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LEARNING LOOPY GRAPHICAL MODELS WITH LATENT
VARIABLES: EFFICIENT METHODS AND GUARANTEES

BY ANIMASHREE ANANDKUMAR1 AND RAGUPATHYRAJ VALLUVAN2

University of California, Irvine

The problem of structure estimation in graphical models with latent vari-
ables is considered. We characterize conditions for tractable graph estimation
and develop efficient methods with provable guarantees. We consider models
where the underlying Markov graph is locally tree-like, and the model is in
the regime of correlation decay. For the special case of the Ising model, the
number of samples n required for structural consistency of our method scales

as n = �(θ
−δη(η+1)−2
min logp), where p is the number of variables, θmin is

the minimum edge potential, δ is the depth (i.e., distance from a hidden node
to the nearest observed nodes), and η is a parameter which depends on the
bounds on node and edge potentials in the Ising model. Necessary conditions
for structural consistency under any algorithm are derived and our method
nearly matches the lower bound on sample requirements. Further, the pro-
posed method is practical to implement and provides flexibility to control the
number of latent variables and the cycle lengths in the output graph.

1. Introduction. Learning latent variable models from observed samples in-
volves mainly two tasks: discovering relationships between the observed and hid-
den variables, and estimating the strength of such relationships. One of the simplest
latent variable models is the so-called latent class model or näive Bayes model,
where the observed variables are conditionally independent given the state of the
latent factor. An extension of these models are latent tree models with many hid-
den variables forming a tree hierarchy. Latent tree models have been effective in
modeling data in a variety of domains, such as the evolutionary process which gave
rise to the present-day species in bio-informatics (popularly known as phylogenet-
ics) [21, 43], for financial and topic modeling [17] and for modeling contextual
information for object recognition in computer vision [16]. Prior works on learn-
ing latent tree models (e.g., [17, 23, 35]), demonstrate that latent tree models can
be learned efficiently in high dimensions. In other words, the number of samples
required for consistent learning is much smaller than the number of variables at
hand. Moreover, inference in latent tree models is computationally tractable by
means of simple algorithms such as belief propagation.
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Despite all the above advantages, the assumption of a tree structure may be too
restrictive. For instance, in an analysis of the relationships between topics (encoded
as latent variables) and words (corresponding to observed variables), a latent tree
model posits that the words are generated from a single topic, while, in reality there
are common words across topics. Loopy graphical models are able to capture such
relationships, while retaining many advantages of the latent tree models.

Relaxing the tree assumption leads to nontrivial challenges: in general, learn-
ing these models is NP-hard [8, 28], even when there are no latent variables, and
developing methods for learning such fully observed models is itself an area of
active research (e.g., [3, 27, 40]). In this paper, we consider structure estimation
in latent graphical models Markov on locally tree-like graphs, meaning that local
neighborhoods in the graph do not contain cycles. Learning such graphs has many
nontrivial challenges: are there parameters regimes where these models can be
learned consistently and efficiently? If so, are there practical learning algorithms?
Are learning guarantees for loopy models comparable to those for latent trees?
How does learning depend on various graph attributes such as node degrees, girth
of the graph and so on? We provide answers to these questions in this paper.

1.1. Our approach and contributions. We consider learning latent graphical
Markov models on locally tree-like graphs in the regime of correlation decay. In
this regime, there are no long-range correlations, and the local statistics converge
to a tree limit. The implication of correlation decay is immediately clear: we can
employ the available latent tree methods to learn “local” subgraphs consistently, as
long as they do not contain any cycles. However, a nontrivial challenge remains:
how does one merge these estimated local subgraphs (i.e., latent trees) to obtain
an overall graph estimate? Specifically, merging involves matching latent nodes
across different latent tree estimates, and it is not clear if this can be performed in
an efficient manner.

We employ a different philosophy for building locally tree-like graphs with la-
tent variables. We decouple the process of introducing cycles and latent variables
in the output model. We initialize a loopy graph consisting of only the observed
variables, and then iteratively add latent variables to local neighborhoods of the
graph. We establish correctness of our method under a set of natural conditions.

