
Geophysical Research Letters

The influence of meridional ice transport on Europa’s ocean
stratification and heat content

Peiyun Zhu1 , Georgy E. Manucharyan2 , Andrew F. Thompson2 ,

Jason C. Goodman3, and Steven D. Vance4

1Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA, 2Department of
Environmental Science and Engineering, California Institute of Technology, Pasadena, California, USA, 3Department of
Physics, Wheaton College, Norton, Massachusetts, USA, 4Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, USA

Abstract Jupiter’s moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal
heating and rotating convection in the ocean may drive a global overturning circulation that redistributes
heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the
previously unconstrained influence of ocean-ice coupling on Europa’s ocean stratification and heat
transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a
meridional ice transport forced by the differential ice shell heating between the equator and the poles.
We provide analytical and numerical solutions for the layer’s characteristics, highlighting their sensitivity to
critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at
the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result,
the freshwater layer permits relatively warm deep ocean temperatures.

1. Introduction

Jupiter’s moon Europa is one of multiple confirmed ocean worlds [Nimmo and Pappalardo, 2016]. Evidence
for an extant subsurface ocean comes from measurements by the Galileo spacecraft indicating an induced
response to the changing direction of Jupiter’s magnetic field, consistent with the existence of an electri-
cal conductor near the surface [Kivelson et al., 2000]. Based on gravity measurements, the rocky seafloor is
80–170 km below the surface [Anderson et al., 1998]. The ocean is in communication with the surface on
timescales shorter than 100 Myr, as indicated by Europa’s complex surface geology [e.g., Pappalardo et al.,
1998] and sparsity of craters [Zahnle et al., 2008]. This interaction controls the flux of surface-derived oxidants
into the ocean [Vance et al., 2016] and influences the ocean’s dynamics in ways that have not been thoroughly
evaluated to date. The ocean’s composition, stratification, and circulation influence chemical exchange, such
that an understanding of Europa’s dynamical properties could help to assess whether Europa can support life
[e.g., Schulze-Makuch and Irwin, 2002; Irwin and Schulze-Makuch, 2003].

Geothermal heat from the seafloor and loss of heat through the ice shell are critical mechanisms driving
Europa’s ocean circulation. Buoyant plumes confined by Coriolis forces may act to regionally transmit heat
and materials directly between the seafloor and ice [Thomson and Delaney, 2001; Goodman et al., 2004; Vance
and Goodman, 2009]. However, larger-scale circulation features may develop through turbulent convection
and through rotational constraints [Travis et al., 2012; Soderlund et al., 2014]. Critically, these prior studies have
focused exclusively on the ocean and prescribed either a uniform surface temperature or a spatial distribution
of surface heat fluxes.

The pole-to-equator temperature variation on Europa (∼40 K) [Spencer et al., 1999; Rathbun et al., 2010] could
support meridional variations in ice thickness that will also depend on the heat flux at the ocean-ice inter-
face. The meridional ice thickness variations are estimated to be at most 3 km and zonal variations due to
long-wavelength topography less than 7 km [Nimmo et al., 2007]. Any variations in ice thickness will establish
a pressure gradient, which can induce ice transport [Vance and Goodman, 2009]. This can occur by two mech-
anisms: the so-called ice pump [Lewis and Perkin, 1986] and down-thickness gradient ice flow [Goodman and
Pierrehumbert, 2003].
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Over sufficiently long timescales, thicker ice at the poles implies continuous transport of ice equatorward. At
the equator (poles), the addition (removal) of ice requires preferential melting (growth) to maintain steady
state conditions. In a weakly turbulent and saline ocean, freshwater fluxes at the equator can dilute the upper
ocean to form a stable layer with lower salinity than the deep ocean, hence defined as a “freshwater” layer. In
a dilute ocean [e.g., Zolotov and Shock, 2001; McKinnon and Zolensky, 2003] with buoyancy depending mainly
on temperature, a freshwater lens can also be stable due to the negative thermal expansion coefficient of
water for hydrostatic pressures less than∼25 MPa (Europa ice thickness less than∼17 km) [Melosh et al., 2004].

