functions assuming a 1D velocity model. Each earthquake is described as a 
rectangular plane array of sub-faults. On each sub-fault slip rate is parameterized as a sequence 
of overlapping triangles whose amplitudes are optimized to best explain the observed waveforms 
in a least-squares sense. The method imposes the following constraints: slip rate positivity, a 
higher bound on rupture velocity and rise time, and linear spatial smoothing (18). The STF of the 
2004 Mw 9.1 Sumatra earthquake is an exception in that it has not been inferred with the same 
code, but has been taken from (48).  

 

S2: Sampling log-normal distributions 

Supplementary Fig. S1 shows how well synthetic input STFs are recovered using different 
distribution center estimates if residuals are log-normally distributed. We construct 1e4 synthetic 
STFs for each of the seven magnitude bins using the functional form  yfit = µ*t*exp(-1/2*(λt)^2). 
We choose µ=1.25e18Nm/s2 and optimize λ to fit the functional form to the median observed 
STF in each bin. We multiply each STF with a random log-normal error term, 10^ε, with ε = 
N(0, σ2), and where σ2 has been measured from the real STF relative to the fitted curve of each 
bin. We then estimate the distribution center at each point in time by taking the median, the 
arithmetic mean and the arithmetic mean of the log-transformed amplitudes (Fig. S1). As 
expected, the median and the mean of the log-transformed values give an unbiased estimate of 
the distribution center, while the arithmetic mean is strongly biased towards higher amplitudes. 
This is because log-normal distributions are skewed towards large values, i.e. the deviations 
above the center are larger then the ones below the center. This bias is stronger for larger 
magnitude bins, which then results in an apparent magnitude-dependence of STF growth (Fig. 
S1B). In this study we use median statistics because they are reliable estimates independent of 
the distribution, and are particularly suitable for log-normal distributions. 

 

 



 

Fig. S1. Synthetic test for sampling log-normal STF amplitude distributions. At each 
point in time the distribution center is estimated using (A) medians, (B) arithmetic means and 
(C) arithmetic means of log-transformed values (right). While the median and log-means 
accurately recover the synthetic input function, the arithmetic mean leads to a biased estimate 
with over-estimated amplitudes and an apparent magnitude dependence of the initial slope. 

 

 

 

 

S3: Comparison of STF from three independent data sets 

Earthquake rupture source inversions are generally ill-posed and non-unique, and source 
inversion results can be affected by method-specific biases that are difficult to quantify. In order 
to evaluate if the STF models we use are affected in this way we make use of two alternative 
data sets that contain sufficiently large numbers of STFs, and that were also obtained by applying 
a consistent method to a large number of events. The two data sets are those of Hayes 2017, (20, 
in the following referred to as "Hayes17"), and that of Vallée et al., 2011 (21, "Vallée11"). We 
refer to the data set of Ye et al., 2016a as "Ye16". 

We first identified matching STFs in the three data sets in order to do a one-to-one STF 
comparison. We then repeated the main part of our STF analysis with the two alternative data 
sets, for a systematic robustness analysis of our results. This analysis reveals that the 
observations we report are stable across data sets and inference methods. In particular, all three 
data sets have i) linear and magnitude-independent moment rate growth, ii) a simple near-
triangular average shape that - after normalization - is virtually identical for all magnitudes in the 
studied range, and iii) log-normal deviations from a best fit model. 

 

Data sets 
All three STF data sets are derived from teleseismic data, but use different methods to 

infer the STFs. The Hayes17 STFs were generated with a kinematic source inversion procedure 
(REF) similar to that applied by Ye et al., 2016a, but Hayes17 used a different slip 



parameterization with smaller spatial grid cells and a single cosine slip rate function on each sub-
cell, leading to a non-linear inverse problem. This is in contrast to the linear inverse problem 
based on multi-window source parameterization used for the Ye16 data set. 62 of the events in 
the Ye16 data set are also contained in Hayes17 data set. The missing events are mostly events 
with Mw<7.5, which is a range of magnitudes outside the focus of the Hayes17 data set. The 
STFs from Vallée11, on the other hand, are computed via de-convolution of synthetic Greens 
functions, and in a fully automated fashion. For each recording station an apparent STF is 
computed, which is then averaged to obtain the actual STF. Of the 116 STFs in the Ye16 data set 
we found 99 matching events in the Vallée11 data set. 

