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THE GREAT FISH WAR: A COOPERATIVE SOLUTION 

Tracy R. Lewis and James Cowens 

ABSTRACT 

The competitive al location of a common property resource is 

analyzed taking exp I left account of the fact that the resource users 

must confront each other repeatedly. This means that future 

retal ration for noncooperatrve behavior Is possible. The I lkel I hood 

of enforcing cooperative behavior with the credlble threat of 

retal ration is analyzed using the theory of repeated games. 



THE GREAT FISH WAR : A COOPERATIVE SOLUTION 

Introduction 

In a recent paper Levhari and Mirman (1980) present an elegant 

and very thought provoking analysis of the competitive use of a commonly 

owned renewable natural resource. lTheir leading example is the ex-

1 
ploitation of an international ocean fishery. ) They rule out the 

possibility that fishermen explicitly cooperate with one another in 

harvesting the resource because of the excessive cost of enforcing 

agreements .  2 Instead. they examine the time path of resource consumption 

derived under the assumption of Cournot Nash behavior in which each 

fisherman selects a rate of harvest function, contingent on the size of 

the stock, to maximize his present value flow of utility. Furthermore, 

the harvesting strategies are required to be perfect in the sense of 

Selton (1975). lWe discuss the concept of perfectness in more detail 

belo1·1) :3 The model that is derived from this analysis performs nicely 

in that it yields predictions which are consistent with what we typically 

9bserve with the management of common property resources - the resource 

is squandered as competing users vie with each other to obtain a larger 

4 
share of the stock. 

It does seem, though, that we do occasionally observe individuals 
eft'iciently utilizing common property without the aid of a regulatory 

body to oversee their activities.
5 

In these situations an important 

factor influencing everyone's behaviour is that independent resource 
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users must interact with one another on a continual basis. This 

suggests that users could construct cooperative schemes for observing 

the resource that are self policing. The incentives for one user to 

deviate from the cooperative arrangement would be eliminated by the 

threat of retaliation by others. In the context of the Levhari and 

Mirinan fishing example, such schemes would presuppose a dynamic 

equilibrium in which each fisherman lor firm ) would monitor the 

behaviour of its rivals over time. A firm's harvesting decision 

would depend on the current stock as well as on the previous behaviour 

of its competitors. Each fisherman would agree to harvest at an 

efficient rate contingent on observing the same behaviour from his 

rivals. Assuming that firms could ac curately observe the total catch 

in each period, one fisherman's deviation from the cooperative 

agreement would be recognized by his rivals who would retaliate by 

collectively adopting the noncooperative behaviour as described by 

Levhari and Mirman. 

The purpose cf this note is to investigate the model we have 

described a0ove far its predictions on the sustainability of cooperative 

resource use, in which agreements are enforced by threat of retalia-

tion. We use the Levhari-Mirman example to relate the prospects for 

maintaining cooperative arrangements to (a) the number of users and 

their ability to monitor each other, (b) the time rate of discount, 

and (c) the growth potential of the resource. 
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II. THE MODEL

The formal apparatus for our analysis is the theory of repeated 

games.
6 We envision the interaction between fishermen as a repetition 

of single period game where independent users compete with each other 

for the consumption of a commonly owned resource. Fo 11 owing Lev ha ri 

and Mirinan let Xt be stock of fish at time t, which grows, if left 

alone, according to the equation Xt+l = Xt
a for a e ( O.l ) . Assuming 

the stock does not exceed its maximum sustainable size, which isl, the 

parameter a is a measure of the natural growth potential of the resource. 

For a close to l, for example, the stock grows very sluggishly, and

it is practically nonrenewable like a pool of oil. 

Assume there are N identical and independent users of the resource. 

Denote c� as the consumption of user i at time t, and let u (c ! ) = log c! 
be individual i's utility derived from consumption. 