The strength and turbulent properties of Europa’s ocean circulation are uncertain. For example, Soderlund
et al. [2014] demonstrates the possibility for an energetic convectively driven overturning ocean circulation
that enhances the equatorial ocean heat fluxes. Other studies suggest alternative, less vigorous circulation
regimes [e.g., Vance and Goodman, 2009; Jansen, 2016] with lower turbulent levels. However, these studies do
not account for freshwater fluxes associated with the freezing/melting of the ice. Thus, the existence of the
salt stratification of Europa’s ocean remains an open question.

Here we introduce a conceptual, two-column model to quantify the physical processes that may give rise
to a freshwater layer beneath Europa’s ice shell. Using this model, we explore the sensitivity of the layer to
key ocean characteristics, including its average salinity, the strength of the upper ocean turbulence, and the
equator-to-pole ocean heat flux. The presence of a freshwater layer under the ice can suppress the efficiency
of heat exchange with the deep ocean due to a buoyancy contrast at the interface between the layer and the
deep ocean. We explore under which conditions this layer can influence deep ocean temperatures.

2. Model Description

Our approach is to develop a minimal model that captures the essential dynamics leading to the forma-
tion of compositional stratification in low-latitude regions of Europa’s ocean. An extreme but still insightful
truncation is to consider two vertical columns, one at the equator (low latitudes) and one at the pole (high
latitudes), to represent meridional gradients in ice thickness and ocean properties (Figure 1). An advantage of
this approach is the derivation of analytical scalings that indicate the sensitivity (e.g., power law dependence)
of the freshwater layer characteristics to Europa’s properties.

2.1. Ice Thickness Balance
The global heat budget governs the distribution of ice shell thickness. In our model, the positive heat flux
from the ocean into the ice is transferred vertically through the ice by thermal diffusion. The temperature at
the ocean-ice interface is fixed at the freezing point Tf , which may vary with pressure and salinity.

The ocean-ice heat flux Focn at the equator and the poles may be different, reflected in a parameter ΔFocn =
Fe

ocn − Fp
ocn; throughout this paper superscripts e and p denote variables of the equator and the pole columns,

respectively. In studies by, e.g., Goodman et al. [2004] and Jansen [2016], the ice is considered to be in a steady
state governed by a one-dimensional vertical balance. However, positive lateral gradients in ice thickness will
induce an equatorward ice or freshwater transport Fh (m s−1) that results in ice formation at high latitudes and
freshwater accumulation at low latitudes. Two physical mechanisms give rise to Fh: (i) down-gradient thickness
transport [Goodman and Pierrehumbert, 2003] and (ii) the ice pump, which arises from the dependence of
Tf on pressure (ice thickness) and composition [Lewis and Perkin, 1986]. By introducing Fh, we couple the ice
dynamics to the ocean and are able to quantitatively explore their interactions.

The ice thickness balance is governed by

L
dhe

dt
=

𝜅ice(Tf − T e
s )

he
0

+ LFh −
(

Focn + ΔFocn

)
, (1)

L
dhp

dt
=

𝜅ice(Tf − T p
s )

he
0 + Δh

− LFh − Focn, (2)

where he and T e
s (hp and T p

s ) are the instantaneous ice thickness and surface temperature at low (high) lati-
tudes, 𝜅ice is the thermal conductivity of ice, L is the latent heat of ice fusion (Table 1), he

0 is the equilibrium
ice thickness at the equator, and Δh = hp − he > 0 is the pole-to-equator difference in the ice thickness. From
left to right, the terms on the right-hand side of equations (1) and (2) represent the heat loss due to diffusion
through the ice, the thickness flux caused by ice transport, and the ocean-ice heat flux.
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Figure 1. Model schematic depicting a (left) low-latitude and (right) high-latitude column. The uppermost (gray) boxes
represent the ice shell. Heat is exchanged from the ocean to the ice, Focn (W m−2), and is transported away from the
ocean-ice interface by diffusion. The freshwater layer is denoted in blue, with salinity Se , temperature T e, and depth d.
Red lines indicate heat transport, green lines indicate salt transport, and the purple lines indicate the transport of both
temperature and salinity. Fb is the geothermal heat flux from the seafloor.

