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ABSTRACT

This paper extends our earlier work on dynamic models of R and
D contracts to a case in which the firm must specify in each period of
the contractual horizon a research "target” which will govern payoffs
in the next period. Targets may be "safe” or "risky.” By definition,
the former are less than the firm's existing stock of knowledge while
the latter exceed it. We show that the firm is more likely to do
research the longer is the contractual horizon (given a suitably high
discount rate), the lower are research costs, and the higher is the
level of sponsor knowledge. Such parameter changes also imply it is
more likely to set a risky target. We also establish a number of
results relating changes in parameters to the optimal level of safe
and risky targets. Finally, we analyze the intertemporal relationship

between the targeting decision and incentives to do research.



A DYNAMIC MODEL OF TARGETING IN R AND D CONTRACTS

Joel Balbien and Louis L. Wilde

I. INTRODUCTION

In a recent article in The Bell Journal, we analysed the

behavior of a single firm engaged in R and D for a "sponsor” who was
assumed to be interested in reducing the cost of some technology
(Balbien and Wilde, 1982). The firm earned a reward in each period of
a multi-period contractual relationship which was a function of the
current state of spomnsor kpowledge and the new state of sponsor
knowledge created by the firm's research as reported that period.
However, it is often the case that a research firm's payoff is based,
at least in part, on some preset "target” level of performance (see
e.g. Murrell, 1979 and Weitzman, 1980). As we noted in our earlier
paper, the methodology developed therein can be used to study this
more realistic, but more complex, case. It is our purpose in this
paper to do so.

In our earlier model, we assumed the sponsor was interested in
lowering the unit cost of some technology. The index of performance
was thus taken to be costs——a lower index of performance was preferred

by the sponsor. This generated some nonintuitive notation so in this

model we assume research performance is represented in such a way that
a higher index of performance is preferred by the sponsor. The
sponsor again contracts with a single firm to engage in research over
a number of periods. At the beginning of each period the firm
inherits a performance target (a fixed level of the index) that it
hopes to meet by the end of the period. This target might represent,
for example, a reduction in expected cost for some manufacturing
process or the increased potency of an anti-cancer drug. The firm
selects a level of research effort, conducts research, observes the
(random) output of the research process, and makes a report to the
sponsor., If the current target is achieved a new target is selected
for the next period. The reported level of performance (necessarily
greater than or equal to the old target) becomes the new state of
sponsor knowledge for the next period and provides a baseline for
measuring further advances.

We make a number of simplifying assumptions concerning the

~nature of the research process and the set of admissable contracts.

The research process is modeled as random draws from a probability
distribution defined over a range of performance levels. The firm
pays a fixed cost, c, and gets one draw from this distribution per
period. It does, however, have the option of not doing research at
all if it so desires. The distribution is meant to represent the
firm's expectations (possibly subjective) about research potential.

In principle, placing no particular structure on expectations is ideal

(Balbien and Wilde, 1982). However, in this case there are two



problems with taking a general approach, Interviews with R and D
engineers suggest they seldom have a strong notion of the shape of the
distribution of research potential, but feel confident about its upper
and lower bounds.1 This implies a uniform distribution might be the
most appropriate assumption. Second, certain technical problems
arise, further complicating the model, if no structure is placed on
expectations. These relate to concavity of the various value—
functions associated with the dynamic programming problem which
characterizes the firm's optimal strategy. But even with uniform
expectations over research potential we will have to deal with some
nonconcavities. That sharp results can be obtained in spite of this
suggests some weakening of the uniform expectations is possible, and
we comment on this in the conclusion. For notational convenience we
normalize the distribution describing expectations over research
potential to be uniform over [0,1].

Several assumptions will also be made about the nature of the
research contract. First it is assumed that in any given period the
firm's reward depends on fulfillment of the current performance
target, X. If that goal is met, then the reward is a function of the
target and the current state of sponsor knowledge, a level of
performance, R. If the target is not met, the firm earns nothing in
the current period and its contractual relationship with the sponsor
is terminated. The firm earns no additional bonus for reporting
progress beyond the target. One could presumably relax these

assumptions to include bonuses and penalities of the sort considered

by Bonin (1976) and Weitzman (1976).

More formally, we let the instantaneous reward for fulfilling
the current target be W(X,R) where X is the target and R is current
sponsor knowledge. It is natural to assume that WX > 0 and WR > 0.
We also assume WXX < 0 and WRR < 0. Finally, there is the cross
partial wXR' In our earlier paper we assumed that wXR > 0 (see
Balbien and Wilde, 1982, pp. 109-10 for a discussion of this), but
here we only need wa 2 0. This assumption implies the marginal
return to setting higher performance targets does not fall as sponsor
knowledge increases.2

Our results focus on the firm'’s incentives to do research and
the nature of optimal targets. We define a target as risky if it
exceeds the firm's stock of knowledge and safe if it does not. 1In
general we have the following conclusions. Regarding the firm's
research strategy, we show the firm is more likely to do research the
longer is the sequence of potential contracts (given an appropriately
high discount rate), the lower are research costs, and the higher is
the level of sponsor knowledge. Such parameter changes also imply it
is more likely to set a risky target. Thus, anything which induces
the firm to do more research also induces it to set risky targets more
often. Moreover, given that the firm sets a unique risky target, this
target is higher (i.e. less likely to be met) the lower are research
costs and the higher is the state of sponsor knowledge. However, the
risky target is independent of the level of firm knowledge. Given

that the firm sets a unique safe target, it reveals more of what it



knows the higher are research costs, the level of sponsor knowledge,
or the level of firm knowledge. Finally, we analyze the intertemporal
relationship between the targeting decision and incentives to do
research. In particular, we show that if there exist levels of
private knowledge such that the firm desires to do research when it
faces a safe target, then in setting a safe target optimally, it will
also intend to do research. In other words, in choosing a target for
any period, if there exist levels of private knowledge and safe
targets for which it will want to do research, then it will always do
research the next period, whether it sets a safe or a risky target.
However, if no safe target could ever induce the firm to do research,
then it may or may not do research, depending on whether the optimal

target is risky or safe, respectively.

II. THE GENERAL MODEL

Let Vt(a,R,X) be discounted expected profits from pursuing an
optimal research and targeting plan when there are t periods remaining
in the firm's planning horizon. The time index t represents the
number of contracts the firm believes are available to it if all
future targets are met. The firm’s level of privately held knowledge
at the beginning of the research period is represented by o. Again, R
is the level of sponsor knowledge and X is the target for the t'th
period. In describing the firm's optimal strategy (in this case a
choice of whether or not to do research in the current period and a

choice of next period’s target), it is useful to distinguish between

two cases. In the first o is less than X; the level of privately held
knowledge yields a performance level which falls short of the
currently active target (presumably set by the firm in the previous
period). In this situation the firm must either conduct research or
forfeit both the current reward and future contract opportunities on

this particular project. Thus for o € X,

-c + [W(X,R) + E B max Vt_l(Z,X,x)](l—X)
X 1)xX
V,(o,R,X) = max (1)

The logic of (1) is as follows. If the firm does research it incurs a
cost c. If the outcome of its research, a random variable denoted by
Z, is less than X (the currently active target) the firm gets no
reward and its contract with the sponsor is not remnewed. If Z ) X
then it earns a reward for meeting the current target, W(X,R), and
gets to sign a new contract which specifies a new target, x. Of
course X is set to maximize Vt_l(Z,X,x). Note that the new target is
set after the random variable representing research output is
observed. Therefore the expectation, E, of maximized discounted
profits when t-1 contracts remain, is evaluated conditional upon the
outcome of the random performance variable, Z, being greater than or
equal to the currently active target, X. Current and expected future
returns are multiplied by 1 — X = Prob{Z ) X} since this represents
the likelihood of meeting the current target. Note also that if Z ) X
the firm has the choice of setting the new target at a level of

performance either above, equal to, or below its level of private



knowledge. The firm will be said to set a "risky target” if
x > max{o,Z}, and a "safe target” if x { max{o,Z}.