It is easy to derive the cooperative - joint maximizing program 

for utilizing the stock. Due to the concavity of ui(c� ) the optimal 

program involves equal consumption by all users at all times, so that 
. * c� � ct for i=l , ... N. Let Vt (Xt ) denote the value of the discounted 

.stream of utilities for each user given stock Xt remains with t periods

left in the planning horizon. The value functions in succeeding periods 

must satisfy this recursion relationship 

v; c xt ) = max [log ct+ s v;_1 l (Xt - Nct ) a )J
ct 

( 1 ) 
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in which the value Xt - Net is the remaining stock of fish at the end 

period t which becomes (Xt - Nct ) a in the following period. S is the 

common discount factor. If one extends the planning horizon to an 

infinite number of periods then the stationary consumption rule and 

value function are given respectively by 

/ ( x J = ( 1 -as J x 
N 

* 1 V {XJ = -1-aS

[(1-as� a/(1-a� 
log (XJ + l_og -N- aS 

- l og ( aSJ /l-a 

l '."S 1-aS 

These expressions are derived in the Appendix. 

( 2a ) 

(2b) 

As long as all users adopt the cooperative mode of fishing, they 

each follow the harvesting strategy c*(X ) given by (2.a ) and receive 
* 

utility U (c ( XJ ) . If at some time one of the firms catches more than 
* 

the amount, C lX ) , it is entitled to, then we assume that the cooperative 

agreement breaks down, and in the next period all fishermen revert 

back to permanently pursuing their noncooperative Nash Cournot 

strategies.7 Levhari and Mirinan derived the stationary consumption 

strategies and value functions for the symmetric two person Cournot 

Nash equi l ·ibriJrn. The corresponding functions for the N person equii i-

brium are derived in the appendix, and they are given by 

c0
tX ) (l-aSJX

N- ( N-l)aS 
(3a) 



V0lX) 
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l 
1-a.S log x 

l ( . {l-as }  
+ 1-S l log 

N-( N-l}af3 

l 
- 1-a.S 1 og 

log ( . aS ) a/(1-a.Jl 
N-( N-l)a.$ � 

a./(1-a) 

(3.b) 

in which variables with superscript "o" denote noncooperative equilibrium 

quantities. 

Comparing equations {2 ) with equations (3) we see that they coincide 

only when N=l; otherwise when N�2 . c0lX) > c*lX) so that the resource is 

depleted too rapidly when firms don't cooperate. One can also show that 

0 * 
V lX) < V lX}. Hence the breakup of the cooperative caused by the 

deviation of a single firm, {hereafter called the cheater } , would harm 

all users. Most important however is that the cheater would suffer after 

the breakup and this is intended to be a deterrent to his cheating. 

Define a deterrent strategy to be the rule that a firm adopts the 
* 

cooperative harvesting strategy c (X) far· all periods until it detects 
* 

the total harvest .exceeding the cooperative each Ne {X) whereupon it 

permanently follows the noncooperative catch rule c0(X } for the remainder 

of time. A cheat strategy is simply defined as a deviation from the 

cooperative harvesting rule by a firm at some time. It is possible to 

sustain a cooperative solution as a Nash equilibrium whenever the net 

returns to a single firm from cheating are negative given that all 

other firms adopt deterrent strategies. Let V
d(X) be the net value to 

a firm from cheating on the cooperative agreement given the current 

stock is X, and that all other firms are utilizing deterrent strategies. 
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III. COOPERATIVE AND NON COOPERATIVE SQLUTI ONS 

One of the first and probably the most important application of 

repeated games to economics was put forth by Stigler (1964) who suggested 

that oligopolistic firms would maintain a monopolistic price by 

threatening price chiselers with punitive actions. This idea was later 

formalized by Friedman (1971), and numerous authors have written on 

repeated oligopoly and strategic market games since then.8 Our model 

of repetitive play between resource users differs from the standard 

market games in a couple of respects. A centra·1 feature of our analysis 

is that previous actions of the users affect the current stock and 

thereby they determine the present production possibilities for the firms. 

With the exception of a few models that allow for ·inventories, repeated 

market games assume that the history of play does not affect the rules 

of the game in succeeding periods. Another distinguishing feature of 

our analysis is that the duration of our game is endogenously determined 

by the users in how they affect the availability of the resource. For 

our example it turns out that the resource is never exhausted, and hence 

the game goes on forever. In most market games that are analyzed ther 

is no natural way to specify the nunber of periods of play. This is 

troublesome because infinite repeated games ( supergames) sometimes con­

tain cooperative equilibria which can not be sustained in finite 

repeated games.9 
A final important aspect of our model is that unlike 

most repeated market games, the cooperative and noncooperative strategies 

that are used in single plays of the game depend on the discount rate, 

(see equations 2 and 3). To identify the role of some of these features 



It is define by 

Vd(X) - max 
c!I 

c 
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[log (c d
) + S v0((X-(N-l )c *(x) - cd)aj (4) 