We provide precise conditions for structural consistency of LocalCLGrouping
under the probably approximately correct (PAC) model of learning ([29], page 7),
for general discrete models. We simplify these conditions for the Ising model,
where each node is a binary random variable, to obtain better intuitions. We es-
tablish that for structural consistency, the number of samples is required to scale
as n = �(θ

−δη(η+1)−2
min logp), where p is the number of observed variables, θmin

is the minimum edge potential, δ is the depth (i.e., graph distance from a hid-
den node to the nearest observed nodes) and η is a parameter which depends on
the minimum and maximum node and edge potentials of the Ising model (η = 1
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for homogeneous models). When there are no hidden variables (δ = 1), the sam-
ple complexity is strengthened to n = �(θ−2

min logp), which matches with the best
known sample complexity for learning fully-observed Ising models [3, 27].

We also establish necessary conditions for any (deterministic) algorithm to re-
cover the graph structure and establish that n = �(�minρ

−1 logp) samples are
necessary for structural consistency, where �min is the minimum degree and ρ

is the fraction of observed nodes. This is comparable to the requirement of the
proposed method under uniform node sampling (i.e., selecting the observed nodes
uniformly), given by n = �(�2

maxρ
−2(logp)3), where �max is the maximum de-

gree in the graph. Thus, our method is competitive with respect to the lower bound
on learning.

Our proposed method has a number of attractive features for practical imple-
mentation: the method is amenable to parallelization which makes it efficient on
large datasets. The method provides flexibility to control the length of cycles and
the number of latent variables introduced in the output model. The method can in-
corporate penalty scores such as the Bayesian information criterion (BIC) [42] to
trade-off model complexity and fidelity. Moreover, by controlling the cycle lengths
in the output model, we can obtain models with good inference accuracy under
simple algorithms such as loopy belief propagation (LBP). Preliminary experi-
ments on the newsgroup dataset suggests that the method can discover intuitive
relationships efficiently, and also compares well with the popular latent Dirichlet
allocation (LDA) [7] in terms of topic coherence and perplexity.

1.2. Related work. The classical latent class models (LCM) consists of mul-
tivariate distributions with a single latent variable and the observed variables are
conditionally independent under each state of the latent variable [32]. Hierarchi-
cal latent class (HLC) models [15, 47, 48] generalize these models by allowing
multiple latent variables. However, the proposed learning algorithms are based on
greedy local search in a high-dimensional space, which is computationally expen-
sive. Moreover, the algorithms do not have theoretical guarantees. Similar short-
comings also hold for expectation-maximization (EM) based approaches [22, 30].
Learning latent trees has been studied extensively before, mainly in the context
of phylogenetics. See [21, 43] for a thorough overview. Efficient algorithms with
provable performance guarantees are available (e.g., [1, 17, 19, 23]). Our proposed
method in this paper is inspired by [17].

Works on high-dimensional graphical model selection are more recent. The ap-
proaches can be mainly classified into two groups: local approaches [3, 9, 27, 37]
and those based on convex optimization [14, 33, 40, 41]. There is a general agree-
ment that the success of these methods is related to the presence of correlation
decay in the model [3, 6]. This work makes the connection explicit: it relates the
extent of correlation decay (i.e., the convergence rate to the tree limit) with the
learning efficiency for latent models on large girth graphs. An analogous study
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of the effect of correlation decay for learning fully observed models is presented
in [3].

This paper is the first work to provide provable guarantees for learning discrete
latent models on loopy graphs in high dimensions (which can also be easily be
extended to Gaussian models; see remarks following Theorem 2). Chandrasekha-
ran et al. [13] consider learning latent Gaussian graphical models using a con-
vex relaxation method. However, the method cannot be easily extended to discrete
models. Moreover, the “incoherence” conditions required for the success of con-
vex methods are hard to interpret and verify in general. In contrast, our conditions
for success are transparent and based on the presence of correlation decay in the
model. Bresler et al. [9] considers graphical model selection with hidden variables,
but proposes learning Markov graph of marginal distribution (upon marginalizing
the hidden variables) and then replacing the cliques in the estimated graphs with
hidden variables. Sample complexity results are not provided, and the method per-
forms poorly in high dimensions, since it aims to estimate dense graphs.

