| 1  | Supporting Information for                                                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------|
| 2  | "The influence of meridional ice transport on Europa's ocean stratifica-                                                         |
| 3  | tion and heat content"                                                                                                           |
| 4  | Peiyun Zhu, <sup>1</sup> Georgy E. Manucharyan, <sup>2</sup> Andrew F. Thompson, <sup>2</sup> Jason C. Goodman, <sup>3</sup> and |
| 5  | Steven D. Vance <sup>4</sup>                                                                                                     |
| 6  | <sup>1</sup> Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA.                   |
| 7  | <sup>2</sup> Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California, USA. |
| 8  | <sup>3</sup> Department of Physics, Wheaton College, Norton, Massachusetts, USA                                                  |
| 9  | <sup>4</sup> Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.                           |
| 10 | Contents                                                                                                                         |
| 11 | 1. Text S1: Derivation of $d_{\min}$                                                                                             |
| 12 | 2. Text S2: Other parameterization for turbulence at the freshwater layer base                                                   |
| 13 | 3. Figures S1: Solutions of freshwater layer salinity balance for a magnesium sulfate                                            |
| 14 | ocean                                                                                                                            |
| 15 | 4. Figures S2: Sensitivity of temperature and salinity contrast at the freshwater layer                                          |
| 16 | base to $F_b$ , $S_0$ and $F_h$ (via $\Delta F_{ocn}$ ) for a magnesium sulfate ocean                                            |

## Introduction 17

Text S1: Derivation of  $d_{\min}$ . 18

Here we describe derivation details of the analytical solution of the minimum fresh-19

water layer depth  $d_{\min}$ . The salinity balance of the freshwater layer and parameterization of 20

entrainment rate c are given by 21

$$(cu^* + \frac{\kappa}{d})\Delta S = (S_0 - \Delta S)\frac{\rho_i}{\rho}F_h,\tag{1}$$

22

16

$$c = 1.5Ri^{-3/2}, \qquad Ri = \frac{dg\beta\Delta S}{{u^{*2}},}, \qquad \Delta S = S_0 - S^e.$$
 (2)

Using (2), we can express c with the following relationship: 23

$$c = 1.5(\frac{dg\beta\Delta S}{{u^*}^2})^{-2/3}.$$
(3)

Corresponding author: Peiyun Zhu, zhpeiyun@umich.edu

Assuming  $cu^* \gg \frac{\kappa}{d}$ , and thus neglecting the  $\kappa$  term, substituting (3) into (1) results in a cubic

equation for  $(\Delta S)^{1/2}$ :

$$(\Delta S)^{3/2} - S_0 (\Delta S)^{1/2} + A = 0, \quad \text{where} \quad A = \frac{3u^{*4}}{2\frac{\rho_i}{\rho}F_h \left(dg\beta\right)^{3/2}}.$$
 (4)

This cubic equation (4) always has one negative root, which is not a physical solution because we require  $\Delta S > 0$ . The two other roots are either both positive real roots or complex numbers. The transition between real and complex roots occurs when the two real roots are identical. This occurs when the derivative of (4) with respect to  $\Delta S$  is equal to zero, i.e. when  $\Delta S = S_0/3$ . Substituting  $\Delta S$  in (4) leads to

$$d_{\min} = \frac{0.84u^{*8/3}}{\left(\frac{\rho_i}{\rho}F_h\right)^{2/3}g\beta S_0}.$$
(5)

Any value of *d* smaller than  $d_{\min}$  is not a solution because (4) does not have real roots. Physically, only the smaller of the two real roots can be a solution for  $\Delta S$ . The root with a larger magnitude gives a value of *Ri* that suppresses *c* and breaks the assumption that turbulent mixing dominates over diffusion at the base of the freshwater layer, i.e.  $cu^* \gg \frac{\kappa}{d}$ .