Relative variations in Europa’s ice thickness (Δh∕he ∼ 20% [Nimmo et al., 2007]) are much smaller than the
variation of surface temperature (ΔT∕T e ∼ 110%, Table 1). Thus, we can simplify the ice thickness equations
by ignoring Δh in (2). The steady state thickness flux can then be estimated from (1) and (2) as

Fh =
𝜅ice(T e

s − T p
s )

2h0L
+

ΔFocn

2L
. (3)

Thus, the thickness flux is energetically constrained by the meridional gradients in both ice surface temper-
ature and ocean-ice heat fluxes. The two factors positively contribute to the transport if the ocean-ice heat
fluxes are greater at the equator as in Soderlund et al. [2014]. In contrast, a reduction (or disappearance) of the
thickness flux occurs when the ocean-ice heat flux is greater at the poles, as argued by Jansen [2016].

This lateral ice transport is a key process that leads to freshwater accumulation at low latitudes. The resulting
freshwater flux at the top of the ocean, FS, is given by

FS = S0
𝜌i

𝜌
Fh, (4)

where S0 is the average salinity of Europa’s ocean, and 𝜌i and 𝜌 are densities of ice and water, respectively
(Table 1). Next, we examine the depth of the freshwater layer, which depends on the ocean’s circulation.

2.2. Salt Balance in a Freshwater Layer
We simplify the meridional distribution of the freshwater layer by considering a layer with depth d in the
low-latitude column and no freshwater layer in the high-latitude column. Thus, the ocean is partitioned into
three regions or boxes (Figure 1), overlaid by the ice shell. The freshwater layer is represented by the upper
equatorial box, with salinity Se. We assume a uniform salinity S0 for the rest of the ocean, which implies a
circulation strong enough to keep the lower ocean well mixed and no additional sources of salt for the ocean.

To balance the melting at low latitudes due to the equatorward ice transport, ice forms (and rejects brine) at
high latitudes. This is equivalent to a lateral salt flux out of the freshwater layer (Fs in Figure 1). Additionally,

ZHU ET AL. FRESHWATER BENEATH EUROPA’S ICE SHELL 5971



Geophysical Research Letters 10.1002/2017GL072996

Table 1. Freshwater Layer Model Parameters and Their Approximate Ranges

Symbol Description Value Range Unit

T e
s

a Surface temperature at the equator 110 - K

T p
s

a Surface temperature at the pole 52 - K

𝜅ice Thermal conductivity of ice 2 - W m−1K−1

L Latent heat of fusion of water 3.3 × 108 - J m−3

h0 Equilibrium ice thickness at the equator 10 - km

𝜌 Density of pure water 1000 - kg m−3

𝜌i Density of ice 920 - kg m−3

CP Specific heat capacity of water 4000 - J kg−1 K−1

𝛽 (NaCl)b Haline contraction coefficient of aqueous NaCl 7.7 × 10−4 (6.4–7.8) ×10−4 psu−1

𝛽 (MgSO4)c Haline contraction coefficient of aqueous MgSO4 8.3 × 10−4 (6.6–10) ×10−4 psu−1

𝛼∕𝛽 (NaCl)b Ratio of 𝛼 to 𝛽 for NaCl 0.10 0–0.5 psu K−1

𝛼∕𝛽 (MgSO4)c Ratio of 𝛼 to 𝛽 for MgSO4 0.18 0–0.42 psu K−1

g Gravitational acceleration on Europa 1.3 - m s−2

𝜅 Effective diffusivity 10−4 - m2 s−1

Fb
d Geothermal heat flux 0.01 0.01–0.1 W m−2

aTravis et al. [2012].
bMcDougall and Barker [2011].
cVance and Brown [2013].
dLowell and DuBose [2005]; Vance and Brown [2013].

turbulent salt and heat transport may occur across the interface between the layer and the deep ocean in
response to the vertical velocity shear of a mean flow circulation, as suggested by Soderlund et al. [2014]. In
a steady state, Fs is balanced by turbulent mixing and diffusion of salt from the deep ocean. This balance can
be written in the following way:

(cu∗ + 𝜅

d
)ΔS = (S0 − ΔS)

𝜌i

𝜌
Fh, (5)

where c is the entrainment rate (or the efficiency of turbulent mixing) at the interface of the freshwater layer
and the deep ocean, u∗ is the characteristic velocity of turbulent fluctuations at the interface, and 𝜅 is an
effective diffusivity representing tracer transport due to other processes (e.g., molecular diffusion or mixing
by convecting plumes).