For o 2 X, the firm can fulfill the current target by drawing
upon its technology inventory; i.e., research is not compulsory.

Thus, for o 2 X,

-¢ + W(X,R) + EB max Vt_l(max{a,Z},X,x)
1>x)X
V. (o,R,X) = max (2)

W(X,R) + B max Vt_l(c,X,x)
1>x0X

The first term in (2) again reflects discounted expected profits when
the firm conducts research and then, depending on the results of that
research, decides whether to set a risky or safe target. The second
term reflects expected profits when the firm does not conduct new
research in the current period and merely meets the current target
"out of inventory.” Nevertheless, even in this case either a risky
target or a safe target may be set for the next contract, depending on
c.

In both cases, the relevant discount rate is B e (0,1).
Equations (1) and (2) hold for t > 1, For t = 0 we define
VO(G,R,X) =0 for all o,R,X. If o > R there might be some profit to
the firm from selling the residual information to other private
parties, but it is assumed that penalities for such action are so
severe as to eliminate this possibility.

One final assumption important to a firm's targeting strategy
concerns whether the sponsor will renew the firm's contract if the

research firm sets a "safe target” equal to the level of sponsor

knowledge, i.e. the firm sets X = R, Under one scenario, a sponsor
might require that a firm demonstrate some minimal improvement in
sponsor knowledge as a condition for contract remewal. Such a policy
would encourage the setting of risky targets when a firm exhausted its
inventory of knowledge, but might lead to premature cancellation of
research projects if targets are not achieved. An alternative policy,
implicit in equations (1) and (2) permits contract renewal when the
firm sets X = R, However W(R,R) is still assumed to be equal to O.
The formal analysis of this model focuses on two aspects of a
firm's research strategy over a sequence of contracts: (i) a firm's
choice of research effort in the current period as determined by the
firm's level of private knowledge at the beginning of the research
period, the level of sponsor known performance at the beginning of the
research period, the currently active target, the cost of research,
and the number of remaining contracts in which the firm expects to
participate; and (ii) the decision to set a safe target versus a risky
target for the next research period as determined by the level of
privately known performance at the end of the research period, the
level of sponsor knowledge at the end of the research period, research
costs, and again the length of the firm's planning horizon. The
analysis proceeds recursively working backwards from the end of the

horizon, i.e. beginning with t = 1.



III. THE ONE-PERIOD PROBLEM
As is apparent from section 2, the firm's problem is quite
different when it inherits a risky target as compared to when it

inherits a safe target. We consider the former first.

3a. Risky Initial Targets
In this case o { X, Thus the firm must simply decide whether

or not to do research, and

-c + W(X,R)(1 - X)
Vl(u,R,X) = max (3)

The firm conducts research if and omnly if W(X,R)(1 - X) > c.

Otherwise it willingly accepts zero profits in the final period.
Lemma 1: W(X,R)(1 - X) is. concave in X for X ) R.

The proof of this Lemma, and all subsequent results, are found in the
appendix. Given Lemma 1, we can easily characterize the set of

targets for which the firm does research. Define
Sy(c,R) = {X| - ¢ + W(X,R) (1 - X) < o0},

and let §1(c,R) be the complement of Sl(c,R) ig [0,1].

Figure 1 illustrates Sl(c,R) and gl(c,R). It also illustrates
that no research is conducted if X is near 0 or near 1. In the latter
case the likelihood of meeting the current target is so low that it
doesn’'t pay to try. In the former the likelihood of meeting the

target is high but the payoff is low.3

10

[Figure 1 about herel

Proposition 1: = , ,
Proposition 1 (a) Sl(cl’R) [ Sl(c2 R) for cq < cy

(b) Sl(c'Rl) c Sl(c'RZ) for R1 < R2.

This result shows that when a firm faces a risky target in the final
research period, the worse the state of sponsor knowledge (i.e. the
lower is R) the more likely the firm is to conduct research. This
follows from the assumption that the reward to the firm for
fulfillment of the current target increases as the difference between
sponsor knowledge and the current target increases (i.e.,

WR(X,R) < 0). Raising R reduces the profitability of conducting
research without affecting the likelihood of achieving the target. As
expected, Proposition 1 also implies that the lower the cost of
research, the more likely the firm is to conduct research. As can be
seen in Figure 1, increasing the cost of research decreases the
profitability of conducting research for all levels of the performance
target.

Given the definition of Sl(c,R) we can rewrite (3) as

—c + W(X,R)(1 -X) ifXe §1
Vl(o,R,X) = (4)
0 it X &8

3b. Safe Initial Targets

All that remains in the one period problem is the case of

¢ 2 X. Since VO(c,R,x) is defined to be zero, for o 2 X
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FIGURE 1

Definition of S(c,R)

W(X,R)(I-X)

i
!
R + 'S, R) —! 1

12

V,(e,R,X) = W(X,R). (5)

No research is conducted and at least a level of performance X is

delivered to the sponsor.

IV. THE TWO-PERIOD PROBLEM
The two period problem is richer than its one period analogue
since the firm now sets an optimal target for the last period’s

research after deciding whether to conduct research during the second

to the last period.

From (1) and (2) we have for X ) o

-¢ + [W(X,R) + E B max Vl(Z,X,x)](l—X)

X Xx<1
Vz(a,R,X) = max (6)
0
and for X { o
-¢ + W(X,R) + Ep max Vl(max{u,Z},X,x)
X<x<1
VZ(U,R,X) = max (7)

W(X,R) + max B Vl(c,X,x).
X<x<1

Recall that the target for the final period is set after
observing the current period’s research output. The analysis of the
two period problem begins by taking that output as given and examining
the target setting decision of the firm as a function of it. Thus we

need to know more about Vl(u,R,X) as X ranges over [R,1],
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4a. Optimal Targeting

Since ¢ 2 R or the firm could not have survived the current

period, it has a choice of setting a risky target for the final period

(X > o) or a safe target (X { o). In the latter case it reveals all
it knows since WX > 0 and V0 = 0. That is, X = ¢ if any safe target
is set.

If a risky target is set (X ) o) then the firm must do
research in the final period. Thus we define

r, = argmax Vl(o,R,X) = argmax W(X,R)(1 - X) - c. (8)
RSX<1 RCX<1

If T, > o then the firm's optimal risky target is T, and it compares
this targeting strategy to setting X = o. If T, { o, though, the firm
will want to set risky targets arbitrarily close to o (since

W(X,R)(1 - X) - ¢ is concave). In this case setting a safe target of‘a
will dominate any risky target due to the following result.