 

Comparison of individual STFs 
Despite fundamental differences in how the STFs are computed, they only differ in terms 

of second-order details for a majority of cases. Fig. S2 shows all individual 116 STFs of the 
Ye16 data set, along with the matching STFs from the other two data sets. Apart from a small 
number of cases with large differences, such as the Mw7.2, 2007 Santa Cruz earthquake, or the 
failure of the Vallée11 method for the Mw9.1 2004 Sumatra earthquake, the STF from the 
different methods are very similar. For most earthquakes, the first-order STF shape is consistent 
between the three methods, and they have comparable amounts of high frequency oscillations. In 
some cases, the Vallée11 method seems to oversimplify the STF, in that it suggests a very simple 
STF while the other two methods suggest a more complicated rupture evolution (e.g. Mw7.2 
2003 New Zealand, Mw8.6 2005 Sumatra). The Hayes17 method often seems to produce long 
tails (e.g. Mw8.8 2010 Chile, Mw7.8 2010 N-Sumatra). Since the termination of the ruptures is 
typically not well constrained (see discussion in main manuscript), these tails are rather 
unrealistic. Other than that, the STFs are very similar. 

The fact that kinematic source inversions lead to highly similar STFs to those from a de-
convolution approach is remarkable, and speaks to the general stability of source time function 
estimates. This supports the general perception that the STF is one of the most robust features of 
finite source descriptions because it is a relatively direct mapping of the displacement 
waveforms. This is particularly true for situations where the dip is well constrained, such as in 
the large subduction earthquakes considered in this study. The fundamental ill-posedness of 
source inversion problems may manifest itself more strongly in other aspects of source 
inversions, in particular in the spatial distribution of slip.  
  



Fig. S2: Comparison of individual STFs from 3 different methods. Of the 116 STFs from the 
Ye16 data set, 99 are also contained in the Vallée11 data set, and 62 in the Hayes17 data set. The 
STFs generally agree very well across methods and show the same first order shape. No method 
appears to be producing systematically steeper onsets, or systematically more skewed shapes. 
The Hayes17 method often produces rather long low amplitude tails that are not supported by the 
other two methods.  



 
Fig. S2, continued. 

  



 
Fig. S2, continued. 



Inferring the median STF with the three data sets 
We repeated the main body of our STF analysis with the matching STFs of the Vallée11 

(99 STFs) and the Hayes17 (62 STFs) data sets. The median STFs in the seven magnitude bins 
for all 3 data sets lead to the near-triangular typical STF shape (Fig. S3A-C). The largest 
difference is that the median Hayes17 STFs (Fig. S3C) are more skewed towards early times and 
feature longer tails than the other two data sets. Apart from this discrepancy, all three data sets 
show the same main features that our analysis reports: 

 
• Larger magnitudes start neither more nor less impulsively than smaller ones. Large 

earthquakes started as smaller ones do, but do not stop as quickly. This means, there will not 
be strong rupture predictability. 

• The moment rate growth is approximately linear all the way until peak moment rate is 
reached; this is in strong contradiction to often-used standard models, which predict 
quadratic growth. 

• After normalization, the median STF for different magnitudes collapse onto a single near-
triangular shape, suggesting scalability between small and large ruptures. 

 

The largest difference is that, while the median STFs from the Ye16 and the Vallée11 
data sets are fairly symmetric, those of Hayes17 are somewhat more skewed towards early times 
and feature longer tails (Fig. S3 E&F). This asymmetry likely stems from the prominent low-
amplitude tails we have observed with the individual STFs of Hayes17 (Fig. S2). In order to 
verify this presumption we truncated the Hayes17 STFs when the corresponding STFs from the 
other two data sets ended. We measure the time of the last non-zero sample of the Ye16 and, if 
available, Vallée11 STFs and use the longer of the two for the truncation. In other words, we 
suppress the tails of the Hayes17 STFs if they are not supported by at least one of the other two 
methods. Note that for the truncation we use the duration estimate of when the STFs reach 
amplitude 0, rather than the centroid times, to be conservative and truncate as little as possible.  