Vertical stratification suppresses the efficiency of turbulent transport, and the entrainment rate is commonly
parameterized as a power law function of the bulk Richardson number, Ri. Following, e.g., Kit et al. [1980] and
Manucharyan and Caulfield [2015], we assume the following dependencies:

c = 1.5Ri−3∕2, Ri =
dg𝛽ΔS

u∗2,
,ΔS = S0 − Se. (6)

The Richardson number defines the ratio of the vertical stratification (reflected by a salinity contrast ΔS) to
the vertical velocity shear and indicates (for Ri ≫ 1) the stratification’s ability to suppress turbulent mixing
(equation (6)). Vertical heat transport at the ice-ocean interface at low latitudes is parameterized in the same
way, i.e., Fe

ocn = 𝜌CPciceu∗(Te − Tf ), where cice is the entrainment rate at the ice-ocean interface at low latitudes
and has a fixed value.

Since the freshwater layer is in direct contact with the ice, its near-freezing temperature and low salinity have
opposing effects on buoyancy. The relative importance of salinity and temperature is expressed through the
ratio 𝛼ΔT∕𝛽ΔS, where 𝛽 and 𝛼 are the saline and thermal expansion coefficients, respectively (Table 1). When
this ratio is small, we can approximate the buoyancy contrast as Δb = g𝛽ΔS, which yields the relationship for
Ri in (6). Combining the definition of ΔS in (6) with (5), c, Ri, and ΔS can be determined as functions of average
salinity S0, freshwater layer depth d, and the turbulent velocity u∗. Below, we explore the parameter regimes
under which the freshwater layer can affect the stratification and heat content of Europa’s ocean.
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3. Results
3.1. Meridional Thickness Flux of Ice
We assume that in steady state, the polar ocean-ice heat flux is equivalent to the geothermal heat flux at the
seafloor (i.e., Fp

ocn = Fb). A range of Fb has been applied in studies of Europa’s ocean (section 4; Table 1). Here
we adopt a reference value of Fb = 0.01 W m−2. The thickness flux Fh depends on equator-to-pole differences
in the ice surface temperature and the heat flux at the ocean-ice interface (equation (3)). If we assume the
equatorial heat flux to be 40% larger than at the poles (i.e., ΔFocn∕Fp

ocn = 0.4) as in Soderlund et al. [2014], then
the two terms in equation (3) contribute comparably to Fh, O(10−11) m s−1, or ∼ 7 × 10−4 m yr−1. Note that a
strong ocean-ice heat flux at the poles (ΔFocn < 0) can overcome the positive surface temperature term, and
the thickness transport can become poleward (Fh < 0), leading to freshwater formation at high latitudes. The
mathematical descriptions for the freshwater layer located either at the poles or the equator are equivalent
after switching the locations of the boxes in the schematic (Figure 1). Here we consider a meridionally uniform
distribution of the ocean-ice heat flux (ΔFocn = 0), which leads to Fh = 1.76×10−11 m s−1 and a freshwater layer
at low latitudes. We discuss the sensitivity of the stratification to Fh and other model parameters in section 3.4.

3.2. Critical Ranges of the Freshwater Layer Depth
To determine the requisite conditions for a freshwater layer from the salinity balance, (5) and (6), additional
constraints are needed. First, solutions for ΔS must be real and positive. This puts a lower bound on the layer
thickness, dmin. Second, turbulent mixing should be weaker at the base of the freshwater layer than at the
ocean-ice interface when stratification is strong enough to suppress mixing at the former location. Assuming
a uniform turbulent velocity u∗ across the layer implies c < cice. This is the condition that defines a distinct
freshwater layer. A system with c ≫ cice would not affect the deep ocean heat content because the heat
would be efficiently mixed into the upper ocean. Here we set cice = 10−3 [McPhee et al., 1999; Jenkins, 1991]
(see supporting information for details). The requirement c < ciceputs an upper bound on the layer thickness,
dmax. Finally, we require the layer to be buoyant, i.e., 𝛼ΔT < 𝛽ΔS. In the analytical derivation below, we assume
that salt transport into the layer is dominated by the stratified turbulence, i.e., cu∗ ≫ 𝜅∕d in (5). Numerical
solutions that include all the terms in (5) (Figure 2) show that this last condition is satisfied for dmin < d < dmax.