Lemma 2: W(o,R) > 1limW(X,R)(1 - X) - ¢
X -0

Given Lemma 2 we need only compare W(o,R) to
*
W(rz,R)(l - r2) - c¢. Define x, as the optimal target in the two

period problem. Then
¢ if W(o,X) 2 W(rZ,R)(l - 12) -c

x, = (9)

T, if W(o,X) < W(IZ.R)(l - rz) -c

*
Whe ther X, equals o or r2 clearly depends on o. Hence we define

14

R if ¢ W(rz.R)(l - r2) - W(o.R) for all o 2> R
o, = (10)
{clc = W(rz,R)(l - rz) - W(o,R)} otherwise

Proposition 2: S, is unique and well-defined. Furthermore, if ;é >R
then (i) do,/dc < 0
(ii) do,/dR > 0

(iii) T, 2

Figure 2 illustrates G . Foro <o ,

2 2
* -
W(IZ,R)(I - 12) - ¢ > W(o,R) so X, = T,. For o 2 Gy
W(rz,R)(l - r2) - ¢ £ W(o,R) so x; = o,

[Figure 2 about herel

That ;é is uniquely defined by c and R obtains because the

optimal risky target, is independent of the firm’s level of

T,
private knowledge, o, while W(o,R) is increasing in o. Proposition 2
also shows that the lower the cost of research and the better the
state of sponsor knowledge, the more likely the firm is to set a risky
target for the final research period. The first of these is obvious
since a decision to set a risky target implies that research is
compulsory in the final period, and a larger value of c makes this
research more costly. The second obtains because an increase in
sponsor knowledge hurts the firm less under a risky strategy than a
safe strategy, hence at the margin it is more willing to engage in
risky targeting when R increases. Finally, we have related results on

drz/dR and drz/dc.
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FIGURE 2

Definition of 52

W(X,R)(I1-X)-C

W (rp R)1-1,)-C /l an
|
(0] | l 6,X
L 1 N
_c o e e —i————l—————
R 02 r2
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Proposition 3: If r, & (o,1) then drz/dR > 0 and drz/dc =04

As the level of sponsor knowledge increases, the optimal risky
target for the final period also increases. Thus, as R increases, not
only is the firm more likely to set a risky target, but it sets one
which has less probability of being met. Research costs have no
effect on T, since the firm will have to do research in any case when
it sets a risky target and behavior in later periods is irrelevant
since only one period remains., This result will not generalize to t >
2.

Finally, we can show that whenever setting a risky target
dominates setting a safe target, the firm will never set the risky
target in such a way so as to want to drop out of the contractual

relationship in the last period.

: P s S.(c,R).
Corollary 1: If o < o, and S1 # 0 then T, & Sl(c R)

This result is immediate and is stated without proof. It follows

" because T, is the maximum of W(X,R)(1 - X) on [R,1].

- *
Using o, we can rewrite Vl(c,R,xz) in a more useful form:

. W(rz,R)(l - r2) -c if o < o,
Vl(a'R'XZ) = (11)

W(o,R) if o 2?2

These results allow us to analyze the two—period problem.
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4b. Risky Initial Targets

Using ;2 we can rewrite (6) as

c
2 1
—e + WLR)(1 - X) + B[V (z,%15,)dz + BI V. (z,X,2)dz
x 1 2 1
%
V2(6,R,X) = max (12)
0
where ;é = ;Z(X) and 1, = IZ(X); that is, the current target X becomes
the level of sponsor knowledge in the final period.

As in the ome-period problem, we first characterize the set of

targets for which the firm does research. Define

[¢}
2 1
S,(c,R) = (Xle > WLR)(1 - X) + B[ V (z,X,r))dz + B[ Vv (z.X,2)az},
2 x 1 2 N
%
and let §2(c,R) be the complement of Sz(c,R) in [0,1].
Proposition 4: (a) Sz(cl,R) c Sz(cz,R) for cy < c,
[
(b) S,(c,R) © Sz(c.Rz) for Ry (R,

(c) Sz(c,R) = 5, (c,R)

The firm is more likely to do research when it faces a risky target
the lower is ¢ or R. Furthermore, it is more likely to do so when two
research periods remain as compared to one. One more rewrite of (4),
and thus (12), is possible:

(¢
2 _
~e + WL,R) (1 - X) + Bf V,(2,X,1))dz + sjl V,(z,X,2)dz if x ¢ S
X u—

%
V,(o,R,X) = (13)

0 if x ¢ 82

2
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4c. Safe Initial Targets

In this case ¢ > X, but we can't say whether o exceeds ;2 or

not. Thus (7) becomes

o * 1 *
e + WER) + pf V (0,X,xp)dz + Bf V (2,%,x;)dz
Vz(u,X,R) = max 0 o (14)

*

2)

W(X,R) + BVl(G,X.x
Here
y ify2 32

x,(y) = ~
T, if y < o,

where y ¢ {0,Z}. The issue is whether or not to do research, The

first term in (14) exceeds the second if and omnly if
1 * *
c < 5f6[v1(z,x,x2) - ¥, (s,X,x,)1dz. (15)

*
Hence we define a "reservation level” of private knowledge, 0y» by

* . 1 * *
J’cz =0 if ¢ ) ﬁfolvl(z,x,xz) - V;(0,X,x,)1dz for all o

(16)

*

Lc = ﬁjl‘[Vl(z,X,x2) - Vl(c;,x,x;)dz otherwise
G
2

* *
Proposition §: S, is unique and well-defined. Furthermore, if %, >0

* —_—
then (a) o, > 2
*

(b) d62/dc <0

(c) du;/dX > 0.

* *
If o < S, then the firm conducts research. If o 2 o, then it does
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* -
not. If 02 > 0 then it is also greater than o,, the critical level of

private knowledge that makes the firm indifferent between setting

risky versus a safe target at the end of the second to the last

research period. This implies that when the firm enters the second to

the last research period with a level of private knowledge below
cutoff point for setting a safe target, it always conducts resear
hoping to avoid the need to set a risky performance target for it
last contract, unless all safe targets imply no research (i.e.

* *
oy = 0). Hence if S, > 0, the equation which defines it reduces

1 *
¢ = Bf (IW(z,X) - W(oy,X)]dz.
o,
2
Proposition 5 also shows an increase in sponsor knowledge or a
decrease in research costs will increase the likelihood the firm
*
conducts research. Finally, the definition of o, allows one more

2
rewrite of (7) and hence (16):

o * 1 *
e + W(X,R) + B V,(0,X,x,)dz + 8J Vi (2,X,x,)dz if o (o
0 4

VZ(G,R.X) =

* *

W(X,R) + BVl(a,X,xZ) if o ) o,

A brief summary of the two—period problem will be useful
before turning to the three—period problem. The firm enters the
beginning of the second to the last period with a stock of knowle
in inventory, a current target and a given level of sponsor knowl
If the current target is risky it first must decide whether to do

research or drop out of the contractual arrangement altogether.

a

the
ch

S

to

(17)

(18)

dge

edge.

If it

*
2
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conducts research and meets the current target it must then choose a
target for the final period. Whether that target is risky or not
depends on a critical level of private knowledge, ;2.

target is safe, it must again decide whether to do research, but in

If the current

this case if it does not, it is not forced to drop out. Whether it
does research depends on a reservation value of private knowledge, 6;.
However, if o; > 0 then 6; > ;é. so that the firm always does research
when it sets a safe target unless all safe targets imply no research

. *
(i.e. o©

5 = 0). On the other hand, if its stock of private knowledge

is such that it knows it will want to set a risky target in the final
period, then it necessarily conducts research during the second to the
last period. Hence, if there exist levels of private knowledge and
safe targets for which it will want to do research in the last period,
then the firm will always do research in the last period. Otherwise,
whether or not it does research is determined by whether or not the

optimal is risky, respectively.