* - V (X) 

The expression in square brackets in (4) repres ents the immediate utility 

from cheating plus the discounted stream of utility that follows once the 

deviation is detected and all users adopt noncooperative behaviour. The 

last term in (4) is the utility that the cheater foregoes by foresa king 

the cooperative agreement. A Nash equilibrium in deterrence strategies 

requires that Vd(X) be negati ve . 
Furthermore, if Vd(X) is negative then the Nash equilibrium in

deterrent strategies also satisfies the perfectness property of Setten

(1975). Roughly, perfectness r�quires that each firm's strategy must be 

an optimal response to the behaviour of its rivals under all conceivable 

histories of play and, not just. those histories that occur in equilibrium. 

Perfect strategies do not admit " incredible threats" in which f irms enforce 

cooperative play by t h r e a t e ning reprisals that they would never carry out

if given the opportunity. The deterrence strategies we have introduced

above are credible. In particular if a firm ever observes a total harvest
* 

that exceeds the allowable cooperative catch; Ne (X), at time t0, its best

re�ponse is to pursue the noncooperative strategy c0(x*) for all t>t
0

• 

This is because all other firms will have observed the deviation and they 

will also adopt the noncooperative harvesting rule. On the other hand,

if a firm has not observed a dev i at i on prior to time t0, then it is best 

for it to continue cooperating provided that V
d(X) < 0. Hence the deterrence 

strategy is in fact a best response strategy for all conce i vable histories 

of play that the firm may encounter. 

-8-

in our analysis we now consider how the incentives to cooperate are 

affected by variations in the parameters of our model parameters . 

Vari ations in the Di scount Factor 

Independent firms may enforce cooperative management of the 

resource whenever the return from cheating, Vd(X), is negative. 

Substituting for v0 and v* from equat i ons 2 and 3 respectively into 

equation 4, one can show that the optimal cheat, cd(X), is given by

cd ( X) (1-aSJ(NaS - aS + l) X 
N 

According to equa tions (2.a) and (5) cd ( x) > c*(X) whenever B > o 

(5) 

and N > 2. Cheating involves consuming more than one's share of the

cooperative harvest. 
d * x Notice however that c (X) + C (X) + N as B + 0. 

This suggests that the incentives to ch eat may be reduced if the users 

collectively agree to consume the resource very rapidly. 

Substituting from e quations (2b), (3b) and (5) into equation (4)

one obtains a complicated express i on for Vd(X) in terms of S. N, and a 

which is most easi ly analyzed by computing the value of vd for different 

combinations of values for our parameters. This was done for various

values of S and a ranging between 0 and 1 and for values of N ranging 

between 2 and 100. (A complete listing of the calculations is available 

from the authors). 

We find that the effects of variations in S on the incentives for 

firms to cheat conform to the results normally reported in the repeated 

games literature. Cooperative behaviour can not be enforced when the dis­

count factor becrnnes small . The calculations appearing in Ta bl e 1

are typical of the results we obtain. (Notice only the sign of Vd\X) 
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equal to the difference in the values of the cooperative and non-

cooperative programs of resource use. This loss which is a deterrent to 

cheating increases with N because the rents earned under noncooperative 

exploitation of the resource decline very rapidly as the number of 

users grows. This decline in rents ( a phenomena which has been dubbed

"the Tragedy of the Commons" by Hardin (l96B)) becomes a greater

deterrent to defection so that the resource is harvested cooperatively 

when N is sufficiently large. 

The conventional view that cooperative arrangements among members 

of a cartel, between oligopolistic firms, or among independent resource 

users are likely to breakdown with large numbers rests on several 

argurnents. 12 One of them is that reaching agreement on a common plan

is more difficult with large numbers because of a greater degree of 

diversity in preferences and because of the greater costs of negotiation. 

Another argument is that it becomes increasingly difficult to identify 

and hence to punish a defecting firm when the number of producers grows. 