Indeed, after the truncation, the median STFs (Fig. S3 G&H) are no longer more 
asymmetric than those of the other data sets, and share the same near-triangular median STF 
shape. This confirms that it is indeed the badly constrained low amplitude tails that caused the 
stronger asymmetry. The truncated Hayes17 STF on average reach peak moment rates between 
35-55% of total rupture durations, as is the case with the other two data sets. For normalizing the 
STFs in Fig. S3H we used twice the centroid time, rather than the truncation duration, in order to 
be consistent across all data sets. 

Note that, owing to the different sizes of the three data sets, and their different magnitude 
ranges, the median STFs cannot always be compared directly. The smaller number of STFs in 
the Hayes17 data set (roughly half the size of the Ye16 data set) means that the 20 nearest 
neighbors of our binning scheme cover a wider magnitude range. Furthermore, the lower 
magnitude bins are not well represented in the Hayes17 data set, because the data set has few 
events with Mw<7.5. One should consider the median Mw for the bins, rather than the target Mw 
(both are given in the figure legends).   

 



 

Fig. S3: Median STFs for the different data sets. Equivalent plots to Fig. 2 in main 
manuscript. The number of STFs in each data set is given in title. (A & B) Main data set used in 
this study, by Ye et al., 2016a. (C & D) Data set of Vallée et al., 2011, GJI. (E & F) Data set of 
Hayes et al., 2017, EPSL. (G & H). Data set of Hayes et al., 2017, EPSL with badly constrained 
low-amplitude tails removed. All data sets exhibit linear and magnitude independent STF 
growth, near-triangular STF shapes, and magnitude-independent normalized shapes. For detailed 
caption, see Fig. 2 in main manuscript. 

 

 

Parameterization of individual STF with the three data sets 

When we fit the functional form yfit = µ*t*exp(-1/2*(λt)2) to each individual STF, we 
find very similar optimal parameters across the three data sets (Fig. S4). After seeing the general 
similarity of the individual STFs (Fig. S2) this is not surprising. This exercise shows that the fits 
between all three data sets are not just similar, but indeed statistically consistent in that the 
difference between individual bootstrap realizations are larger than the differences between data 
sets. All three data sets are consistent with the hypothesis that the initial moment rate growth is 
not different for smaller and larger events. Furthermore, in all data sets the scaling exponent 
between seismic moment and duration is higher than 1/3 (Ye16: 0.41, Vallée11: 0.46, Hayes17: 
0.48, Hayes17, truncated: 0.46).  

 



 
Fig. S4: Optimized parameters for the different data sets: Ye16 (A-C), Vallée11 (D-

F), Hayes17 (G-I) and Hayes17 with truncated tails (J-L). The trends from all data sets are 
consistent with each other in that the variability between data sets is smaller than the bootstrap 
variability for any individual data set. For detailed caption, see Fig. 3 in main manuscript. 

 



 

Deviations from best-fit model  
Similarly, if we compare the deviations of the individual STFs from the best-fit model 

(Fig. S5), the results from the three data sets are consistent. In particular, the deviations are 
multiplicative and Gaussian, with standard deviations that do not change substantially between 
magnitude bins. The average standard deviations are slightly larger for the Vallée11 (0.49) and 
the Hayes17 data (0.42, 0.42) than those of the Ye16 data (0.38).  

Most of the Hayes17 STFs have negative residuals at the very beginning, suggesting that 
the observed STFs have lower amplitudes than the best-fit STF. This likely is a consequence of 
the cosine slip rate parameterization employed by Hayes17. While this parameterization requires 
only a single parameter per sub-fault, this comes at the cost of reduced flexibility (49). The shape 
of the slip rate function is prescribed and cannot be adapted to best match the observed shape. 
The multiple-time-window approach of Ye et al., 2016a, on the other hand, comes with more 
flexibility to match a wide range of observed shapes. Since both the multiple-time-window 
approach of Ye16, as well the free form approach of Vallée11 agree well with the initial part of 
the functional form, we conclude that those descriptions are more reliable for the purpose of 
analyzing STF onsets. 