5. THE THREE-PERIOD PROBLEM

Now that the firm's research strategy in the two—period
problem has been fully characterized, it is possible to consider the
firm's selection of targets and decision to conduct research when
three or more periods remain in the planning horizon. This problem is
more complicated than the two—period analogue because when t > 3 the
firm's best safe target at the end of the period is not necessarily to

reveal everything it knows. Instead the firm may have an incentive to
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temporarily withhold some of its private knowledge. This knowledge
inventory can then be depleted over the remaining research periods so
as to maximize the net present value of profits. A conservative
strategy of sequentially setting higher safe performance targets also
insures the firm against the risk of losing profits on remaining
contracts if it encounters a bad draw from the distribution over
research potential.

When t = 3 and o < X equation (1) gives

—c + [W(X,R) + E B max VZ(Z,X.x)](l—X)
X X{x(l
VS(U.R,X) = (19)

and when o )} X equation (2) implies

-¢c + W(X,R) + E B Vz(max{a,Z},X,x)
X<x<1
V3(c,R,X) = max (20)

W(X,R) + max B Vz(u.X,x)
X<{x<1

Analogous to the two—period problem, we begin by taking the
output of the third to the last research period as given, and examine
the target setting decision of the firm as a function of it. Once the
"targeting decision is fully characterized one can again back up to the
beginning of the third to the last research period and embed the
solution to the two—period targeting problem in the three-period

setting.

CASE1: o< o

22

Sa. timal Targetin

The firm's objective at the end of the third to the last
research period is to choose a target for the next contract which
maximizes Vz(u,R,X), where o may be knowledge held in inventory or the
outcome of research conducted in the third to the last research
period. Again, X is allowed to range over [R,1]. But o > R as well.
Suppose ¢ > R. Then X & [R,0] is called a safe target and X ¢ (o,1]
is called a risky target. The two cases need to be considered
separately.

Consider safe targeting strategies. Define

S3 = argmax Vz(a,R,X). (21)
R¢X<o

As yet we know nothing about Vz. In particular, it may not be concave
in X! Thus sy may not be unique and may not be interior to [R,cl].
Furthermore, properties of V2 when ¢ 2 X depend on where o lies

- *
relative to S, and Gye But when o > X, we do know that

o * 1 * *
o + WER) + Bf V,(0.X,x))dz - B[ V,(z,X,x;)dz if o (o
0 c

V2(6,R,X) = (22)

*

W(X,R) + BVl(a,X.x2

. *
) if o 2 52

*
2 ¢ 9

¥
In this case o < o, s0, from (22),

2



(o]
V,(6.RX) = ¢ + W(X,R) + ﬁjovl(u.x,rz)dz

But T,

z £ ;2,

(] 1
| 2V1(z,X,r2)dz + 8]V (2.X2)dz.
. _

%

is independent of the level of private knowledge, so for

Vl(o.X,rz) = —c + W(rz,X)(l - r2) = Vl(z,X,rz).

For z 2 P ,

V,(2,X,2) = W(z,X).

Thus (23) becomes

V,(e,R,X) = = + WXR) + BIO

Since S, and T, depend on X, V2(6,R,X) is independent of ¢ for o ¢ o,!

Thus if

o

%

*
o < Oy the set of safe targets which maximize V2 is

independent of o, as is the maximized value.

CASE 2:

2 (] 1
V,(c,R,X) = ¢ + W(X,R) + Bfo v (0,X,0)dz + ﬁj_ Vi(0,X,0)dz + pjcvl(z,x,z)dz,

or

- *

S, L o<« S,

23

(23)

2 . 1
[-c + W(r,,X)(1-1,)1dz + Bj_ W(z,X)dz.

*
2

In this case V2 becomes, again from the first branch of (22),

o

%

(] 1
Vo(e,R,X) = —c + W(X,R) + pJ W(e,X)dz + B W(z,X)dz.
0 [ ]

(25)

(24)

24

Taking the derivative of (25) with respect to o we have
o
av,/ac = B Wy (o, X)dz = B(1-0)Wy (0, X) > 0. (26)
0

Thus the set of safe targets which maximize V2 depends on o and the
maximized value of V2 increases with o at rate B(l—a)wx(a.ss) for any

one of them.

- *
CASE 3: 62 < S,  o.

In this case, from the second branch of (22),

V,(o,R,X) = W(X,R) + BV,(0,X,0)
= W(X,R) + BW(o,X). (27)
Hence
avz/aa = BWy(s,X) > 0. (28)

Again, the set of safe targets which maximizes V2 depends on o
and the maximized value of V2 increases with o at rate BWX(a,ss) for
any one of them.

Using these results we can graph max Vz(c,R,X) for X ¢ [R,o0]
as in figure 3,

[Figure 3 about herel

Comparing (28) to (26) implies the slope of max Vz(u,R,X) on [c;,ll is
- %
positive and greather than that omn [ 2,62] since wXR 2 0.

Consider next risky targeting strategies. This applies to

X > o so some care must be taken as X approaches c. When X > o we



25

26
/know
;2 1
FIGURE 3 o + WLR)(1-X) + Bf V,(2,X,r))dz + Bf V(2,X,2)dz if X &5,
X p—
Form of max VZ(O,R,X) for X € [R,0] S,
VZ(U.R.X) = (29)

0 if X e 52

For x ¢ §2, this can be rewritten as

[+

max V,(¢,RX)

i 2
i V,(o,R,X) = —¢ + W(X,R)(1-X) + BJ [-c + W(r,,X)(1-r,)]1dz + le W(z,X)dz (30)
b 4 i 2 X 2 2 _
I %
i
|
= which is clearly independent of o. Consider the form of V2(6,R,X) for
= ‘ X ¢ [R,1]. For now we ignore whether X ¢ 82 or X & §2, and assume the
I i firm always conducts research when it faces a risky target. Figure 4
| |
= = = = illustrates one possibility for VZ(G,R,X) as a function of X. Note it
— 0
! ! | 1 o has a unique global maximum at g and a local maximum at r3.

case 1 case 2 case 3 [Figure 4 about herel

"

If o (< ;3 then ;3 is the optimal risky target. If ;3 L o< g then
the optimal risky target is not well-defined, if r; L o( r;, then the
optimal risky target is r; and if r; { o {1, then the optimal risky
target is again not well-defined. Of concern here are the ranges
[;3,r;) and [r;,ll. If o falls in these ranges, the optimal risky
target is arbitrarily close to o. But as soon as o is reached, the

firm has a safe target, and V2 is given by (22), not (29). It turns

out that in these cases, a safe target of o dominates all risky



Example of VZ(O,R,X) when 1 2 X>=Rand X >0

V,(s,RX)

FIGURE 4

=

4

27

28

targets, as the next Lemma shows. Here V; and V; refer to the value
functions as defined by (22) and (29), respectively, for safe and

risky targets.

b o

‘Lemma 3: lim V2

(¢,R,X) < vg(o.R.a).
X =¢

Lemma 3 is really quite intuitive, It simply implies that if
the firm sets a risky target of X when it knows only o, then it would
be better off if it actually knew X and could set a safe target. In

Figure §, V;(X,R,X) is plotted above V;(G,R,X). In that figure,
[Figure 5 about herel

suppose o { o', Then the optimal risky target is ;3 since

V3(o,R,0) < Vi(o,R,T,) But when o (c’ T.), V3 (6,R,0) > VEi(o,R,T,);
2;5 _2113. w g :3;2:' 2;:30

" —
that is, when ¢ ¢ (o .r3), it is possible to set a safe target of o,
-— — n

and this dominates the optimal risky target of 3. When o ¢ [r3,r3),
the optimal risky target is not well-defined, but

V;(G,R,G) > V;(U,R,X) for all X > o, so again some safe target is

- ” n
. preferred (possibly less than o). On [r3,c ], an optimal risky target

: ’
exists (r3). but V;(c,X,c) again dominates it. On

?