## **Text S2: Other parameterization for turbulence at the freshwater layer base**

The parameterization for turbulent entrainment (see equations in (2)) applies to a tur-36 bulence induced by the vertical shear of horizontal velocities at the interface between the 37 freshwater layer and the deep ocean, assuming a significant circulation in the latter. We esti-38 mate the entrainment rate at the ice-ocean interface on Europa,  $c_{ice}$ , to be  $10^{-3}$  in our study 39 because calculations based on a formula from Jenkins [1991] suggests  $c_{ice}$  to be  $o(10^{-4})$ , and 40 McPhee et al. [1999] suggests  $c_{ice} = 0.0058$  based on sea ice observations in the Arctic 41 Ocean.  $c_{ice} = 10^{-3}$  is within the uncertainty range for this parameter based on terrestrial 42 studies. 43

However, turbulence may also arise from other mechanisms, such as plumes rising 44 from the seafloor and impinging the interface. Entrainment rates of plume-induced turbu-45 lence can be parameterized by an interfacial Froude number  $F_r = w_i / \sqrt{b_i \frac{g\Delta\rho}{\rho_0}}$  [Bains, 1975] 46 where  $w_i$  is the characteristic center-line vertical velocity of the plume,  $b_i$  is the local plume 47 radius,  $\Delta \rho$  is the density difference across the interface and  $\rho_0$  is a reference density. Entrain-48 ment rate is given by  $c = AF_r^n$ , coefficient A and exponent n varying with different ranges of 49 Fr [Shrinivas and Hunt, 2014]. Theoretical models [Shrinivas and Hunt, 2014] and labora-50 tory experiments [Bains, 1975; Kumagai, 1984] support n ranging from 2 to 3.5 for  $F_r < 1.5$ . 51

- As  $F_r$  is equivalent to  $Ri^{-1/2}$ , these values of *n* show no significant deviation from our pa-
- rameterization of c in (2). The range of Ri in our results is 100 to 1000, corresponding to
- $F_r < 0.1$ . The coefficient A varies by less than one order of magnitude under different ex-
- <sup>55</sup> perimental conditions [*Kit et al.*, 1980], but this variation can be incorporated into the uncer-
- 56 tainty of  $u^*$ .



Figure S1: Solutions of freshwater layer salinity balance for a magnesium sulfate (MgSO<sub>4</sub>) ocean. Salinity contrast  $\Delta S$  (color-filled contours) and temperature contrast  $\Delta T$  (dashed contours) between the deep ocean and the freshwater layer for a MgSO<sub>4</sub> ocean at an average salinity of 100 psu,  $F_h = 1.76 \times 10^{-11}$  m s<sup>-1</sup> and  $F_b = 0.01$  W m<sup>-2</sup>. The black and red contours indicate  $d_{\min}$  and  $d_{\max}$ respectively. All  $\Delta T$  and  $\Delta S$  values are in log<sub>10</sub> space;  $u^*$  and d axes are logarithmic.



Figure S2: Sensitivity of temperature and salinity contrast at the freshwater layer base to  $F_b$ ,  $S_0$ and  $F_h$  (via  $\Delta F_{ocn}$ ) for a magnesium sulfate ocean (a) Temperature contrast  $\Delta T$  between the freshwater layer and the deep ocean corresponding to  $d_{min}$ , at  $u^* = 0.01 \text{ m s}^{-1}$  and  $F_h = 1.76 \times 10^{-11} \text{ m s}^{-1}$ , as a function of  $F_b$  and  $S_0$  for a MgSO<sub>4</sub> ocean. The black contour indicates the minimum permissible salinity.  $\Delta T$  is plotted in  $\log_{10}$  space. (b) Range of freshwater layer depth *d*, bounded by  $d_{min}$  and  $d_{max}$  (black and red contours respectively), temperature contrast  $\Delta T$  (dashed lines) and salinity contrast  $\Delta S$  (colors) as a function of  $\Delta F_{ocn}$  (W m<sup>-2</sup>), for a MgSO<sub>4</sub> ocean at  $S_0 = 100$  psu,  $u^* = 0.01 \text{ m s}^{-1}$  and  $F_b = 0.01 \text{ W m}^{-2}$ .