 

  Summary 
The systematic comparison of the STFs from the three different data sets shows that the 

STFs are well constrained, with very similar properties across the data sets. This supports the 
common perception that the STFs are among the best-resolved aspects of earthquake source 
descriptions. In particular the fact that fundamentally different methodologies (kinematic source 
inversion vs. Greens function deconvolution) lead to very similar STF demonstrates the 
robustness of the estimated STFs. We therefore conclude that the observations we report (near-
triangular STF shape, linear and magnitude-independent moment rate growth, and multiplicative 
Gaussian moment rate deviations) are stable and are not systematically affected by the properties 
of the inversion methodology of Ye et al. 2016a. 

 



 
Fig. S5: Residuals from best-fit STFs for the different data sets: Ye16 (A-C), 

Vallée11 (D-F), Hayes17 (G-I) and Hayes17 with truncated tails (J-L). For detailed caption, see 
Fig. 4 in main manuscript. 

 
  



 

S4: Synthetic resolution tests for inversion slip parameterization 

There is the possibility that some of the observed STF patterns are affected by artifacts from 
the slip parameterization used in the kinematic source inversion procedure. For example, the 
imposed higher bound on rupture velocity, that defines the earliest point at which any given 
subfault can start rupturing, could bias the shape of the initial part of the MRF. In order to 
understand the effects of the imposed fault and slip parameterizations on the STFs we perform 
synthetic tests with a self-similar pulse as input model.  

We test the effect of source parameterization on source recovery. This test does not address 
the effects introduced by wave propagation and limited observational sampling at the Earth’s 
surface. We build an earthquake source scenario based on the self-similar pulse model by 
Nielsen and Madariaga (2003). The model provides a continuum space-time distribution of slip 
rate, 𝑣𝑣(𝒙𝒙, 𝑡𝑡). In order to avoid the slip rate singularity at the rupture front we replace the 
amplitudes during the first 0.5s with a linear ramp (Fig. S2A). In the source inversion, the 
modeled slip rate in each fault cell is spatially uniform and its time-dependence is parameterized 
as a linear combination 𝑣𝑣�(𝑡𝑡) = ∑ 𝑣𝑣�𝑘𝑘𝑏𝑏𝑘𝑘(𝑡𝑡) of triangular temporal basis functions 𝑏𝑏𝑘𝑘(𝑡𝑡). Our goal 
here is to determine the coefficients 𝑣𝑣𝑘𝑘 that provide the best fit to the true slip rate 𝑣𝑣(𝒙𝒙, 𝑡𝑡) in a 
least-squares sense. This can be viewed as an idealized source inversion problem in which slip 
rate data is available everywhere on the fault at all times, as if the fault surface were covered by a 
very dense seismic network. This scenario provides the best possible model one could hope for 
using the assumed source parameterization. Note that this test only assesses the effect of the slip 
parameterization and does not cover other aspects of the inversion procedure, such as 
regularization, or the limited spatial coverage of recording stations. 

  
The problem is solved by applying the following procedure in each cell: 

1. Compute the cell-averaged slip rate: 𝑣̅𝑣(𝑡𝑡) = ∬ 𝑣𝑣(𝒙𝒙, 𝑡𝑡)𝑑𝑑𝑥𝑥2. 

2. Compute the vector 𝒗𝒗� whose i-th component is  𝑣̅𝑣𝑖𝑖 = ∫ 𝑣̅𝑣(𝑡𝑡)𝑏𝑏𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑 

3. Compute the matrix 𝐴𝐴 whose components are 𝐴𝐴𝑖𝑖𝑖𝑖 = ∫ 𝑏𝑏𝑖𝑖(𝑡𝑡)𝑏𝑏𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑. 