" " ’
(a,,u ), V;(U.R,r3) > V;(G,R,G) so the risky target of ry is both

well-defined and preferred to a safe target of o, Finally, on

"

“[oc ,1], the safe target of o dominates all risky strategies, whether

an optimal risky target is well-defined or not. Figure 6 illustrates
the form of the maximized value of V;(O’,R,X) with respect to X ) o as
a function of o for the situation illustrated in Figure 5. The heavy

line represents max V;(G,R,X) where it is well-defined and the lighter



29 30

line represent V;(G,R,G) on regions where it dominates all risky

strategies.
FIGURE 5
[Figure 6 about herel
Example of safe versus risky targeting; safe is optimal for
o€ [0',0"] and 0 € [0"",1]. Optimal risky target is not well- Figures 6 and 5 can be combined to compare risky versus safe

defined on [53,r;] and [ré,l]. o strategies as a function of o. This is done in Figure 7. Notice that
[Figure 7 about herel

max V; can never cut max V; to the right of al since max V;(G,R,X) on

X { o must dominate V;(G,R,G). Thus there exists a unique value of o

such that the firm is indifferent between a risky target and a safe

target unless safe targets are preferred for all o. We define this

value as ;3. Figure 7 also illustrates that ;3 2 0

3 > 62! Therefore

| . .
we have shown the following. Define
! - VZERX)
| | | - . s T
i I ] i Vr(O,R,X) oy = R if max Vz(c.R,X) 2 max VZ(O’,R,X) for all o 2 R
1| | i 2 (31)
(| 1 |
| | | I {olmax V3(o,R,X) = max VX(o,R,X)} otherwise
[ | | i ’
o, X _
0 R o’ 75 Q:o"um ré 1 ’ . . Proposition 6: 63 is unique and well-defined. Furthermore, if
Gy > R, then (i) doy/dc < 0

(ii) d§3/dR >0
(iii) T3 > o3 > o,

where ;3 = min{X|X = argmax VZ(G,R,X)].
o<X(1

Up to this point we have said nothing about the uniqueness of
$3 Or ry = argmax Vz(o,R,X) for 0 ¢ X { 1. No simple set of conditions
guarantee either is unique or that g is even well-defined.

Nevertheless, ;3 is unique and well-defined. If o < ;3 then the firm



FIGURE 6

Form of max V;(G,R,X) for X > 0 and relation to V;(G,X,O)
X

sets a risky target for the second to the last period and if o ) P

3 it

sets a safe target for the second to the last period. Note that if

max v;(U,R,X) o < ;3, then T3 must necessarily exist]! We can state the following

X

. Corollary to Proposition 6 even though the premise may not hold for
S(o,X,r)
’Vz( D‘! rs.

Corollary 2: s3 is unique and well-defined for o ) ;2. If s3 & (0,0)

and r3 e (0,1) then

(i) drs/dc £0¢ dss/dc

T e e s e e e e
QA e o e o e e
| e e e e e e

(ii) ds3/dR > 0 and dr3/dR >0

W
Py

(iii) dss/da 20 = drs/da.

The comparative statics given in Proposition 6 and its
FIGURE 7

Corollary can be summarized as follows. As the cost of research

Definition of 63
increases, the firm is less likely to set a risky target. If it does,

it generally sets a less risky one. If it does not, it reveals more

of what it knows in a safe target. If sponsor knowledge increases,

the firm is more likely to set a risky target and, if it does, the
target will be riskier. If it does not set a risky target it reveals

more of what it knows., Finally, as the prviate knowledge of the firm

increases it is more likely to set a safe target. It's optimal safe

target also increases, so that it reveals some of this additional

knowledge, but its optimal risky target is unaffected. Interestingly,

Corollary 2 also shows 53 is uniquely defined on any relevant range of

o; that is, if o < ;3 then the firm sets a risky target; it only sets

a safe target if o 2 ;3 and in this case Sg is unique.

Q' Brosme; W () (T (S (RS
| o s s e o e e

N
QY o s o o s e
o i

w
23
(8
Q
N¥
—h



33

Before considering the firm’s optimal research strategy in the
three—period problem, a decision which is made prior to the selection
of an optimal target for the two—period problem, two further issues
are of interest. The first concerns our assumption, made at the
beginning of the analysis of risky targeting, that the firm always
conducts research in the two—period problem if it faces a risky
target. We know that X e 52 if and only if ¢ > V;(c,R,X) when o < X.
Referring to the example of V; used in the above discussion, Figure 8

illustrates 82 and SZ'

[Figure 8 about herel

r . I .
is not concave, S, will not

It is clear from Figure 8 that if V2 )

necessarily be a connected set. However,

min{r3|r3 = argmax V;(G,R,X)} =T

e S, as long as S, # ¢ . As shown
RCX<1 3 2 2

above, I, is the crucial risky target (see Proposition 6). If the

firm sets a risky target, it will be ;3, and ;3 € §2. Thus it will
never set a risky target at the end of the third to the last period in
such a way that it will want to drop out of the contractual

relationship at the beginning of the second to the last period. This

result is stated without proof in Corollary 3.

Corollary 3: I B , T, eS,.
Corollary 3: If o < o3 and 82 # ¢, then Ty € 82

The second issue related to the target setting decision at the
end of the third to the last research period concerns conditions under
which the firm sets a safe target which reveals all of its current

knowledge, i.e. conditions under which s3 = o, and r3 is either not

FIGURE 8

Definition of Sz(c,R

VI(G,R.5)

34
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well-defined or is dominated by a safe strategy. To analyze, this Proposition 7:

possiblity, note that sg=g¢ if and omnly if

(a) S3(01,R) c S3(c2.R) for ¢, < c,

S c
«'3V2(u.X.R)I (b) S3(c,R1) C SS("'RZ) for R1 <R,
LN g (¢) S,(c,R) €8, (c,R).
3 2
But an examination of this derivative in the three cases relevant to

6 Again, lower costs and a lower level of sponsor knowledge encourage
safe targeting reveals no apparent systematic behavior.

the firm to conduct research when it faces a risky target. Similarly,

it also finds a longer sequence of potential research "sub—-contracts”
5b., Risky Initial Targets

_ an encouragement to do research when the current target is risky.
Using Gz we can write (19) as

Analogous to the two—period problem, (32) becomes

°3 1
-¢ + W(X,R)(1-X) + pjx V,(2,X,1,)dz + pj_ V,(2,X,5,)dz
°3
V3(6,R.X) = max (32) o3
V,(c,R,X) = (33)
0 3
0 if Xes,

[}

3 1 _
¢ + W(X,R)(1-X) + B[ V,(z,X,rp)dz + B V,(2,X,5)dz if X e S,
X _

where ;é = ;3(X),r3 = r3(X) and s3 = ss(z.X). Here ry can be any

S5c: Safe Initial Targets

risky target which maximizes V;(z,X,r) onr g (0.1].7 Again, the

JPU A As in the two-period problem, we know o 2 X in this case but
initial target, X, for the three—period problem becomes the level of

sponsor knowledge in the two—period problem. Define whether o exceeds oy or not is unknown. Thus (20) becomes
bl o * 1 *
o5 L —c + WK,R) + Bf V,[0.X,x3(0)1dz + Bf V,[2,X,x;(2)1dz
S3(e,R) = (Xl > WL,R)(1-X) + B Vy(z,X,rp)dz + Bf V,(z,X,s,)dz) V4(c,X,R) = max 0 ° (34)
3 x 2 3 ) 3 3
*
] W(X,R) + BV,[0,X,x5(a)].
and let gs(c,R) be the complement of Sa(c,R) in [0,1]. The following where

result follows in an analogous fashion to Proposition 4 and is stated _

1,(X) if y < 0,(X)
without proof * 3 3
P . xs(y,X) =

s3(v.X) ify 2 ES(X).
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and y ¢ {o,z}. The issue here is again whether or not to do research.