2. System model.

2.1. Graphical models. A graphical model is a family of multivariate distri-
butions which are Markov in accordance to a particular undirected graph G =
(W,E) [31], page 32. For any distribution belonging to the model class, a ran-
dom variable Xi taking value in a set X is associated with each node i ∈ W in the
graph. We consider discrete graphical models where X is a finite set. The set of
edges E captures the set of conditional independence relations among the random
variables. We say that a set of random variables XW := {Xi, i ∈ W } with probabil-
ity mass function (p.m.f.) P is Markov on the graph G if it factorizes according to
the cliques of G,

P(x) = exp
(∑

c∈C
θc(xc) − A(θ)

)
∀x ∈ X m,(1)

where C is the set of cliques of G, m := |W | is the number of variables, and xc

is the set of configurations corresponding to clique c. The quantity A(θ) is known
as the log-partition function and serves to normalize the probability distribution.
The functions θc are known as potential functions and correspond to the canonical
parameters of the exponential family.

A special case is the Ising model, which is the class of pairwise distributions
over binary variables {−1,+1}m with probability mass function (p.m.f.) of the
form

P(x) = exp
(∑

e∈E

θi,j xixj + ∑
i∈V

φixi − A(θ)

)
∀x ∈ {−1,1}m.(2)

We specialize some of our results to the class of Ising models.
We consider a multivariate distribution belonging to the class of latent graphical

models in which a subset of nodes is latent or hidden. Let H ⊂ W denote the
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hidden nodes and V = W \ H denote the observed nodes. Our goal is to discover
the presence of hidden variables XH and learn the unknown graph structure G(W),
given n i.i.d. samples from observed variables XV . Let p := |V | denote the number
of observed nodes and m := |W | denote the total number of nodes.

2.2. Tractable graph families: Girth-constrained graphs. In general, structure
estimation of graphical models is NP-hard [8, 28]. We now characterize a tractable
class of models for which we can provide guarantees on graph estimation.

We consider the family of graphs with a bound on the girth, which is the length
of the shortest cycle in the graph. There are many graph constructions which lead
to a bound on girth. For example, the bipartite Ramanujan graph ([18], page 107)
and the random Cayley graphs [25] have bounds on the girth. Recently, efficient
algorithms have been proposed to generate large girth graphs efficiently [5].

Although girth-constrained graphs are locally tree-like, in general, their global
structure makes them hard instances for learning. Specifically, girth-constrained
graphs have a large tree-width: it is known that a graph with average degree at least
�avg and girth at least g has a tree width as �( 1

g+1(�avg − 1)�(g−1)/2�) [12]. Thus
learning is nontrivial for graphical Markov models on girth-constrained graphs,
even when there are no latent variables due to their large tree width [28].

2.3. Local convergence to a tree limit. This work establishes tractable learn-
ing when the graphical model converges locally to a tree limit. A sufficient con-
dition for the existence of such limits is the regime of correlation decay,3 which
refers to the property that there are no long-range correlations in the model [26,
34, 46]. This regime is also known as the uniqueness regime since under such an
assumption, the marginal distribution at a node is asymptotically independent of
the configuration of a growing boundary.

We tailor the definition of correlation decay to node neighborhoods and pro-
vide the definition below. Given a graph G = (W,E) and a distribution PXW |G
Markov on it, and any subset A ⊂ W , let PXA|G denote the marginal distribu-
tion of variables in A. For some subgraph F ⊂ G, let PXA|F denote the marginal
distribution on A obtained by setting the potentials of edges in G \ F to zero.
Thus, PXA|F is Markov on graph F . Let N [i;G] := N (i;G)∪ i denote the closed
neighborhood of node i in G. For any two sets A1,A2 ⊂ W , let dist(A1,A2) :=
mini∈A1,j∈A2 dist(i, j) denote the minimum graph distance.4 Let Bl(i) denote the
set of nodes within graph distance l from node i and ∂Bl(i) denote the boundary
nodes, that is, exactly at distance l from node i. Let Fl(i;G) := G(Bl(i)) denote

3Technically, correlation decay can be defined in multiple ways ([34], page 520), and the notion
we use is the uniqueness or the weak spatial mixing condition.

4We distinguish between the terms graph distance and information distances. The former refers to
the number of edges on the shortest path connecting the two nodes on the (unweighted) graph, while
the latter refers to the quantity in (8).
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the induced subgraph on Bl(i). For any distributions P,Q, let ‖P − Q‖1 denote
the 
1 norm.

