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ABSTRACT 

Previous work in this area has analyzed research and 

development as a stochastic racing game where the strategy is the rate 

of investment on the innovation, conditional on no success to date. 

This paper generalizes this work in several ways; first, we use a more 

general hazard function, although we retain the assumption that it 

depends only upon current investment. We find that when patent 

protection is perfect, equilibrium investment rates are monotonically 

increasing over time. Second, we allow for the possibility that some 

firms are currently receiving profits from the sale of a product which 

will be replaced by the innovation. This allows us to determine 

whether current industry leaders will tend to be more or less 

innovative than firms with smaller current market shares. We find 

that, in a stationary equilibrium, current industry leaders will tend 

to invest at a lower rate than those firms which currently have 

smaller market shares. We also remark that a stationary equilibrium 

implies that the random success date follows an exponential 

distribution, an assumption which is ubiquitous in the earlier 

theoretical work on this subject. 



RESEARCH AND DEVELOPMENT WITH A GENERALIZED HAZARD FUNCTION 

Jennifer F. Reinganum 

I. Introduction 

The purpose of this paper is to serve primarily as a technical 

appendix for recent work by Loury (1979) , Lee and Wilde (1980) , 

Dasgupta and Stiglitz (1980) , Feichtinger (1981) and Reinganum 

(1981,1982) . These papers analyze research and development as a 

stochastic racing game where the strategy is the rate of investment on 

the innovation. In the first three papers, this rate is assumed to be 

constant, resulting in an exponentially-distributed waiting time for 

the innovation. The last two authors have allowed time and/or state 

dependence of the strategies, but have assumed specific functional 

forms for the hazard function, or conditional density of success. The 

most important feature of these hazard functions is that they depend 

only upon current investment, and not upon accumulated previous 

investment. Reinganum provides an extended example, while Feichtinger 

assumes convex costs (equivalently, a concave hazard function), and 

computes and analyzes via a phase diagram an example with a constant 

elasticity cost function. Both find that, when the planning horizon 

is finite, in equilibrium firms will invest in R and D at an 

increasing rate over time, and will consequently experience an 

increasing hazard rate over time. That is, given no success to date, 
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each firm will be increasingly likely to succeed in the next time 

increment. When the planning horizon is infinite and the (potential) 

market for the innovation is stationary, then a constant rate of 

investment is consistent with equilibrium behavior. Constancy of the 

investment rate implies an exponentially-distributed waiting time. 

Thus under the aforementioned circumstances the commonly-made 

assumption of an exponentially-distributed waiting time will actually 

be a consequence of equilibrium behavior in a somewhat more general 

setting. 

This paper generalizes previous work in several ways; first, 

we allow the hazard function to have an initial region of increasing 

returns, although we retain the restriction that the hazard rate 

depends only upon current investment. We find that when patent 

protection is perfect (as assumed in Reinganum (1981) and Feichtinger 

(1981) ), equilibrium investment rates are monotonically increasing 

over time. Thus the results from these extended examples hold true 

more generally, so long as the hazard function depends only upon 

current investment (and for finite time horizons). When firms suffer 

immediate imitation, at most one firm may invest at a decreasing rate 

and then only for small t; near the terminal date, both must invest at 

an increasing rate. If firms are identical and the equilibrium is 

symmetric, then both must invest at an increasing rate over time. 

Thus the results of these extended examples are robust to more general 

formulations if the hazard function depends upon current investment 

only. This suggests that it is particularly important to attempt to 



3 

include accumulated expenditure in the hazard function, to see if this 

result may be reversed under more general circumstances. (This 

generalization, while desirable, makes it impossible to use two-

dimensional phase diagrammatic analysis and is beyond the scope of 

this paper). Second, we allow for the possibility that some firms are 

currently receiving profits from the sale of a product which will be 

replaced by the innovation. This allows us to determine whether 

current industry leaders will tend to be more or less innovative than 

firms with smaller current market shares. While we cannot make 

general conclusions on this question, for firms which are identical 

except for their current revenue flows, and in a stationary 

equilibrium, we find that the higher the current rate of revenue, the 

lower is the equilibrium rate of investment on the new product. That 

is, current industry leaders will tend to be less innovative than 

firms which currently have relatively small market shares. Finally, 

we conduct some analysis for an arbitrary finite number of firms; 

however, eventually we restrict ourselves to two firms in order to 

follow Feichtinger's use of phase diagrams to perform detailed 

analysis of the equilibrium paths. 