Our model abstracts from these factors, by assuming that all users 

are identica1, and that defections from the cooperative can be detected

costlessly. Hence our result is not to be interpreted as a counter

example to the conventional wisdom on the stability of cooperatives

with large numbers. Rather it suggests that the cooperative's ability

to punish a defector by having the members break up and behave corn-

petively may increase with its size. This is a way in which size adds 

to the stability of the cooperative and it must be balanced off against 

the increased difficulty of reaching agreements and monitoring 

behaviour which also results with larger numbers. 

-12-

Variations in the Growth Rate 

The ability of the stock to reproduce itself increases as

a ranges from l to 0. An example of the effects of variations in a 

on Vd\X ) appears in Table 3. One can show that as a+ 0, that

J v
d (X ) [ + 0. Also we note from equations (2.a) and (5) that

d * 
c (X) + c (X) + X/N as a + 0. In this case the resource reproduces

itself so rapidly that the cooperative agreement call s for consuming 

virtually all the available resource in each period. Under these 

circumstances it is unimportant whether the resource is exploited 

in a cooperative or competitive manner. 

As a increases, the incentives to cheat decline, and it may be

possible to enforce a cooperate agreement using deterrent strategies 

as in Table 3. Notice that the ability of the resource to grow

diminishes as a increases. As a +  1 the resources becomes non-

renewable. Our results suggest that cooperative management of the 

stock will be most likely to occur when the resource is scarce in

that it has limited capacity to grow. 
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and the relati v e changes in it for variations in our parameter are

meaningful). Cheating is deterred for S suffi ciently large. the 

incentives to cheat increase over a range as S decl ines , and they

go to zero as S approaches zero.
10 

The last result confirms our 

suspicion that cheating may not be a significant problem when users 

have a high rate of discount. 

Finally we note that in all of our results the tendency for 

fi rms to cooperate or cheat is completely independent of the current

size of the resource. This is because terms i nvolving X cancel each

other out in the expression for Vd(XJ. Hence initial conditions are un-

important in shaping the equ ilibrium behaviour of the resource users.

This property is almost certainly pecul iar to our example and we woul d

not expect it to hold in general.

Variations in the Number of Us ers 

The viability of sustaining cooperative management of the re­

source wou l d seem to depend critically on the number of . independent

firms who harvest i t. The conventional wisdom among most resource

economists on this issue is aptly put forth by Colin Clark (1980, 

pp. 1 31) who states, 

"With the possible exception of a few fisheries exploited 
exclusively by the " factory " fleets of the USSR and other
Eastern bloc countr i es , individual producers will normally
be too numerous to allow a cooperative s cheme to operate 
stably in practice." 

To i nvest i gate this claim in the context of our example we differentiate

Vd(X) with respect to N, and obtain the following expression

dVd( X ) _ 
dN -

-10-

) . l + as } l l ) l- N NaS + 1-aS \(1 -aS 

S ( l -as) [ l a l l 
N t 1 -a.13) +as 4 - "1-"iiSJ r=a: 

l 
+ l l -13 JN 

Now suppose S + l, then equati on (6) implies that all but the terms 

involving 1/(1-S.) vanish s o  that we h ave 

lim � sign dVd (x)l 
Stl l dN j . {1 1 l s 1 gn N - n-t-1--a-J_+_a j 

sign {Ntl-a)+a - N� 
sign � all-N)} < 0 

Recall that (according to the previous section) it is possible to 

l6) 

l7) 

maintain cooperative harvesting for a given number of users when S is

sufficiently large. Equa ti on 7 s uggestes that under these circumstances

that the incentives for independent users to cooperatively exploit the 

resources are enhanced as the number of firms increases. This finding

s hows up in all our numerical results for plausible values of S �.8 

which correspond to rates of discount equal to or less than 25%. 

An example of this result is represented in Table 2.

The intuitive explanation for this striking result is that when

S is sufficiently large a perspectiv e cheater must pay atten tion to

the future ut i l i ty loss he w ill suffer because of the adverse reaction 

by his rivals to his defection . 11 After the cheat is discovered.

the defector ( as well as all other firms ) su ffers a loss in utility
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IV. CONCLUSION 

This note takes the ap proach that independent firms may have an 

incentive to behave cooperatively if they m ust compete with each other

continually. Using the example of Levhari and Mirman ll980) we 

examine one scheme whereby a firm that deviates from the cooperative 

arrangement is threatened by reprisals from his rivals. We demonstrate 

that the threats are credibl e, and that indeed they will be carried out 

once cheating is discovered. We identify special circumstances lin 

particular when there is perfect detection of cheating ) when cooperati on 

can be sustained by this scheme. We find that for plausible rates of 

discount as the number of firms grows the incentives for ind i vi duals to 

cooperate increases. This is because the ability of firms to threaten 

one another, by acting competitively, increases as N gets larger. We also 

show that cooperative behaviour is m ore likely to occur with scarce 

resources that have little potential to grow. 