DEFINITION 1 (Correlation decay). A distribution PXW |G Markov on graph
G = (W,E) is said to exhibit correlation decay with a nonincreasing rate function
ζ(·) > 0 if for all l ∈ N,

‖PXA|G − PXA|Fl(i;G)‖1 ≤ ζ
(
dist

(
A,∂Bl(i)

)) ∀i ∈ W,A ⊂ Bl(i).(3)

In words, the total variation distance5 between the marginal distribution of a
set A of a distribution Markov on G and the corresponding distribution Markov on
subgraph Fl(i;G) decays as a function of the graph distance to the boundary. This
implies that for a class of functions ζ(·), the effect of graph configuration beyond l

hops from any node i has a decaying effect on the local marginal distributions.
For the class of Ising models in (2), the regime of correlation decay can be

explicitly characterized, in terms of the maximum edge potential and the maximum
degree of the graph, and this is studied in Section 4.2.

3. Background on latent tree models. We first recap the results for latent
tree models which will subsequently extended to more general latent graphical
models. It is well known that tree-structured Markov distributions on a tree T =
(W,E) have a special form of factorization given by

P(xW) = ∏
i∈W

PXi
(xi)

∏
(i,j)∈T

PXi,j
(xi, xj )

PXi
(xi)PXj

(xj )
.(4)

Comparing with general distributions, we note that tree distributions are directly
parameterized in terms of pairwise marginal distributions on the edges. Similarly,

a Markov distribution can be described on a rooted directed tree
→
T with root r ∈

W , where the edges of
→
T are directed away from the root. Let Pa(i) denote the

(unique) parent of node i �= r and PXi |XPa(i) denote the corresponding conditional
distribution. The Markov distribution is given by

P(xW) = PXr (xr)
∏

i∈W,i �=r

PXi |XPa(i) (xi |xPa(i)).(5)

A Markov model is said to be nonsingular [36, 45] if (a) for all e ∈→
T , the

conditional distributions satisfy 0 < |det(PXi |XPa(i) )| < 1, and (b) for all i ∈ V ,
PXi

(x) > 0 for all x ∈ X . A nonsingular Markov model on an undirected tree T

and its directed counterpart
→
T are equivalent [36, 45]. Note that nonsingularity is

5Recall that the total variation distance between two probability distributions P,Q on the same

alphabet is given by 1
2‖P − Q‖1.
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equivalent to positivity (i.e., bounded potential functions) for Markov tree mod-
els. In particular, Ising models on trees with bounded node and edge potentials are
nonsingular. This is because under positivity, there is positive probability for any
global configuration of node states which implies that the conditional probability
at a node given any of its neighbors cannot be degenerate.

Latent tree models or phylogenetic tree models are tree-structured graphical
models in which a subset of nodes are hidden or latent. Our goal in this paper is to
leverage on the techniques developed for learning latent tree models to analyze a
more general class of latent graphical models.

3.1. Learning latent tree models. Learning the structure of latent tree models
is an extensively studied topic. A majority of structure learning methods (known
as distance based methods) rely on the presence of an additive tree metric. The
additive tree metric can be obtained by considering the pairwise marginal distribu-
tions of a tree structured joint distribution. For instance, Mossel [35] considers the
following metric for discrete distributions satisfying the nonsingular condition

d(i, j) := − log
∣∣det(PXi,j

)
∣∣ ∀i, j ∈ W.(6)

By nonsingularity assumption, we have that |det(PXi,j
)| > 0 for all i, j ∈ W . The

distance metric further simplifies for some special distributions, for example, for
symmetric Ising models, it is given by the negative logarithm of the correlation
between the node pair under consideration [43].

3.1.1. Quartet-based methods. A popular class of learning methods are based
on the construction of quartets or splits (e.g., [10, 23, 35]), and various procedures
to merge the inferred quartets. A quartet is a structure over four observed nodes,
as shown in Figure 1. We now recap the classical quartet test operating on any
additive tree metric. The path structure refers to the configuration of paths between
the given nodes.

DEFINITION 2 (Quartet or four-point condition on trees). Given an additive
metric on a tree [d(i, j)]i,j∈V , the tuple of four nodes a, b,u, v ∈ V has the struc-
ture in Figure 1 if and only if

d(a, b) + d(u, v) < min
(
d(a,u) + d(b, v), d(b,u) + d(a, v)

)
,(7)

FIG. 1. Quartet Q(ab|uv). See (7).
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and the structure in Figure 1 is denoted by Q(ab|uv).