II. The Model 

A key technological assumption in models of research and 

development is that invention is uncertain; investment in R and D is 

only stochastically related to the date of success. That is, a firm 

can stochastically hasten its date of invention by increasing its rate 

of investment, but it can never guarantee itself a particular success 

date. 

Let �
i denote firm i's date of invention, with probability 

distribution F
i (t) = Pr{�i � t}. Define the state variable for i 

x
i (t) = 1 - Fi (t), and the control variable for i ui (t); ui (t)

represents firm i's rate of investment at date t. The state and 

control variables are related by the hazard function h
i(ui): 

or 

F. (t)/(l - F. (t)) 1 1 h
i Cui Ct», 

x
i(t) - hi (ui (t))xi (t).

Assumption 1. The function h
i(") is assumed to satisfy 

(a) 

(b) 

and 

(c) 

'' 

h
i (0) 0, 

h '. Cu.> > o 1 1 

lim hi(ui) 
u

i 
-7

"' 

Mi 

for all u. e [0,m), lim h '. Cu.> 1 
u. -7"' 1 1 

1 

there exists .J!
i < "' such that 

h
i Cu

i) 2 Ci) 0 as u
i � (2) .J!i• 

0 

Thus we assume that no progress is made without a commitment 
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uf resources, and a greater investment results in a higher conditional 



density over the success date, but a very high investment rate yields 

only a finite hazard rate. We allow for an initial region of 

increasing returns, but eventually the firm experiences a declining 
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marginal return to increased investment. Previous models have assumed 

convex cost functions (or, equivalently, concave production functions 

hi(")) of the constant elasticity class (see, e. g. , Feichtinger

(1981), Reinganum (1981), (1982)). 

Let Pij denote the value of j's success to firm i. That is,

-r.t 
firm i receives (in present value terms) e 1 P .. if firm j succeeds 1J 
at t, j = 1,2, • • •  ,n. Thus patent protection need not be perfect, but 

suppose that P .. 2 P . . •  Let R. denote flow profits to firm i which11 1J 1 
are received so long as no firm has completed the innovation. Thus 

the firms may be operating currently in a market which will be 

affected by the successful development of the innovation. (In 

previous models, Ri has always been assumed to be zero). Suppose

P .. 2 R./r . • The inclusion of this pre-innovation revenue term allows 11 1 1 
us to assess the impact of current market power upon the incentive to 

invest in research and development. 

Then the value of firm i's profits can be written 

vi(u)

where 

I
T -r.t
e 1 

Ilx.. J 
0 J 

C[ hj(u.)P .. + R. - u.]dt
J J 1J 1 1 

x. J h. (u.)x. , x. ( 0) = 1, x. (T) 2. 0, j J J J J J 

(1) 

1.2,, • • •  ,,n. 

Notice that Fi(t) 1 - exp{-Jt
h.(u.(s))ds} > 0 for all t < m since h. 

0 
1 1 1 

is bounded. Thus x.(T) > 0 automatically. This is a consequence of J 
the assumption that hi depends upon current investment ui only. A

more general specification would have hi= hi(ui,xi). While it would 

be desirable to obtain results at this higher level of generality, it 

does not appear to be possible aside from computational examples, 

since the differential equations characterizing the Nash equilibrium 

investment rates will be nonseparable in (x,u) and will therefore be 

impossible to diagram either in state or control space. 