Combining (5) and (6), and using the assumption that cu∗ ≫ 𝜅∕d, we obtain

dmin = 0.84u∗8∕3

( 𝜌i

𝜌
Fh)

2∕3
g𝛽S0

. (7)

Details of the derivation are available in the supporting information. Given the second criterion, c < cice, using
the definitions for c (6) and cice = 10−3, and assuming S0 ≫ ΔS results in

dmax =
0.13u∗3

𝜌i

𝜌
Fhg𝛽S0

. (8)

Figure 2 shows solutions of the full salinity balance equations (5) and (6) at S0 = 50 psu, Fb = 0.01 W m−2 and
Fh = 1.76 × 10−11 m s−1 for seawater (aqueous sodium chloride); these conditions satisfy all three require-
ments above. For a given u∗, a range of freshwater layer depths is permitted. The colored region represents
the parameter space where ΔS is real and positive. The white region is associated with parameters where the
freshwater layer cannot be in a steady balance; instead, for a given u∗, turbulent mixing would cause the layer
to deepen until it reaches dmin. This also explains the increase in dmin with stronger mixing. Both dmin and dmax

strongly depend on the magnitude of turbulence, scaled approximately as u∗3 according to (7) and (8). For
the freshwater layer to be less than the total depth of the ocean ( dmin < 100 km), the turbulence needs to be
sufficiently weak (Figure 2), e.g., u∗ should range from 0.001 to 0.02 m s−1 for the case in Figure 2.

For aqueous magnesium sulfate (MgSO4) and sodium chloride (NaCl), the two major saline components that
have been considered for Europa’s ocean [Zolotov and Kargel, 2009], there is no significant difference in ΔS
because of their similar thermodynamic properties (Table 1). Freshwater characteristics for a MgSO4 ocean
are provided in the supporting information (Figure S1). Within the critical range of d, ΔS for the seawater case
above varies from 10−4 to 0.2 psu (Figure 2).

3.3. Temperature Contrast and Minimum Average Salinity
Ocean heat content depends not only on the geothermal heat flux but also on the efficiency of the heat
exchange with the ice. The freshwater layer functions as a blanket that partially insulates the deep ocean
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Figure 2. Salinity contrast ΔS (color-filled contours) and
temperature contrast ΔT (dashed contours) between the deep
ocean and the freshwater layer for seawater at an average
salinity of 50 practical salinity units (psu). For these calculations
Fh = 1.76 × 10−11 m s−1 and Fb = 0.01 W m−2. The black and red
contours indicate dmin and dmax, respectively. All ΔT and ΔS
values are in log10 space; u∗ and d axes are logarithmic.

from the ice and may create a stronger verti-
cal temperature gradient than an ocean without
the layer. To quantify this insulating effect, we
consider the heat budget of the deep ocean for
which heat transport into the freshwater layer
balances geothermal heating:

Fb

𝜌CP
=
(

cu∗ + 𝜅

d

)
ΔT . (9)

Here ΔT = T0 − T e is the temperature difference
between the deep ocean and the freshwater
layer (Figure 1), which is nearly at the freez-
ing temperature because it is in direct contact
with the ice. This one-dimensional balance does
not account for lateral heat transport between
low- and high-latitude columns, which could be
parameterized by introducing a lateral eddy dif-
fusivity [e.g., Jansen, 2016], although the magni-
tude of this term is uncertain.