The first term in (34) exceeds the second if and only if
1
o < Bf (V,z,%,3;(2)] - V,[e,X,x;(e)1}dz (35)
G 2 ’ ’ 3 2 ? ’ 3 .

A reservation level of private knowledge for the three—period problem,

*
o3, can thus be defined by

1
c; =0 if ¢ ) BIG{VZ[Z,X,x;(Z)] - VZ[G,X,x;(u)]}dz for all o

(36)
- jl V,[2,%,x,(2)] - V,[0,,X,x,(0;)1}dz otherwi
¢ = . alz, ,x3 z 2 G, ,x3 63 z otherwise.
]
*
Proposition 8: 63 is unique and well-defined. Furthermore, if 6; >0
* —
then (a) o3 > o3
*
(b) dcs/dc <o
*
(c) das/dX 20
*
If o < o3 then the firm conducts research., If o ) a; then it does

not. If 6; > 0 then it is also greater than ;3, the critical level of
private knowledge that makes the firm indifferent between setting a
risky versus a safe target at the end of the third to the last
research period. As in the two—period problem, if the firm enters the
three—period problem with a level of private knowledge below the
cutoff point for setting a safe target in the subsequent research
period, it always conducts research, hoping to avoid the need to set a
risky target in that period. Thus, if t ) 2, and o*

3
*
always conducts research if it doesn’'t pay to drop out. If o3 = 0,

> 0, the firm

38

whether or not it does research depends entirely on whether or not it
sets a risky target. Again, increases in research costs or decreases
in sponsor knowledge reduce the likelihood of doing research.

*
Finally, the definition of o3 allows (33) to be written as

] 1
-¢ + W(X,R) + BI VZ[G,X,X;(G)]dz + BI V2[z,X,x;(z)]dz if
V(o X,R) = 0 °

*

W(X,R) + BV2[6.X,x;(6)] if o 2 oy

One final result is of interest when t = 3. This concerns the
*

*

% *
relation of o3 to Oy- Proposition 9 shows o3 > S, when the discount

rate is sufficiently high so that the longer the contractual horizon,

the more likely the firm is to do research when it faces a safe

* *
target. Otherwise, o, { o,.
3 2
L. ) A * ) % > A
Proposition 9: There exists B3 ¢ (0,1) such that %3 ¢ % if B < B3.

VI. SUMMARY AND CONCLUSION

The formal analysis this paper has dealt only with contractual
horizons of t =1, 2, and 3. It is tedious but relatively
straightforward to generalize the results to t ) 4. We will not do
so. The unique feature of the model from a techmnical point of view is

that in spite of nonconcavities in the value functions for t ) 2,
a number of strong results are possible. In particular, we have shown
that an increase in the number of potential contracts increases the
likelihood that the firm will set a risky target and makes it more

likely to do research if it faces a safe target (the latter depending

<

[

w
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on a relatively high discount rate). In fact, any parametric change
which increases the likelihood that the firm will do research will
also increase the likelihood that it sets a risky target. This is an
unintuitive result, especially for increases in the number of
potential contracts. To see why it holds, suppose the firm has a
level of private knowledge at which it is just indifferent between a
safe and risky target. Let the number of remaining contracts increase
by one. If the firm now sets a safe target it will also want to do
research in the next period. But if this research then increases its
stock of knowledge it cannot capitalize on it until another research
period passes. Hence, at the margin, it is willing to incur some risk
in order to capture part of these potential gains one period earlier.
This argument holds as long as there exist safe targets for which
research is desirable.

Of course our results were all obtained under the assumption
that expectations over research potential are uniform, While this is
a moderately strong assumption, the results may well hold for other
distributions. This is likely to be the case because even with the
uniform distribution, the value functions for horizons greater than or
equal to two are not concave in targets. That we were able to derive
our results in spite of this suggests a cautious optimism regarding
generalizations to nonuniform distributions.

It is also possible to analyze other assumptions regarding the
payoff function W(X,R). An assumption that wXR < 0 will not change

the basic qualitative features of the model, but will reverse some of

40

the comparative statics results and leave others ambiguous. However,
if wRR > 0, the firm's optimal strategy can be quite different. In
particular, if wRR is large enough (and positive), the firm pursues a
kind of "bang-bang” policy —— it either reveals none of what it knows
or everything. This also holds for our earlier analysis (Balbien and
Wilde, 1982).

The more interesting gemeralizations, though, would introduce
some degree of sophistication on the sponsor side of the problem. It
is these we intend to pursue in future research. It should be pointed
out that the main issue from the sponsor’s point of view is not
misrepresentation of results per se (either through under-reporting
safe targets or over—reporting risky targets). The sponsor is
interested in some overall measure of project bemefits, and
misrepresentation may be optimal if it is associated with positive
incentives to do research. Our partial equilibrium results, both here

and in our earlier paper, suggest this might well be the case.
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APPENDIX

Proof of Lemma 1: Define f(x) = W(X,R)(1 - X). Then

£'(X)

Wx(l -X) -V,

fu(x)

Wxx(l - X) - ZWX.
Hence £f"(X) < O since WXx < 0 and WX > 0. Q.E.D.

Proof of Lemma 2: It is trivial that

lim W(X,R)(1-X)-c = W(o,R)(1-6)-c < W(o,R)
X -0

since ¢ > 0 and 0 { o £ 1. Q.E.D.

Proof of Proposition 1: The result is trivial for changes in c¢. For

changes in R, note 8f(X)/éR = WR(X,R)(I—X) < 0, where f(x) is defined
as in Lemma 1., Since increases in R decrease f(X) for all X, they
enlarge the set of targets for which research does not pay (see

Figure 1). Q.E.D.

Proof of Proposition 2: The proof of this proposition is obvious from
Figure 2. The optimal risky target, T, is independent of o, but

W(o,R) is strictly increasing in o. Hence if ;é > R, then it is

unique and well-defined and strictly less than r,., Taking the total

2

derivative of ¢ = W(rz,R)(l-rz) - W(;Z,R) with respect to ;2 and ¢

gives

dcz/dc = —1/wx(oZ,R) )
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Similarly 0 = WR(rz.R)(l - rz)dR - WX(GZ,R)dGZ. Hence wXR 2 0 and

T, > %, imply 0 = WX(UZ,R)dc2 + WR(GZ,R)dR or
daz —WR(rZ,R)(l—rz) - WR(GZ,R)
@® - — > 0.
WX(GZ.R)
Proof of Proposition 3: By definition,
WX(rZ,R)(l—rz) - W(rZ'R) =0. (A1)

Hence
dry/dR = [Wp(z,,R) - Wyp(r),R) (1-1,)1/[Wyy (r,,R) (1-1)) = 2Wy(r,,R)].
But wXR 2 0. Hence drz/dR > 0. Clearly dr2/dc =0, Q.E.D.