Assumption 2. Suppose that h'. (O) > 1/P . . •1 11 
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· -
Lemma 1. There exists a unique value ui < m such that hi(ui) = 1/Pii;

moreover, Yi < ui. If Pii is the capitalized value of a constant

revenue stream n .. , P .. = n .. /r., then a;./an .. > 0 and a;./ar. < O. 11 11 11 1 1 11 1 1 

Proof. Since h '. (O) > 1/P .. and h'. 'cu.) > O for all u. � u., -- 1 11 1 1 1 -1 
h:(ui) > 1/Pii for all ui E [O,yi]. After yi' h:(ui) is monotonically

decreasing and continuous. Since h'. (u.) > 1/P .. and lim h'. Cu.) = 0, 1 -1 11 -7m 1 1 ui 

there exists a unique value ';i". < m (and > u.) such that h '. C';i".) = O.1 -1 1 1 
Differentiating the equation h'. (;-.)P .. - 1 = h'. C;.)n .. /r. - 1 = 0 and1 1 11 1 1 1 1  1 
solving yields 

and 

a;_/anii 1 

ai./ar. 1 1 

2 , , 
- r. /( n .. ) h. 1 1 1  1 

1 /nii<c ;i> < o. 

(u.) > 0 1 



III. Strategy Space and Equilibrium Concept

Q. E. D. 

In differential games there are (at least) two alternative 

strategy spaces of interest, corresponding to alternative assumptions 

regarding the information structure and/or players' ability to commit 
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themselves. These are path (or open-loop) strategies and decision rule 

(or closed-loop or feedback) strategies. The distinction is important 

mathematically and economically. The two strategy spaces can lead to 

quite different conclusions and one must be careful to use the most 

appropriate one in applications. However, previous work (Reinganum 

1981,1982) has shown that when the hazard function depends upon 

current investment only, the equilibrium strategies will depend only 

upon time, and not upon the state variables. Thus in this particular 

case, we are justified in considering open-loop or path strategies to 

be the objects of choice. 

Definition 1. Define the set of admissible strategies for i to be 

ui = {ui : [O,T] -7 [O,m) I ui is differentiable} .

Definition 2. Firm i's payoff function is Vi(u) as defined above in

equation (1) • 

A 
Definition 3. A strategy u.(t;u .) SU. is a best response to the1 -1 1 
vector u . = (u.) -�· of rival strategies if -1 J J 1""1 

. A . 
V1Cu1,. ,u. 1,u.,u.+1,. ,u ) 2 V1Cu1,. ,u. 1,u.,u.+1,. ,u )1- 1 1 n 1- 1 1 n 

for all ui S U i.

Definition 4. A strategy vector (u�)� l E u1 X 
• •  XU is a Nash1 1= n --

eauilibrium if, for i = 1,2, • • •  ,n, 

• • • • • • • • • 
V1(u1, • •  ,u., • • •  ,u ) 2 V1Cu1, • • •  ,u. 1,u. ,u.+l' • • •  ,u )

for all u. SU . • 1 1 

1 n 1- 1 1 n 

• A * 
Clearly ui(t) = ui(t; u_i). 

IV. Necessary and Sufficient Conditions for Equilibrium Play

The behavioral assumption which facilitates characterization 

of the Nash equilibrium is that each firm maximizes its own payoff 
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function, taking the strategies of its rivals as given. In this case, 

firm i chooses u. so as to maximize Vi(u), taking Cu.)-�· (and1 J J 1"" 1 

(x.) -�·> to be arbitrary functions of time subject to the constraint J J1""1 

that u. SU. (and thus x. = exp{- Jt
h.(u.(s))ds} ). Since x.(T) > 0 J J J o J J 1 

automatically for T < m, we may disregard the constraint that 

xi(T) 2 0. Define the Hamiltonian for firm i

- r.t 
H.(t,A..,x,u) = e 1 [Ilx. [ h.(u.)P .. + R. - u.] - A..h.(u.)x . •1 1 j J J J J 1J 1 1 1 1 1 1 

Since (u.,x.) -�· are functions of time only and are J J J1""1 
i1.sensi tive to choices of ui, we can apply standard optimal control

theory to obtain the following necessary conditions (2)-(5). Let di
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denote the Hamiltonian-maximizing value of ui.

and 

aH. 
_1 
au. = e 1 

-r.t , , 1 Il x.(h.(d.)P . .  - 1) - A..h.(d.) = 0 
j/i J 1 1 11 1 1 1 

a
2H. -rit

n h'.1
cd.>Pii 

1 _  XJ. 1 1 -2·. - e 
jli aui

A.i<' (di) s. 0 

-aH. 