It is well known that the set of all quartets uniquely characterize a latent tree.
In [23], it was shown that a subset of quartets, termed as representative quartets,
suffices to uniquely characterize a latent tree. The set of representative quartets
consists of one quartet for each edge in the latent tree with shortest (graph) dis-
tances between the observed nodes.

3.1.2. Recursive grouping. We recap the recursive grouping RG(d̂n(V ),�, τ)

method proposed in [17] (and its refinement in [1]). The method is based on a
robust quartet test Quartet(d̂n,�) given in Algorithm 1. If the confidence bound
is not met, a ⊥ result is declared. In the first iteration of RG in Algorithm 2, the
algorithm searches for node pairs which occur on the same side of all the quartets,
output by the quartet test Quartet(d̂n,�) and declares them as siblings and intro-
duces hidden variables. In later iterations of RG, sibling relationships between hid-
den variables are inferred through quartets involving their children. Finally, weak
edges are merged and a tree (and more generally a forest) is output. We later use
a modified version of recursive grouping method as a routine in our algorithm for
estimating locally tree-like graphs. In the end, the neighboring nodes (at least one
of which is hidden) are merged based on the threshold τ . See Section 4 for details.

3.1.3. Chow–Liu grouping. An alternative method, known as Chow–Liu
grouping (CLGrouping), was proposed in [17]. Although the theoretical results
for CLGrouping are similar to earlier results (e.g., [23]), experiments on both syn-
thetic and real data sets revealed significant improvement over earlier methods in
terms of likelihood scores and number of hidden variables added.

Algorithm 1 Quartet(d̂n(V ),�) test using distance estimates d̂n(V ) :=
{d̂(i, j)}i,j∈V and confidence bound �.

Input: Distance estimates between the observed nodes d̂n(V ) := {d̂(i, j)}i,j∈V

and confidence bound �. Denote (·)+ := max(·,0).
Initialize set of quartets Q(V ) ← ∅.
for {i, j, i ′, j ′} ∈ V do

if (e−d̂(i,j) − �)+(e−d̂(i′,j ′) − �)+ > (e−d̂(i,j ′) + �)+(e−d̂(i,j) + �)+ then
Declare Quartet: Q(V ) ← Q(ij |i ′j ′).

end if
if No quartet declared for {i, j, i′, j ′} then

⊥i,j,i′,j ′ (Declare null).
end if

end for
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Algorithm 2 RG(d̂n(V ),�, τ) test using distance estimates d̂n(V ) :=
{d̂(i, j)}i,j∈V , confidence bound � and threshold τ for merging nodes.

Input: Distance estimates between the observed nodes d̂n(V ) := {d̂(i, j)}i,j∈V ,
confidence bound � and threshold τ . Let C(a) denote the children of node a.
Initialize A ← V , C(i) ← {i} for all i ∈ V and Q(V ) ← Quartet(d̂n(A),�).
while A �= ∅ do

if ∃i, j ∈ A s.t. for each a ∈ C(i) and b ∈ C(j), c, d /∈ C(i) ∪ C(j),
{ac|bd, ad|bc} /∈ Q(V ), that is, a, b are on same side of all such quartets
in Q(V ). then

Declare i, j as siblings and introduce hidden node h as parent and C(h) ←
C(i) ∪ C(j).
Remove i, j from A and add h to A.

else
Sibling relationships cannot be further inferred. Break.

end if
end while
Form forest T̂ based on sibling and child/parent relationships.
Compute distances between any two hidden nodes as average distance between
their observed children.
Merge edges in T̂ of length less than τ and output T̂ .

The CLGrouping method always maintains a candidate tree structure and pro-
gressively adds more hidden nodes in local neighborhoods. The initial tree struc-
ture is the minimum spanning tree (MST) over the observed nodes with respect to
the tree metric. The method then considers neighborhood sets on the MST and con-
structs local subtrees (using quartet based method or any other tree reconstruction
algorithm). This local reconstruction property of CLGrouping makes it especially
attractive for reconstructing girth-constrained graphs.