Combining (5), (6), and (9) and assuming S0 ≫ ΔS, cu∗ ≫
𝜅

d
gives

ΔT =
FbΔS

CP𝜌iFhS0
=

2.25𝜌2Fbu∗8

CP(dg𝛽𝜌iFhS0)
3
. (10)

The real dependence ofΔT on u∗ is obscured here because of the additional dependence of d on u∗. However,
using (7) and (8), ΔT is independent of u∗ for d = dmin and ΔT ∼ u∗−1 for d = dmax. This is consistent with a
weakening of ΔT in response to stronger mixing. Furthermore, ΔT increases linearly with ΔS, consistent with
a stronger stratification insulating the deep ocean. For d within the critical range, ΔT ranges from 4 × 10−4 K
to 0.6 K depending on the strength of turbulence (Figure 2). Thus, the insulating effect of the freshwater layer
can increase the heat content of Europa’s ocean.

However, the increase in deep ocean temperature (equation (10)) can destabilize the water column, counter-
acting the stabilizing effect due to salinity. Thus, satisfying the layer stability criterion 𝛼ΔT < 𝛽ΔS bounds the
minimum salinity of the deep ocean:

S0 >
𝛼Fb

𝛽CP𝜌iFh
. (11)

Accounting for the uncertainty of geothermal heat flux Fb (Table 1), the range of minimum S0 is 28–200 psu
and 16–100 psu for magnesium sulfate and seawater, respectively. This range of salinities is plausible; maxi-
mum salinities inferred from the induced magnetic field’s amplitude are 200 psu for magnesium sulfate [Hand
and Chyba, 2007] and 100 psu for seawater [Schilling et al., 2007]. Note that the minimum salinity requirement
also varies with ΔFocn through its dependence on Fh (equation (3)).

3.4. Sensitivity to S0, Fb, and Fh

Here we examine the sensitivity of the freshwater-induced stratification to S0, Fb, and Fh, whose values vary
within the ranges suggested by previous studies (Table 1). When the deep ocean is saltier, the freshwater layer
tends to be thinner, i.e., dmin and dmax decrease with S0 (equation (7) and (8)). This is because Ri is proportional
to both d and ΔS; a smaller d requires a larger ΔS to achieve the same mixing conditions (the same Ri value).

Figure 3a showsΔT at the minimum depth of the layer as a function of Fb and S0, for seawater. Colored regions
indicate where the buoyancy requirement (11) is satisfied. ΔT ranges from 0.1 to 0.7 K. The corresponding ΔS
has smaller variations, 0.05 to 0.08 psu, and is not shown. The suppressing effect on heat transport between
the layer and the deep ocean tends to be stronger (higher ΔT) when the deep ocean is less salty and has
stronger geothermal heating. Moreover, Fb cannot be so high as to cause the minimum salinity of the deep
ocean to exceed the maximum possible salinity. The upper limit of Fb is 0.072 W m−2 for MgSO4 ocean and
0.065 W m−2 for seawater.
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Figure 3. (a) Temperature contrast ΔT between the freshwater layer and the deep ocean corresponding to dmin, at
u∗ = 0.01 m s−1 and Fh = 1.76 × 10−11 m s−1, for seawater, as a function of Fb and S0. The black contour indicates the
minimum permissible salinity. ΔT is plotted in log10 space. (b) Range of freshwater layer depth d, bounded by dmin and
dmax (black and red contours, respectively), temperature contrast ΔT (dashed lines) and salinity contrast ΔS (colors) as a
function of ΔFocn (W m−2), for seawater at S0 = 50 psu, u∗ = 0.01 m s−1, and Fb = 0.01 W m−2.

The ice thickness flux Fh is sensitive to ΔFocn (equation (3)) and therefore may also affect ΔT (Figure 3b). The
results in this panel are calculated for seawater at S0 = 50 psu, u∗ = 0.01 m s−1, and Fb = 0.01 W m−2. With
these values, we find that ΔFocn may range from −0.008 to 0.065 W m−2, where the lower bound arises from
satisfying the condition that the minimum salinity is smaller than 50 psu. Consistent with (7) and (8), the upper
and lower limits of d decrease with increasing Fh (i.e., increasing ΔFocn). This dependence reflects a stronger
salinity contrast with increased supply of freshwater, which needs a thinner layer to achieve the same value
of Ri. Within the critical depth range, ΔT varies from 2 × 10−4 K to 0.4 K and increases monotonically with Fh.
The sensitivities of MgSO4 ocean to S0, Fb, and Fh are very similar to seawater (Figure S2).