(2) 

( 3) 

__ _ 1 • 

ax = A. 
i i 

[ -r.t 
e 1 Il x.(h.(d.)P .. + 'f h.(u.)P . . + R. - d.) 

j/i J 1 1 11 J7i J J 1J 1 1 

-A.ihi(di) ]. A.. (T) = 0 1 

xi= - hi(di)xi' xi(O) = 1, xi(T) free. 

( 4) 

( 5) 

Notice that di depends upon (t,A.i) only; xi does not appear. Define 

the maximized Hamiltonian 

-r.t 
H� = e 1 Ilxj[hi(di)Pii + 'f_ h

j(uj)Pij 
+ Ri - di]J71 

- A.i(hi(di)xi.

Since a
2H�/ax: = 0, the maximized Hamiltonian is concave in x.1 1 1

for given (t,A.i). Therefore the necessary conditions are also
A 

sufficient to determine a best response ui(t;u_i) to the rival
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strategy vector u_i (Arrow and Kurz ( 1970), p. 45, Proposition 6). To 
A A 

find ui' solve equations (4) and (5) jointly for x(t;u_i) and
A A 
A.i(t;u_i). Then ui(t;u_i) can be found by using the relationship

A A 
ui(t;u_i) = di(t,A.i(t;u_i);u_i).

A 
Lemma 2. Firm i' s  best response to (u

j
)

jl=i' ui(t;u_i) 2 !!.i for all

t. 

Proof. Equations (2) and (3) implicitly define di= di(t,A.i;u_i)

(where the complicated dependence of di upon the rival strategy vector

is just noted by including it in the notation). Then 
A 
ui(.;u_i) = di(.,A.i(.);u_i) is i' s  best response to u_i. Equation (2)

implies 

-r.t -r.t 
e 1 Il x.P .. - A..= e 1 Il x./h.' (d.).

j/i J 11 1 
j/i J 1 1 

Since this expression is strictly greater than zero, equation (3) is 

-rt ' '  ' e n x . h. ( d. ) /h. ( d. ) i 0 

j/i J 1 1 1 1 
A 

or h'.1
Cd.) i o. 1 1 Thus di(t,A.i(t);u_i) = ui(t;u_i) 2 !!.i for all t.

Assumption 3 .  Ri 2 !!.i' i = 1,2, • • •  ,n.

Q. E. D. 

Lemma 3. A.i(t) 2 0 for all ti T. If !!.i > 0, then A.i(t) > 0 for all

t < T. 



-r.t Ch'. Cd.)P .. - 1)
From equation (2) , >.. = e 1 fl 1 1 11 Proof. 

r.t 
- e 1 n x. 

1 %. , 
j�i J h.(d.) 1 1 

). . 1 w.._: [h.(d. ) + h.'(d.>] [� h.(u.)P .. + , 1 1 1 1 . J J 1J R. -
h.(d.) J 1 1 1 

Since h�1
Cdi) i o. hi(di) 2 hi(!!:i> + h�Cdi)(di - !!:i>.

Thus 

hi(di) + h�(di>[! . 
hj(uj)Pij + Ri - di]J11 

1 

so 

di] .

2 hi C!!:i> , , [ + hi(di)(di - !!:i) + hi(di) >. h/uj)pij J11 + Ri - di]
hi C!!:i> + h�(di) [>. h/uj)Pij + Ri - !!:i] 2. 0 J11 
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(with strict inequalities if .Jl:i > 0) since Ri 2 !!:i· Then ). . i 0 for 1 
all t. Since >.i(T) = 0, it follows that >.i(t) 2. 0 for all t < T. If

.!!:i > 0, then ).i < O; consequently >.i(T) = 0 implies that ).i(t) > 0 for

all t < T. 

Q. E. D. 

A - A 
Lemma 4. ui(t; u_i) i ui' for all ti T; and ui(T; u_i) = ui.