4. Method and guarantees for structure estimation.

4.1. Overview of algorithm. We now describe our algorithm, which we term
as LocalCLGrouping, for structure estimation of latent graphical Markov models
on graphs with long cycles. The algorithm leverages on the Chow–Liu grouping
algorithm developed for latent tree models [17], described in the previous section.
The main intuition for learning a girth-constrained graph is based on reconstruct-
ing “local” parts of the graph which are acyclic and piecing them together. How-
ever, this approach has many challenges. First, it is not clear if the local acyclic
pieces can be learned efficiently since it requires the presence of an additive tree
metric. This is addressed by considering models satisfying correlation decay (see
Section 2.3). A second and a more difficult challenge involves merging the re-
constructed local latent trees with provable guarantees due to the introduction of
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Algorithm 3 LocalCLGrouping(d̂n(V ),�, τ, r) for graph estimation using dis-
tance estimates d̂n(V ) := {d̂(i, j)}i,j∈V , confidence bound �, threshold τ and dis-
tance parameter r .

Input: Distance estimates between the observed nodes d̂n(V ) := {d̂(i, j)}i,j∈V ,
confidence bound �, threshold τ and bound r on distances used for local re-
construction. Let Br(v; d̂n) := {u : d̂n(u, v) ≤ r} and let MST(A; d̂n) denote the
minimum spanning tree over A ⊂ V based on edge weights d̂n(A). Given a
graph G, let Leaf(G) denote the set of nodes with unit degree. Let N [i;G] de-
note the closed neighborhood of node i in graph G. RG(d̂n(A),�, τ) represents
the recursive grouping method for building latent trees (see Section 3.1) over
the set of nodes A using distance estimates d̂n(A) with confidence bound � and
threshold τ for merging nodes.
for v ∈ V do

Tv ← MST(Br(v); d̂n).
end for
Initialize Ĝ, Ĝ0 ← ⋃

v Tv .
for v ∈ V \ Leaf(Ĝ0) do

A ← N [v; Ĝ].
S ← RG(d̂n(A),�, τ).
Ĝ(A) ← S (Replace subgraph over A with S in Ĝ)

end for
Output Ĝ.

unlabeled latent nodes in different pieces. We circumvent this challenge by lever-
aging on the Chow–Liu grouping algorithm [17] and merging the different pieces
before introducing the latent nodes.

The algorithm is described in Algorithm 3. Let d̂n(i, j) denote the estimated
distance between nodes i and j according to (6) using the empirical distribution
P̂ n

Xi,j
computed using n samples, that is,

d̂n(i, j) := − log
∣∣det

(
P̂ n

Xi,j

)∣∣ ∀i, j ∈ V.(8)

The set of distance estimates d̂n(V ) := {d̂n(i, j) : i, j ∈ V } are input to the algo-
rithm along with a parameter r . Recall that Br(i; d̂n(V )) := {j : d̂n(i, j) ≤ r}. For
each observed node i ∈ V , the set of nodes Br(i; d̂n(V )) is considered, and the
minimum spanning tree is constructed. The graph estimate Ĝ is initialized by tak-
ing the union of all the local minimum spanning trees. The latent nodes are now
iteratively added by considering local neighborhoods of Ĝ and using any latent tree
algorithm for reconstruction (e.g., [17, 35]). Note that the running time is polyno-
mial (in the number of nodes) as long as polynomial time algorithms are employed
for local latent tree reconstruction.
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The proposed method is efficient for practical implementation due to the “divide
and conquer” feature, that is, the local, latent tree-building operations can be paral-
lelized to obtain speedups. For real datasets, a trade-off between model complexity
and fidelity is typically enforced by optimizing scores such as the Bayesian infor-
mation criterion (BIC) [42]. Such criteria can be easily enforced through a greedy
local search in each iteration of our method, and this limits the number of hidden
variables added by our method. In our experiments in Section 6, we found that this
method is quick to implement on real and synthetic datasets.

We subsequently establish the correctness of the proposed method under a set
of natural conditions. We require that the parameter r , which determines the set
Br(i;d) for each node i, needs to be chosen as a function of the depth δ (i.e., dis-
tance from a hidden node to its closest observed nodes) and girth g of the graph. In
practice, the parameter r provides flexibility in tuning the length of cycles added
to the graph estimate. When r is large enough, we obtain a latent tree, while for
small r , the graph estimate can contain many short cycles (and potentially many
components). In experiments, we evaluate the performance of our method for dif-
ferent values of r . The tuning of parameters � and τ has been previously discussed
in the context of learning latent trees (e.g., [17], page 1796), and we leverage on
those results here. For more details, see Section 6.