4. Find the vector 𝒗𝒗� of coefficients 𝑣𝑣�𝑘𝑘 that minimize the norm of residuals 𝜒𝜒2 =
∫ �∑𝑣𝑣�𝑗𝑗𝑏𝑏𝑗𝑗 − 𝑣̅𝑣�

2
𝑑𝑑𝑑𝑑 by solving the linear problem 𝐴𝐴𝒗𝒗� = 𝒗𝒗� 

Derivation: Minimization of the cost function 𝜒𝜒2 with respect to the coefficients 
𝑣𝑣�𝑘𝑘 requires 𝜕𝜕𝜒𝜒2

𝜕𝜕𝑣𝑣�𝑖𝑖
= 0 for all i. This condition can be written as 

𝜕𝜕𝜒𝜒2

𝜕𝜕𝑣𝑣�𝑖𝑖
= ∫ �∑𝑣𝑣�𝑗𝑗𝑏𝑏𝑗𝑗 − 𝑣̅𝑣�𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑 = � ∫ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑑𝑑𝑑𝑑

𝑗𝑗

× 𝑣𝑣�𝑗𝑗 − ∫ 𝑣̅𝑣𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑 = 0 

That is 𝐴𝐴𝑖𝑖𝑖𝑖𝑣𝑣�𝑗𝑗 − 𝑣̅𝑣𝑖𝑖 = 0. 

 



Fig. S6A shows how the synthetic local slip rate function on a sub-fault is approximated 
by the sum of a sequence of overlapping triangles. The initial sharp peak is not well 
approximated because the width of the triangles is fixed to 4s, which limits the temporal 
resolution. Fig. S2B shows the global fitted source time function. Although the fitted function is 
relatively rough, owing to the coarse spatial resolution and to the relatively large width of the 
triangles, the overall shape of the synthetic slip rate function is well recovered. In particular, 
there is no apparent linearization, which suggests that the observed linear moment rate growth is 
a real source characteristic, rather than an artifact from the slip parameterization. 

Furthermore, we find that the coarse spatial grid leads to a very poor spatial resolution in 
the first 5-10s. During the first ~4s only the sub-patch that hosts the hypocenter can be used to 
explain the observed waveforms. This can be seen from the kink of the STFs in Fig. 1A at ~4s 
which is when the next closest set of sub-patches is "activated" by the passing rupture front. 
After that, the number of activated sub-patches grows rapidly and the slip rate parameterization 
becomes highly flexible. Thus, while the temporal resolution is much better than the spatial 
resolution, inferred STF amplitudes at <10s should be interpreted with caution. This is 
particularly important for the smallest events of the data set (Mw~7.0) for which this time span 
corresponds to a large fraction of the total rupture duration.   

 

 

Fig. S6: Comparison of synthetic input signals and recovered output. (A) Synthetic 
input slip rate function for single sub-fault patch with singularity replaced by linear ramp (black 
line) and approximation by sum of sequence of six isosceles triangles (red dashed line). (B) 
Synthetic input moment rate function (blue line) and optimized solution (red line) from adding 
slip rate functions on individual sub-fault patches. 
 

 

 

  



S5: Source time functions for 12 Mw>=8 events 
Arguably the most important earthquakes, with respect to their societal relevance, are the 12 

Mw>=8 earthquakes. These events are not accurately represented by any of the magnitude bins 
(Fig. 1C). The one feature that all of these events have in common is that they, at some point, 
develop moment growth rates that are much larger than the typical STFs growth rates. During 
such periods, either the rupture area or the slip rates or both must grow at a rate that is much 
higher than what is typically observed. The median initial growth rate measured with all 116 
STFs is ~1.25x1018Nm/s2 (Fig. 3A). This rate also corresponds to the slope of the median STF 
curves in Fig. 2A. Fig. S7 shows these 12 STFs and highlights periods during which moment 
acceleration exceeds 4 times the moment acceleration of the median STF. Although there are 
also smaller events that temporarily exhibit such high growth rates (e.g. 2007 Mw7.9 Sumatra, 
2012 Mw7.5 Mexico, 2010 Mw7.3 Vanuatu) this behavior is much more rare in those magnitude 
ranges. In normalized form, however, these events follow the same shape as the smaller events 
(Fig. 2), and their residual ratios with respect to the simple base model are on the same order as 
those of the smaller events.   

 

Fig. S7: STFs of the 12 events with Mw>=8.0 and median STF in 7 magnitude bins. 
Red lines mark episodes in which moment acceleration exceeds 5x10^18Nm/s^2, i.e. 4 times the 
median growth rate of 1.25x10^18Nm/s^2. Identical figures for all 116 earthquakes are provided 
as electronic supplement. 