A -
.!!:i > 0, then ui(t; u_i) < ui for all t < T.

, 

If 

Proof. >.i(T) = 0, so hi(di(T, ).i(T); u_i))Pii - 1 = 0 by equation (2). 
A -

Thus ui(T; u_i) = di(T, >.i(T);u_i) = ui. From equation (1), since 

>.i(t) 2. 0 ().i(t) > 0 if !!:i > 0) by Lemma 3, we see that

, 
hi(di(t,>.i(t); u_i))Pii 2 1, so

h�(di(t,>.i(t); u_i) 2. 1/Pii 

, , 

, -
hi Cui).

Since hi Cui) i 0 for ui 2. !!:i (and di 2. .!!:i),

A 
ui(t; u_i) = di(t,>.i(t); u_i) i ui.
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If !!:i > 0, then all of the above inequalities are strict for t < T.

Q. E.D. 

Note that equations (2) -(5) must hold simultaneously for all 

firms at a Nash equilibrium u•. Substitute u� into equations (2) -(5) , 1 
differentiate (2) and equate the resulting expression for >.i to that

in equation (4). This yields a system of n first-order nonlinear 

ordinary differential equations in (u�)� 1•J J= 

-h. (u.)u./h.(u.) = h.(u.) L h.(u.)P .. + R. -.. . . . . . ' • [\ .  1 1 1 1 1 1 1 j J J 1J 1 u;]
, . '\ . (hi(ui)Pii - l)(ri + L hj(uj)) ( 6) 

Definition 5. A stationary policy u0 is a point at which u. = O for1 
all i. That is, where 



' o [\ o ol/ ' o hi(ui) /..- h/uj)Pij + Ri - uil (hi(ui)Pii -
1)

J J 

for i = 1,2, • • •  ,n. 

ri + [ h/ur )
J 
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(7 ) 

Theorem 1. A stationary policy u0 is a Nash equilibrium when T = "'  if 

and only if u� 8 [:J!.i,;i] for all i.

Proof. The sufficiency theorem of Arrow and Kurz ((197 0), p. 49, 

Proposition 8) states that the necessary conditions (2) - ( 5) replacing 

A.i(T) = 0 with the transversality conditions

lim A..(t) 2 0 
t --7<'> 1 and lim A.. (th:. (t) 

t--7<'> 1 1 0 

are also sufficient. 

Equations (2) and (4) are summarized in equation (6); equation 

(3) will be satisfied if and only if h'.1Cu?) � O; 1 1 For a stationary 

policy, equation ( 5) implies x.(t) = exp{-u?tJ, so x.(0) = 
1 and 1 1 1 

xi(t) 2 0 for all t. We need only verify the new transversality

conditions to conclude sufficiency of u?, given Cu?>.�- · The new 1 J Jr1 
transversality conditions are 

and 

-r.t 1 0 , 0 , 0 lim e ( fl  exp{-u.t} )(h.(u.)P .. - l)/h.(u.) 2 0
t �"' j#i J 1 1 11 1 1 

-r.t 1 0 , 0 , 0 lim e Cflexp{-u.t} )(h.(u.)P .. - l)/h.(u.) = O. 
t --7<'> j J 1 1 11 1 1 

These are true for any stationary policy. But by Lemma 3 ,

A..(t) � 0, so that lim A..(t) 2 0 implies that A..(t) 2 0 for all t. 1 t �.., 1 1 

From equation (2), this means that h'.Cu?)P .. 2 1, or alternatively, 1 1 11 

14 

0 ui � ui • Thus if u? 8 [u.,;.], then u? is a best response to Cu?>.�- · 1 -1 1 1 J 11'" J 
If this is true for all i, then u0 is a Nash equilibrium. 

Q.E. D. 

To see directly why no stationary policy with u? > i. can be 1 1 
an equilibrium, note that in this event equation ( 6) implies that 

But 

L hjCu_j >Pij + Ri - u� < O. 
J 

1 0 "' 1 0 0 
. J -r.t 

V Cu ) = 
0 

e [� hj(uj)Pij + Ri - ui]dt < O. 