The requir,0r1ent of perfect monitoring is too strong to be 

satisfied in practi�e, particularly in a stochastic environment .1 3 It

may not be possible to enforce perfectl y cooperative behaviour using 

deterrent strategies with imperfect detection. However it m ay be 

feasible to achieve somewhat less efficient ( or second best ) cooperative 

outcomes. An interesting topic for future research would be to identify 

minimal conditions under which the use of deterrent strategies of some 

form can improve the equilibrium allocation of resources in repeated 

games. 
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An i nterest i ng feature of our model is that it is possible for

firms to collectively internalize the costs that they impose on one 

another and to produce efficiently without the aid of outside regulation. 

The model can be viewed as being a formalization of the Coasian (1960}

solution to externality problems in a dynamic context. This suggests to us 

a different approach to regulation from that which is normal l y  espoused.

According to our scheme, the regulator would try to create environments

which were conducive to allowing the firms to coordinate and police 

their own behaviour. Conceivably this woul d involve the regulation in

controlling the number o f  users, in facilitating communication between 

them, and providing information about their activities to be used by 

the firms to monitor each other. This would be in contrast to using 

externally administered taxes and subsidies, or direct controls to 

achieve efficiency. 
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Table 

The Effect of an Increase in the Discount Factor 
son Vd, (with N=lO, a=.5)

Discount Factor (SJ 

.1 

.3 

. 5 

. 7 

.8 

.9 

Table 2 

vd 

. 261 85 

.49783 

.37634 
- .58532

-2.15661 
-7 . 39909 

The Effect of an Increase in the Number of Users, N 
on vd, ( with s=.9 and a � .5) 

Number of Users, tN) 

2 
3 
4 
5 
6 
7
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

l 00 

v
d 

- .82467 
-1 .98514 
-3.05145 
-3.99321 
-4.82587 
-5.56838 
-6.23675 
-6.84368 
-7 .39909

-11 .28104 
-13.68073 
-15 .42034 
-16 . 78 543
-17 .90893 
-18.86361 
-19 . 6936 1  
-20 . 4277 6  
-21 . 08593
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Table 3 

The Effect of Increases in the Growth Potential , 

a, on V
d 

{with N=lO, S=7) 

Growth Potential (a) 

. l 

.3 

.5 

.7 

.9 

vd 

.11091 
- . 07816 
-.58532 

-1 .40306
-2.66153 
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APPENDIX 

a) Derivation of the Cooperative Solution

. Our derivation is adopted from Levhari and Mirman (1980 pp. 329 
footnote 10) . We suppose there are N identical users (Levhari and 

Mirman assume N=2). The cooperative program is derived as the solution

to 

max I at N log (c
t) lAl )  

{ct} t=o

subject to Xt+l = (Xt - Nct)a.. The optimal policy must satisfy the 

functional equation, whic.h for this case ·is written

a.S X a.-1
t 

ct ct+l 
lA2J 

{We are proceeding nonrigorously here, see Levhari and Mirman, pp. 328 
* * 

footnote 9). Assuming the stationary solution is of the form c = A. X, 

and substituting for c i.n (A2) we obtain

or 

1' ­
A X 

* 
A 

c.:S 
A.

*
(A-NA.