 



 

S6: Moment-duration scaling from alternative data sets 

Given the large scatter in the relation between observed seismic moments and rupture 
durations, a wide magnitude range is necessary to infer a reliable trend between the two 
quantities. The source durations of the data set used in this study are consistent with a relation of 
the form T~M0

p with an exponent p=1/3 (R2=0.76) or p=1/2 (R2=0.70), Fig. S8. While the 
former scaling is well established with abundant data for smaller magnitude events, it is not clear 
how well extends to large magnitudes. The near-triangular shape of the median STFs observed in 
this study (Fig. 2) suggests that the slope should be 1/2.  

For resolving the issue a data set with a wider magnitude range is necessary. However, 
most seismological methods are applicable only within a specific magnitude range. In particular, 
methods that rely on teleseismic long-period ground motion only work for sufficiently large 
events (M~>7). Methods that work with local data, on the other hand, can work well for smaller 
events, but fail for the large events. As a consequence, existing data sets do not constitute a 
strong and convincing test for the presumed scaling break at M~7.0. 

 
Fig. S8: Centroid durations and best-fit models with imposed slopes of 1/3 and 1/2. The data 
is consistent with either scaling, with corresponding R2 values of 0.76 (slope 1/3) and 0.70 (slope 
1/2).  

 

The Global Centroid Moment Tensor (GCMT) data, for example, is based on long period 
ground motion (>1s) and it can therefore only resolve source durations for events that are 
substantially longer than a few seconds. In Fig. S9 we compare the centroid times reported in the 
GCMT catalog to those estimated with the STFs of Ye et al., 2016a. From the GCMT catalog we 
have selected all shallow events since 1995 with centroid depths between 11 and 40km. We 
exclude the shallowest events because their depths are notoriously poorly constrained by long 
period data, and are set to a default value. The centroid times we estimate with the STFs of Ye et 



al., 2016a agree very well with those of the GCMT catalog. For smaller magnitudes, Mw<7.0, 
however, the GCMT estimates flatten out at ~10s, suggesting that these estimates are not 
accurate because they are affected by the above described resolution issues. As a consequence, 
the scaling of centroid times with seismic moment for events with Mw <7 are not assessed 
reliably with such data. This demonstrates that existing long period duration estimates cannot be 
used to test the scaling break hypothesis in a rigorous way.   

 

  
Fig. S9: Comparison of duration estimates of this study with those of Harvard 

GCMT catalog. The centroid durations estimated with the STFs of Ye et al., 2016a are 
consistent with those reported in the GCMT catalog. For smaller magnitudes than Mw ~7, 
however, the GCMT estimates become unreliable because they are affected by resolution issues. 

 

Alternatively, we can compare the source duration estimates to those inferred with 
frequency-domain approaches. Corner frequencies of seismic amplitude spectra are inversely 
proportional to rupture durations and, for an assumed rupture model, the actual durations can be 
computed (50). In the model assumed by (33) and (35), the duration is related to the corner 
frequency f𝑐𝑐 as T = k/(0.9 f𝑐𝑐) with k = 0.38. If we compare our source duration estimates, 2T𝑐𝑐, 
to those of the two corner frequency studies (Fig. S10) we find that the corner frequency 
estimates give a scaling exponent of exactly 1/3, but that the durations are systematically offset 
from our time-domain estimates. Apparently, the frequency-domain estimates are not directly 
comparable to the time-domain estimates. A plausible candidate explanation for this discrepancy 
is that the model that relates duration and corner frequencies assumes a self-similar rupture, 
whereas the linear STF growth reported in this study suggests that this model is not applicable 
for large subduction earthquakes. By itself, the corner frequency estimate data is not sufficient to 
test the scaling break either, because it contains very few events above the presumed scaling 
break at Mw ~7.0. Notably, the study that extends the approach of the two corner frequency 
studies to large subduction zone earthquakes (35) finds the same scaling break that we report 



from M0
1/3 to M0

1/2 at Mw ~7.0. However, owing to limitations of the employed methods they 
had to change methods at just the critical Mw ~7.0. 