Thus if h'.Cu?)P .. < 1, then u? is dominated by the strategy u. • O. 1 1 11 1 1 

Corollarv 1. In a stationary equilibrium, 1 -F.(t) = exp{-hCu?)t} . 1 1 

That is, in equilibrium, the cumulative distribution function of the 

ith firm's success date is exponential. Thus the convenient

assumption of an exponentially distributed success date (with the 

param eter the decision variable), which is used virtually throughout 
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the literature on research and development, is in fact correct when 

the firms face an infinite horizon, a stationary enviroJ11Dent and a 

hazard function which depends only on current investment. 

Theorem 2. Suppose u0 is a stationary Nash equilibrium policy. 

Suppose hi• h, ri • r, Pii • P, Pij • 0, (j # i).

implies u? < u?. 
1 J 

Tb.en Ri > Rj 

This is the case of identical firms and perfect patent 

protection, the case most commonly examined. We have generalized it 

somewhat to examine the impact of current monopoly power upon 

incentives to invest in R and D. Our conclusion is that, when ranked 

in increasing order by current profits, firms' investment levels in 

innovative activity follow exactly the reverse order. 

Proof. First recall that at a stationary equilibrium u? € [u.,";;:.] for 1 -1 1 

all i. If hi• h, Pii a P, then .:gi a .:g and ui au.

for all i. Define 

gi(ui) h'(u.)(h(u.)P + R. - u.)/ (h'(u.)P - 1)1 1 1 1 1 

- h'(u?)(h(u?)P + R. - u?)/ (h'(u?)P - 1) J J J J J 

Note that g.(u?> = 0 by equation (7) . 1 1 

Thus u? e [u,u] 1 -

, • , 2
g.(u.) = h'(u.) - h (u.)(h(u.)P + R. - u.)/ (h'(u.)P - 1) • 1 1  1 1 1 1 1 1 

Recall that h00(u.) i 0 for all u. E [u,;]. In addition, 1 1 -

h(u.)P + R. - u. 2 0 for all 1 1 1 ui E [.J!,;]. To see this, note that
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Ri 2 .J! by Assumption 3. Moreover, h'(ui)P - 1 2 0 for all ui 6 [.J!,;],

so h(u.)P + R. - u. is nondecreasing on [u,;]. Thus g'.(u.) > 0 on 1 1 1 - 1 1 
[.J!,;]. Since g. (u?) 1 J h'(u?)(R. - R.)/ (h'(u?)P - 1) ) 0, it follows J 1 J J 
that u? < u?. 

v. 

1 J 

Phase Diagram matic Analysis 

Q.E.D. 

By specializing our analysis to the case of n = 2, we can 

examine the nonstationary equilibrium (for finite T) in detail. We 

will be particularly interested in the behavior of the Nash 

equilibrium investment paths over time. Since equation (6) is 

independent of the state variables, we can graph the loci 

{(ul•Uz)lui = 0} , i = 1,2, in the control space. For simplicity, we

focus upon the two special cases: 

A) 

B) 

perfect patent protection: Pii pi. p ij = 0 • j # i

immediate imitation: P .. 1J P for all i,j. 

Recall that 

. 
sgn ui sgn {hi(ui)(hi(ui)Pii + hj(uj)Pij + Ri - ui)

- (h� (ui)Pii - l)(ri + hi(ul) + �(�))}

The equation u1 0 implicitly defines Uz as a function of 

u1: � = a(u1). 



Case A, Solving u1 = 0 for 11iCaCu1)) yields 
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h2CaCu1)) = [r1 + h.iCu1) + �Cu1><Ri - u1 - r1P1>]/ Ch'1Cu1)P1 - 1) (8)

This may sometimes be a negative number; extend the function 

hiCu2) linearly for negative numbers: 

h2CUz) = 11iCO) + �(O)Cu2 - 0) = �(O)u2,

While the equilibrium paths cannot specify negative investment 

rates, we can consider them for the purposes of the phase diagram . 