*
X) 

1 -a.S 
-N-

{A3) 

* 
One can show by induction that the value function V {X} is

* * 
Of the form v (XJ = m log lX) + m. v (X) must satisfy the recursion

equation 

-18-

* -
V (X)  =max [log (c) + a.S m log (X-Nc ) + S ml 

c 
lA4) 

in which m and mare constants. Differentiating lA4) with respect
* 

to c implies that c must satisfy 

aS mN 
C* - X-Nc*

* 

0 (A5) 

Substituting for c = (l-aS} X/N in (A5) impl ies

l
m = 1-aS

- * 

(A6) 

To solve for m we note that X the steady state stock equals 

aSa/(l-a) (see Levhari and Mirman pp. 329 footnote 11). Hence we
know 

* * * _ 1 (l ) ( )a/1-a 
V ( X ) = m log ( X ) + m = - log _:a8 aS (A7) 1 -S N 

so that 

m =log [{1-:s) (aS)a./(1-a)] (as,U/l-a. log
(A8) 1-S 1 -as 

b) Derivation of the Noncooperative Solution

Adopting the derivation in Levhari and Mirman (pp. 327-8 
footnote 9) to our N user case, one can show by indu c t io n that the 

equilibrium consumption strategies are of the form c0 = A.0X and that

A.0 must satisfy the functional equation 
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j3a(l-tN-1}t.,0} 
x0x x0(X-NA0X) 

Using tBl) to solve for Ao yields 

co = AOX = (l -ai3)X 
N-(N-1 )ai3 

tBl) 

(82) 

One can show by induction that the value function V�tX). for user. 1 

-20-

which implies 

x0 = { ai3 ) a/(l -a) 

\N-tN - 1 )ai3 

In order to sol ve for K we note

V0tx0) = K l og x0 + K = l og(A0x0) 

is fo the form 
impl yi ng that 

V�tX) = K log X + K J 

V�{K) must satisfy the recursion equation. 

tB3) 

0 \ -V.(X) = max [ l og c. + ai3 K l og [X-c. - l c .] + i3K] lB4)1 1 l ·r J C
i J l 

Differentiating (84) with respect to c . •  and recognizing that . 1 
ci = cj = A0X for all i and j we obtain 

- - �K = 0 or l - ai3K = O 
co X-Nc Ao l-N/..o 

Combining (82) and (BS) o ne can show 

K = l 
l - ai3 

The steatly state value for Lh� stock. x0, must satisfy 

XO (Xo - N(l-aS)Xo 
a. N-(N-1 )a.13 ) 

(BS) 

(86) 

(Bl) 

- 1 { (l -ai3) K = f:S l og \N-(N -l )ai3 
( ai3 ) a/(1-a.) ) 

N-tN-l)aa 

a/(l -a) l 1 ai3 
- l -ai3 og N-(N-l )ai3 

(BB) 

(B9} 

(Bl 0) 
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FOOTNOTES 

1
clark (1980 ) also contains an analysis of the exploitation of an open 
access fishery in a model that differs significantly from that used 
by Levhari and Mirinan. 

2
In contrast to this, Munro (1978 ) investigates a case where independent
fishermen explicitly coordinate their actions to maximize the present 
value flow of rents from the fishery, The theo ry of cooperative games 
is employed to determine the distribution of rents among various users. 

3
Roughly, a perfect equilibrium requires that each firm's strategy be a 
best response in all conceivable situations. Such strategies are 
derived using a dynamic programming approach as in Levhari and Mirman 
( 1980 ) . Perfectness rules out the possibility of incredible threats,
whereby firms try to manipulate each other with threats which they 
would never execute. Reinganum and Stokey (1981 } conta ins a particular
cogent discussion of perfectness in the context of models of natural 
resource exploitation. Eswaran and Lewis ( 1982a ,b ) and Reingauum and
Stokey discuss the properties of perfect equilibria in models of common 
property resources. 

4
see Hardin (1968) for a graphic account of the general mismanagement
of open access resources. 

5
The communal management of common water supplies, grazing land, wilderness 
areas, and road systems in rural areas are examples of open access 
resources that are rationally controlled by informal agreements. There
are also certain small coastal fisheries in North America and Europe
which are efficiently managed by loose cooperatives or alliances of
fishermen. Private communication Peter Pearse

6
The standard reference for the theory of repeated games is Friedman
(1977 ) 

71t is only necessary for firms to monitor the total catch, rather than
the individual catch of each user to detect if one of them has broken

, the agreement.

8For example see the papers by Green (1980) and Radner ( 1980a,b). 

9see Radner (1980a). 

1 0one can show that lim V
d

(X) = 0. 
s+o 

11we note that when B is small, increases in N seem to inc rease the in­
centives to cheat . 

12A good discussion of this view is contained in Scherer (1980, Chpt.7 } .

13see Green (1980) and Radner (1980b). 
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