Proof of Proposition 4: Define

2 1
£,(X) = W(X,R)(1-X) + ajx V,(2,%,1))dz + 5]_ V,(2,X,2)dz.
%
Part (a) follows trivially since f2 is independent of c. To see part
(b) note that 6f2(X)/aR = WR(X,R)(l—X) ¢ 0, Finally, part (c) follows

since f2(X) > fl(X)' where f, is defined in Lemma 1. Q.E.D.

1

Proof of Proposition 5: Define

*

3 -V (6.%,x;) 14z (A2)

1
Hy(c,X) = a.fc[vl(z,x,x

h Y = x2(2,X) and x. = x2(0,X) ivel
where x2 = Xz z, an x2 = X2 g, ’ respectlve y.



But

X = 5,(X)  if 3y <o)X

where y & {z,0}. Hence (A2) becomes

O,

2

BJU [V, (2,%,1,)
1 [¢}

_ 2
Hz(c,X) =

1 —
BIG[Vl(z.X,z)—Vl(c,X,c)]dz if o c,
But Vl(z.X,rz) = —c + W(rZ,X)(l—rZ) and Vl(z,X,z) = W(z,X). Hence

1 -
BI_ [W(z,X)—W(rZ,X)(l—rz) + cldz if o < o,
[+}
Hy(c,X) =\ °

1 v e
ﬁJG[W(Z,X)—W(a.X)]dz if ¢ ) c,

Differentiating (A3) gives

0 if o < Eé
anz/ac =

-B(1-0)VWg(0,X) if o 32

Furthermore,

1 1 -
B W(2,X0-W(xy, D) (17ry) + cldz = B[ [W(z,0)-W(s,.0)1dz

o,

2

o,

2

by definition of o, .

2 Also, H2(1,X) = 0. Thus we have Figure Al.

1 -
- V(0. X,1,)] + aj_ [V, (2,X,2)-V,(0,X,15,)1dz if & (o
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2

(A3)

(A4)

Proof of Lemma 3: Since the form of V

[Figure Al about herel

Clearly o, < c*

2 2 ¢1 for0<ec¢K( le [W(z,X)-W(;Z,X)]dz. To sign

%

* *
doz/dc and daz/dX take the total derivatives of
e %) -V, (o, X,x
c = BJ . l(ztx:xz 1(62, .XZ)]dZ,
%
which reduces to
1 *
c = Bf *[W(z,X) - ¥(o,,X)]dz
%2

* —_
since S, > o,.

2 This gives

* * *
dcz/dc ‘1/ﬂ(1-62)wx(62,X) <0

1

* * 1 *
doy/ax = | gz - WR(UZ,X)]dz/J JxlopXdz 2 0,

%2 )

the latter since WRX 2 0. Q.E.D.

s

5 depends on where o lies

- *
relative to o, and o, We again need to consider three cases.

- *
CASE 1: o < o, < S,
From (24) we have

(o3
2 1
V;(G,R.a) = -¢c + W(o,R) + ﬁfo [-¢c + W(rz.c)(l—rz)]dz + ﬁj; W(z,0)dz.

%

But from (30)

(A5)
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%2 1
lim VX(o,R,X) = —c + W(o,R)(1-0) + pj [-c + W(r,,0)(1-0,)1dz + B] W(z,o)dz. (A6)
2 2 2
X 2o c ;
FIGURE Al 2
Definition of 0; Clearly (A6) is less than (AS5).
ASE 2: .
C i ooy o< %,
From (25),
(] 1
Hz("'x) V;(G.R,c) = - + W(o,R) + BI W(o,0)dz + BJ W(z,0)dz
L] c
=~ + W(o,B) + B[ W(z,0)dz. (AT)
c
But o 2 ;2 so (A6) reduces to
1
p lim V3(o,R,X) = -c + W(e,R) (1-0) + B[ W(z,0)dz. (A8)
X o 4
Clearly (A7) is greater than (A8).
CASE 3: o, < oy ¢
: o, < o, Lo
Here (27) gives
V,(0,X,0) = W(o,R). (A9)
Thus, using (A8) we need to show
1
W(o,R) > —¢ + W(o,R)(1-0) + BI W(z,o0)dz
c
or
1
¢ > B[ W(z,0)dz - W(s,R)o. (A10)
c
*
But o 2 S, implies

1
¢ > B W(z,X) - W(o,X)]dz.
[e3
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1
Since we are letting X = o, this implies c > BI W(z,c)dz, which
[

implies (A10). Q.E.D.

Proof of Proposition 6: That ;3 is unique and well-defined follows

from the text. That ;s < ;3 where ;3 is the minimum of the set of
optimal risky target follows from the fact that max V; is increasing
for o > ;2. The partial derivatives can be signed by examining the
following derivatives.

For safe targets we need to consider av;/ac and BV;/GR on

- % *
ranges of o ¢ (02,62) and o € (02,1), cases 2 and 3 given in equations

(25) and (27) in the text. Hence

- *
. -1 for o & (62.62)
av, (o,R,X) foc = (A11)
0 for o e (6;’1]
aV,(s,R,X) /3R = Wp(X,R) for o ¢ (o,,1]. (A12)

For risky targets we need only consider equation (30), or

o,
2
V3(e,R,X) = =¢ + W(X,R)(1-X) + pf [
X

%

Hence

aV,(o,R,X) /oR = Wp(X,R) (1 - X) (A13)

1
¢ + W(r,,X)(1-1,)1dz + B_[_ W(z,X)dz
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and

02 dr dr
8V;(c,R,X) fac = -1 + B[ [-1 + Wy (x),X)(1-r,) 5= - W(r,,X)721dz
20 X X' "2’ 2" de 2% de

do, do
+ Bl-c + W(rZ,X)(l—rz)]Ec—z - sW(az,X)E}. (A14)

But (Al) implies Wx(rz,X)(l - r2) - W(rz,X) = 0 and the definition of

o, implies —¢ + W(rz,X)(l - r2) = W(;z,X). Hence (A14) is simply

[}

2 -
aV3(o,R,X) /dc = -1 + B (-1)dz = -[1 + (5, - D]I. (A15)
X 2
Comparing (A15) to (A11) we have for all X such that they are defined,

Iav;(a,R,X)/acl < |6V;(6,R,X)/8c|

and
lav,(o,R,X) /oR| 2 |3V, (s,R,X) /oRI.

Hence d;é/dc > 0 and d;s/dR > 0. These same results can be obtained by

totally differentiating V;(G,R,Sa) = V;(G,R,rs) using some selection
A
for s3» say s = max{s3|s3 = argmax Vz(c,R,X)}. Q.E.D.
1<X<o

Proof of Corollary 2: In general s3 is defined by GV;(G,R,Ss)/BX =0
and r; by GVE(G.R.rs)/OX = 0. Consider first case 1 in which V; is

given by (24). Here S3 is given by

%2 1
Vy(s3.R) + Bfo Wp(zy,83) (1-x))dz + Bf Wy(z,s3)dz = 0. (A16)

%
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Hence

c

2
248 a2 _ _y _
-10%v; /ox*1ds, = ( a[o [Woy (15 585) (1-1) = Wp(r,,5,)1(95,/0c)dz + [Wp(x,,s,) (1-1,)

+ [We(ry,s.) (1-1,) - W(Ez.ss)l(aEZ/ac)}dc

But arz/ac = 0, and aZV;/aX2 ¢ 0 by the necessary second order

condition. Also, d;z/dc ¢ 0. Hence

dsy/de = ~[W(x),55) (1-1,) - W(s,,s,)1(35,/ac/(a%V5/ax%) > 0.