Differentiating the equation � = 0 totally, and solving for 

du2/ du1 yields 

a'Cu1) = �'cu1>[� - u1 - r1P1 - hi(a)P1]/ �Ca>C�Cu1)P1 - 1). (9)

Substituting h2(a) from equation (8) into equation (9) yields 

I I I I I 2
a Cul) =hi (u1>[u1 - Ri - hi(ul)P1]/ hi(a)(h.i(ul)Pl - 1) • 

- -

Lemma 5, There exists a unique value u1 E (u1,m) such that 

u1 - Ri -hiCu1)P1 � ( 2 ) 0 as u1 � ( 2 )u1, 

Proof. u1 - Ri - hiCu1)P1 � 0 if and only if hiCu1)P1 + Ri - u1 2 O. 

If u1 E [O, .J!.i], then h1Cu1)P1 + Ri - u1 > 0 since� 2 .!!:.i by 

Assumption 3 ,  If u1 E [.J!.1, u1], since h1 is concave on this region, 
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h.iCu1) 2 h1(:!!]_) + �Cu1)Cu1 -:!!]_) 

Thus 

hl(ul)Pl + Ri - ul 

2 hl(.J!.l)Pl + �(ul)ulPl - �(u1>.!!:.1P1 + .!!:.1 - ul 

' = h.i<.!!:.1>P1 + Ch.i(ul)Pl - l)(ul - .!!:.i) ) 0,

since h�Cu1)P1 -12 0 and u1 -.J!.i 2 0 for u1 E [.J!.1,�], Finally, 

consider u1 E (�1, m), We know h.iC;1)P1 + Ri -�) 0 by the argument 

above; lim h.iCu1)P1 + Ri - u1 = -m, while h1Cu1)P1 + Ri - u1 is 
�� 

continuous and monotonically declining in u1 for � E Cu1, m), 

By the intermediate value theorem, there exists a value u1 E (u1, m) 

- -

such that h1(�)P1 + Ri - � = O. Monotonicity and the arguments 

above imply that u1 is unique and hiCu1)P1 + Ri - u 2 (i)O as 

u1 i (2) u1• 

Q, E. D, 

We can now characterize the curve u2 = a(u1), The expression 

a'Cu1) undergoes several sign changes on [0, m], 

For u1 E [O, .J!.i), a1Cu1) < 0 with a
1
(.J!.i) = O. For

' u1 E C.!!:.1, u1>. a Cu1> > o with a vertical asymptote at �· For



u1 S Cu1,�), a'Cu1) > 0 with a'c;1) = O. Finally, for

u1 S (�,m),a
1
Cu1) < O. In addition, one can compute hi(a(O)) and

lim �(a(u1)), using equation (8) . 
ul.+<> 

sgn h2(a(O)) sgn{r1 + �(0)(1)_ - r1P1)J

and 
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lim hi(a(u1)) 
ul-+<> 

r1 + �Cu1) - �Cu1)u1 + �Cu1)C� - r1P1)
lim , < O. 

u1 .+<> 
�Cu1)P1 - 1

Above the curve �= 0, u1 is decreasing if u1 S [O,u1), and

increasing if u1 S Cu1,m). This is illustrated in Figure 1 • 

. 
Similarly, the equation u2 = O implicitly defines u1 as a

function of u2 : u1 = P<nz>. with 

� CPCu2» [r2 + hi<nz> + �Cu2><Rz - Uz - r2P2>]/c�<u2>P2 - 1),(10) 

and 

p
, (u2) = �' (u2) [Rz - r2P2 - ul - � (p)Pz]/� (p)(� (u2>P2 - 1). (11)

Substituting h1Cp(�)) from above (again extending h1 by 

h1Cu1) = �(0)u1 for negative u1) yields 

I I I I I 2 
P Cu2) =hi Cu2>[u2 - Hz - �Cu2)P2]/�Cp)(�(u2)P2 - 1) • (12) 
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The analysis of this curve u1 = PC�) parallels that of the 

curve u2 = aCu1). Combining these two analyses yields the completed 

phase diagram in Figure 2. 
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* -
Recall that along any Nash equilibrium path, ui E [J!.i,ui] for

all t. Thus only the portion of Figure 2 excerpted below in Figure 3 

is relevant for the characterization of the equilibrium paths. For 

the nonstationary (finite horizon) case, the only region which can 

contain the Nash equilibrium paths is the shaded region in Figure 3. 
* - * -

This is because ui(t) < ui for t< T and ui(T) = ui. No paths

beginning in another region can reach (u1,Uz> from below. The point b 

is a stationary Nash equilibrium policy. 