For a rigorous and strong test of the proposed scaling break it would be desirable to have a 
rupture duration data set that is compiled with a consistent method applicable to a wide enough 
magnitude range on either side of the break. At present, at least two lines of evidence suggest 
that the scaling break exists, including corner frequency estimates (36) and the typical shape of 
subduction zone STFs (this study). 

 
Fig. S10: Comparison of duration estimates of this study with inverse corner 

frequencies estimates. Inverse corner frequencies from Allmann and Shearer, 2009, JGR, and 
from Trugman and Shearer, 2017, JGR with a least squares fit through the joined data set. The 
slope of the best-fit curve equals 1/3. The centroid time estimates from this study are offset and 
systematically larger than the trend observed from the corner frequency estimates. 

 

 

 

 

 

 
  



S7: Fit and amplitude spectra of Brune and proposed STF model 

While the functional form yfit = µ*t*exp(-1/2*(λt)φ), with φ=2 provides an excellent fit to 
the median STF, the form used by Brune 1970, i.e. the same form with φ=1, does not (Fig. S11). 
In order to reach the observed peak STF amplitudes a much higher initial slope is necessary than 
what is observed. The bad fit with the model of Brune 1970 is not surprising since it corresponds 
to the approximate far field solution for an instantaneous spherical pressure source, whereas the 
earthquakes considered here have extended finite source durations.   

 

 

Fig. S11. Least-squares best fit of the functional form to the median STFs with 
different values of φ, and corresponding amplitude spectra. (A) using φ=1 (Brune 1970, 27) 
and (B) φ=2 (this study, and 25). While the latter leads to an excellent fit, the Brune model 
cannot be fitted well. If φ is left as a free parameter, together with µ and λ, its optimal values for 
the seven magnitude bins are 2.73, 2.27, 1.54, 2.28, 2.07, 1.93, 1.87, suggesting that the data 
indeed requires φ~2. (C) The amplitude spectra of both functions fall off with ω-2 at high 
frequencies but the function with φ=2 has an intermediate frequency range with a steeper fall-off. 
Note that, since these median STFs represent strongly smoothed versions of the actual STFs, 
their spectra lack a substantial fraction of their total signal energy. For a direct comparison with 
observed spectra, and for considerations of radiated energy, the lacking high frequency energy 
would have to be added with a noise model. 

 
  



 

 

Fig. S12. STFs of the three events that are excluded as outliers from the residual 
analysis in Fig. 4. The three events feature two or more episodes of strong moment rate growth 
and therefore are poorly approximated with the simple functional form yfit = µ*t*exp(-
1/2*(λt)2).   

 
  



 

 

 

 

 Fig. S13: STF Fourier amplitude spectra. The amplitude spectra of the individual STFs 
(thin lines) and the median spectrum in each of the seven magnitude bins (thick lines) are 
shown for (A) the actual STFs yobs(t), (B) the fitted smooth models yfit(t), and (C) for the 
residual ratios ∆yr(t) = yobs(t)/yfit(t). The spectra of the observed STF fall off with a slope of 
less than 2, as had previously been noted by (17, 18). At all frequencies signal energy 
increases with magnitude. The smooth models, on the other hand, have approximately 
equal amplitudes for all magnitudes at higher frequencies (≥0.03Hz). The higher 
amplitudes for the larger magnitudes in the observed STF spectra are caused by the 
oscillations around the smooth model, which are higher for larger magnitude events (as 
demonstrated by constant residual ratios, cf. Fig. 4 in main text). Owing to continuous 
moment rate accelerations and decelerations, high frequency seismic radiation is emitted 
throughout the rupture process. The residual ratios for larger magnitude events have 
higher low-frequency asymptotes because of their longer signal duration. At higher 
frequencies the amplitude spectra of the residual ratios are characterized by a distinct 1/f 
trend that is on average near-identical for all magnitudes. This 1/f trend is indicative of a 
process that lies somewhere between purely random white noise with no temporal 
correlations (and a constant amplitude spectrum), and a brown noise process in which 
temporal correlations are strong (with a 1/f2 spectrum). In order to compare the STF 
amplitude spectra of the smooth models to observed source spectra, and for considerations 
of radiated energy, an appropriate 1/f noise model has to be considered.  
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