2'%3
In cases 2 and 3 (equations 25 and 27), S3 is clearly independent of
c¢. Furthermore, taking BZV;/BX2 in (25) and (27) shows V; is concave
for o 2 ;2. In these cases S3 is uniquely defined.

For r3 we use equation (30). Differentiating with respect to
X gives

2
Wx(rs,R)(l—rs) - W(rS.R) + Bjr WR(rz,r3)(1-r2)dz + ﬁji WR(z,rs)dz

3 o,

—-Bl-c + W(rz.rs)(l—rz)] =0 (A17)

as the equation which defines ;. Hence

-(82V;/oxP)dz, = (BIWp(ry,x;) (1-x,) - Wy(sy,x;)1(00,/0¢))de,

or
dryfde = -BlW(xy, 1) (1-1,) = Wy(s,,1,)1(85,/dc) /(a°V;/oX") .

But we know from Proposition 2 that r, > ;é. Hence
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Wp(o,,T5) & Wplr,,z,) (1-1)) < 0. This implies dry/de < 0.
For changes in R, we have from (17) that
—(@*v/axHazr, = [Wy (z,,R) (1-r,) - W, (r,,R)1dR
2 S XR' T3’ 3 R '3’
or
_ _ _ 2,1 2
dr3/dR = —[Wyp(rs,R) (1-15) WR(rs,R)]/(a Vz/ax ) > 0.
For $3» (A16) gives, in case 1,
2.8 2 _
€ v2/ax )ds; = Wyp(ss,R)IdR
or
ds,/dR = -W, (s,,R)/(3%VS/ax%) > 0 (A18)
3 XR' °3° 2

In cases 2 and 3 (equations (25) and (27), we get results identical to
(A18) .
For changes in o we already know g is independent of o. For

S3, it is apparent (A16) is independent of o. In case 2, (26) implies

ds;/do —(GZV;/868X)/(82V;/3X2)

-B(l-a)WXR(c,X)/(asup[ZV;/GXZ) > 0,

and in case 3, (28) implies

_ 248 /.2
dsz/do = -BWyp(o,s,) /(3°V,/8%7) > 0. Q.E.D.
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Proof of Proposition 8: Define

1
Hy(o,X) = BIGIVZIz,X.xz(Z)] - V,[e.X,x,(0)1dz

*
where x, is defined as in the text following equation (33). Using

those definitions,

3 1

o
Bja [V, (2%, 1)V, (0,X, 1) 1dz + [ (V,[2,%,5,(2)1-V,(0,%,1,) }dz

(o}
_ 3
Hs(o.X) =

1 -
Bj {V2[z.X,s3(z)]—V2[c,X,s3(6)]}dz if 6 > o

3
]
where g is any optimal risky target (e.g. ;3) and $3 is the unique
safe target.
But ) is independent of o for o ¢ ;3 (and for z < ;3). Hence
0 if o < o,
6H3(6.X)/60 =

JJ av, av, ds, _
-B a[7ﬂ:(c,x,s3) + 75((6,X,53):E;]dz if o 2 o3

Now if 53(6) < 0 then 8V2/6X = 0 evaluated at (G.X,sa). If 53(6) = o,

then ds3/da = 0. Hence

0 if o < oy
8H3(0',X)/60 = (A19)

1av, _
-s_[ﬁ;(o.x.ss)dz it o 2 o

But avz/ac > 0 evaluated at (c,X,sa) when o 2 ;3. Moreover,

ifo<a
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H3(1,X) = 0, Thus H3 has the form illustrated in Figure A2,

[Figure A2 about here]

* *
Thus o3 is unique and well-defined. Furthermore, o, > o That

3 3°
* *
dcs/dc < 0 and das/dX 2 0 follow from differentiating ¢ = Hy(o,X;c) in

the usual fashion. Q.E.D.

Proof of Proposition 9: We know from Proposition 6 that ;5 > ;é.

Moreover, H2(1,X) =0 = H3(1,X)> Hence if we can show

IBHZ(G,X)/BUI % |3H3(0.X)/aa| on o g [6;.1] as B

Al

A
B3 we are dome.
(See Figure A3)

[Figure A3 about here]

For ¢ » 03 > ;2, from (A4) we have

aHZ(a,X)/ac = -p(1 - o)¥Wy(c,X),
and from (A19)

14v,
0H,(5,X) /00 = -B‘[a 2o (0.X,5;) dz.

But S3 > X since X is the new state of sponsor knowledge. Furthermore
3 is a safe target and on o ) Gy
9H,(¢,X) /oo = -52(1—u)w (0,s,)
3 D O M
Thus |6H2(0,X)/66| < |8H3(G,X)/86| for

ce [;3,1] if and omnly if

B2(1-0) Wy (0,55) > B(1-0)Wy(a,X),

or
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53
FIGURE A2 BWX(G,ss) > WX(G.X).
'] 03 '] *
Definition of Og But s; > X implies Wx(c,ss) > WX(G,X). Thus if P is sufficiently
close to one we have
x) ﬁwx(u,s3) > WX(G,X),
0,
H(o, . . A
and o3 > Oy If g = B3 where
A
1 By = Wy(o.s3)
c -
1 = Otherwise, if B < B,, or < o
1 o3 = 0,. erwise, if B B3' o3 Sy Q.E.D.
A g
= %
(o] 0; 0 1
FIGURE A3

Rel . * < *
elation 02 03
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FOOTNOTES

In Balbien (1981) cost estimates for parabolic dish power systems
as elicited from Jet Propulsion Laboratory R and D engineers are
typically found to have concave or convex distributions. However,
later follow up interviews dealing with physical performance
characteristics (based on engineering efficiencies) yielded
estimates which were almost always uniform. These latter

estimates were reported in an unpublished JPL internal memo.

The crucial assumption is, surprisingly, W ¢ 0. See the

RR
discussion on page 110 of Balbien and Wilde (1982).

The set of targets for which the firm does research has a simple
structure in the one period problem, The general definition thus
seems specious. However, as the length of the horizon increases,
the value functions are not necessarily quasi-concave. Thus

gt(c,R) may not be connected when t > 1, We start with a general

notation in order to be consistent throughout the paper.

Conditions which guarantee r, is an interior maximum are similar
to those stated in Balbien and Wilde (1982). See footnote 8, page
112. Again, Lemma 2 is an obvious result. We state it formally
in order to maintain consistency with more complicated analogues

when t > 1. See footnote 2.
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Conditions which guarantee S3 and r; are interior maxima are again
similar to those stated in Balbien and Wilde (1982, footnote 8,

page 112).

Once the firm reaches a situation where no safe target ever
induces it to do research, it will never again do research. In
this case it still may not wish to reveal all it knows
immediately. However, prior to this point it may reveal all it
knows in a particular period, do research the next period, and

withhold some of its new knowledge.

There is no real problem with nonuniqueness of I3 from the firm's
perspective——all yield identical expected payoffs. Formally some
selection is required but as the discussion associated with

Proposition 6 showed, T

3 = min{ra} is the natural one.
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