Theorem 3. For the game with perfect patent protection, any Nash 

equilibrium strategy u�(•) must be monotonically increasing over time 
1 

(for T < "'). 

Thus firms will invest so that the conditional density of 

success� the hazard rate h.(u�(")) � is an increasing function of
1 1 

time. That is, given no success to date, firm i will be increasingly 

likely to succeed in the next time increment dt as the current date t 

increases. 

There !!!AI: be multiple stationary points, as in Figure 4. A 

sufficient condition for the uniqueness of the stationary point is 

that a'(u1) ) 1 and �'(Uz) ) 1 on CJ!.i·�] X C:!!:z•Uz]. Then if there

exists a stationary point u0 e [J!.1,�] X C:!!:z,;,_1, it will be unique.

This is because the function u1 - �(a(u1)) is monotonically decreasing 

on CJ!.i.�1. 
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Case B. P .. = P for all i, j. 1J Then solving � = 0 for Uz as a 

function of u1 : u2 = aCu1). 

�(a(u1)) = - r1 - bi.Cu1) + �Cu1)(Pr1 - Ri + u1). 

Again sgn a(O) = sgn{h�(O)(Pr1 - Bi> - r1} and 
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lim �(a(u1)) < O. Differentiating the equation u1 = 0 and solving 
ul-+r> 
for du2/du1 implies 

a'Cu1) = �'<u1)(r1P - Ri + u1)/�(a(u1)).

This expression changes sign only once, at .J!i. First 

a' Cu1) > 0, then a' ( u1) < 0 for ul e (E:,1,m). Above the locus u1 = 0, 
u1 is increasing; below it, decreasing. Similarly, the equation 

Uz = O implicitly defines u1 = P<nz>. with 

hl <P<nz» r2 - bi(Uz) u �(u2) (Pr2 - Rz + Uz) 

and 

P'(u2) = �'<u2)(Pr2 -Rz + nz>/�(p(u2)).

Lemma 6. �(a(�)) ( 0. 

Proof. 

�(a(u1)) 
- 1 

rl -�(ul) + p(Prl - Ri + ul)

�(�) - <Iti - �)/P 

[- �(;1)P - 1ti + �l/P 

In the proof of Lemma 5 we established that hiCu1)P + Ri - � > O. 

Thus -� (�)P -Ri + u1 < O. 

Q. E. D. 

The phase diagram summarizing these results is in Figure 5.

Now equilibrium paths may begin in either region contained in the 
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dotted-line box. Thus at most one equilibrium path can decline over 

time, and then only initially. Eventually, both are increasing 

functions of time. Neither point a,b nor c is a stationary Nash 

equilibrium policy (for T = m); point d is a stationary Nash 

equilibrium policy. If firms are identical and the equilibrium is 

symmetric (that is, u� (t) = u�(t) for all t), then both firms must 1 J 
invest at an increasing rate throughout [0,T]. 
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VI. Conclusion 

We have presented a model of investment in research and 

development which generalizes previous work in this area. The 

qualitative properties of the equilibrium investment rates are similar 

to those discovered in this earlier research; that is, firms invest at 

an increasing rate over time when patent protection is perfect, or in 

symmetric equilibrium. This suggests that the assumption which is 

responsible for this monotonicity is that the hazard function depends 

only upon the current investment rate. Thus relaxation of this 

assumption seems the most important (albeit the most difficult) 

direction for subsequent investigation to take. 

By including the possibility that firms are currently active 

in the market for a substitute product, we were able to determine 

that, in a stationary equilibrium, firms with higher current revenues 

will invest at lower rates than firms with relatively lower current 

revenues (assuming that the firms are alike in all other respects). 
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