4. Discussion and Conclusions

The conceptual ice-ocean model developed here quantitatively explores the hypothesis that stratification in
Europa’s upper ocean can result from freshwater fluxes associated with meridional ice transport. We demon-
strate that a meridional gradient in ice thickness can cause differential freezing of ice at the poles and melting
at the equator, creating a freshwater flux at the top of the ocean. Over sufficiently long timescales, a persis-
tent freshwater flux can form a diluted upper ocean layer or a “freshwater” layer under the ice shell at low
latitudes. Density stratification at the base of the layer affects the turbulent exchange of heat and salt with
the deep ocean. Under a wide range of parameters, the layer acts as a blanket that partially isolates the deep
ocean from the ice shell, allowing it to efficiently accumulate heat from below. As a result, deep ocean temper-
atures can exceed the expected adiabat by 4 × 10−4 K to 0.6 K, depending on both the bulk characteristics of
the layer and the turbulent properties of the ocean. As predicted by our model, the energetic circulation pro-
posed by Soderlund et al. [2014] would prohibit the formation of a freshwater layer. However, other circulation
regimes with weaker turbulence [e.g., Vance and Goodman, 2009; Jansen, 2016] could support a freshwater
layer in Europa’s ocean.

We describe both analytical and numerical solutions for the depth of the freshwater layer and for the magni-
tude of the vertical temperature and salinity contrasts. The critical depth range for freshwater layer formation
is mainly controlled by the strength of upper ocean turbulence and is sensitive to the average salinity of
Europa’s ocean. With stronger turbulence and lower average salinity, the freshwater layer tends to extend
deeper. A process that is not addressed in this model is the spreading of the freshwater layer to higher latitudes
to counteract the lateral density gradient. The omission of this effect implies that freshwater layer depths
calculated in this study are upper bounds.

The aim of the present conceptual model is to highlight key processes that can affect the heat and salt bal-
ances of the ocean. The model uses basic parameterizations of various physical processes, so it is important to
note where its assumptions may lead to unphysical results. First, our model adopts a shear-driven parameteri-
zation of stratified turbulence. Because there are no observations of any properties of upper ocean turbulence
in Europa, we devote further attention to different representations of the turbulent exchange at the layer inter-
faces in the supporting information [Baines, 1975; Shrinivas and Hunt, 2014; Kumagai, 1984] to demonstrate
the similarity of our turbulent parameterization to that of vertical plume-driven turbulence. Our conclusions
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are not sensitive to the choice of turbulent parameterization as long as the adopted parameterization causes
stratification to suppress the efficiency of turbulent transport. Second, we neglect meridional heat transport
via global overturning circulation or by ocean eddies, which can modify the differential ocean heat flux at the
base of the ice shell (ΔFocn). These effects must be included to construct a fully coupled system for Europa’s ice
and ocean. This feedback cannot be determined at present due to the uncertainty in the nature of the circula-
tion and heat transport processes in Europa’s ocean. Nevertheless, the effects of lateral heat transport or other
factors that influence Fh through ΔFocn (e.g., ice convection, tidal heating, and freezing point variations at the
ice-ocean interface) can be determined from the sensitivity of the vertical stratification to ΔFocn (section 3.4).
With the above caveats in mind, our model exhibits a broad parameter space under which a freshwater layer
can exist. While some of those parameters are mutually dependent, our results are cause for further inves-
tigation of Europa’s upper ocean stratification due to the global exchange of heat between Europa’s ocean
and ice.

Observations from NASA’S planned Europa Clipper Mission [Pappalardo et al., 2016] and ESA’s planned Jupiter
ICy satellite Explorer mission [Grasset et al., 2013], will contribute to determining whether a freshwater layer
exists, in particular by constraining the surface temperature distribution, the salinity of Europa’s ocean, and
variations in its ice thickness. Such findings may in turn offer insight into Europa’s habitability by helping to
constrain the fluxes of energy and potential nutrients between the ice and ocean.
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