4.1.1. Simple example with a single cycle. To demonstrate the steps of the
above proposed method, consider the simple case of a single cycle of length g,
where all the nodes on the cycle are hidden, and each hidden node has two ob-
served leaves, as shown in Figure 2(a). When the cycle length g is sufficiently
large, information distances on local neighborhoods are approximately additive,
as depicted in Figure 2(b). Moreover, in Figure 2(b), let “*” denote the observed
node closest to each hidden node (termed as its surrogate), in terms of informa-
tion distance. The minimum spanning tree over the set of four nodes, which are
zoomed in, corresponds to a chain shown in Figure 2(c). Similarly, if in different
local neighborhoods of observed nodes (based on a threshold on information dis-
tances), the surrogate relationships are similar (i.e., every hidden node has one of
its children as its surrogate), then the local MSTs are simple chains, and their merg-
ing gives rise to graph G in Figure 2(d). Now if a local neighborhood is selected
on the merged graph G, as shown in Figure 2(e), then we can discover the local
latent tree structure based on information distances as shown in Figure 2(f), since
they are approximately additive. Similarly, when different neighborhoods on G

are selected, local latent trees are discovered, and distances between nearby hid-
den nodes are computed. This way we recover the latent cycle graph in Figure 2(a)
in the end.

4.2. Results for Ising models. We first limit ourselves to providing asymptotic
guarantees for the Ising model in (2), and then extend the results to nonasymptotic
guarantees in general discrete distributions.
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FIG. 2. Various steps of LocalCLGrouping method on a simple cycle, where observed variables are
shaded. See Section 4.1.1.

4.2.1. Conditions for recovery in Ising models. We present a set of natural
conditions on the graph structure and model parameters under which our proposed
method succeeds in structure estimation.

(A1) Minimum degree of latent nodes: We require that all latent nodes have
degree at least three.

(A2) Distance bounds: Assume bounds on the edge potentials θ := {θi,j } of the
Ising model

θmin ≤ |θi,j | ≤ θmax ∀(i, j) ∈ G.(9)

Similarly assume bounded node potentials. We now define certain quantities which
depend on the edge potential bounds. Given a distribution belonging to the class
of Ising models P with edge potentials θ = {θi,j } and node potentials φ = {φi},
consider its attractive counterpart P̄ with edge potentials θ̄ := {|θi,j |} and node po-
tentials φ̄ := {|φi |}. Let φ′

max := maxi∈V atanh(Ē(Xi)), where Ē is the expectation
with respect to the distribution P̄ . Let P(X1,2; {θ,φ1, φ2}) denote a distribution
belonging to the class of Ising models on two nodes {1,2} with edge potential θ

and node potentials {φ1, φ2}. Our learning guarantees depend on dmin and dmax
satisfying

dmin ≥ − log
∣∣detP

(
X1,2; {

θmax, φ
′
max, φ

′
max

})∣∣,(10)

dmax ≤ − log
∣∣detP

(
X1,2; {θmin,0,0})∣∣,(11)
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η := dmax

dmin
.(12)

(A3) Correlation decay: We assume correlation decay in the Ising model and
require that

α := �max tanh θmax < 1,
αg/2

θ
η(η+1)+2
min

= o(1),(13)

where �max is the maximum node degree, g is the girth, θmin, θmax are the mini-
mum and maximum (absolute) edge potentials in the model and o(1) is with re-
spect to m, the number of nodes in the graph.6

(A4) Girth vs. depth: The depth δ characterizes how close the latent nodes are
to observed nodes on graph G: for each hidden node h ∈ H , find a set of four
observed nodes which form the shortest quartet with h as one of the middle nodes,
and consider the largest graph distance in that quartet. The depth δ is the worst-
case distance over all hidden nodes. We require the following trade-off between
the girth g and the depth δ,

g

4
− δη(η + 1) = ω(1).(14)

Further, the parameter r in our algorithm is chosen as

r > δ(η + 1)dmax + ε for some ε > 0,
g

4
dmin − r = ω(1).(15)

(A1) is a natural assumption on the minimum degree of the hidden nodes for
identifiability and has been imposed before for latent tree models [17]. Note that
the latent nodes of degree two or lower can be marginalized to obtain an equivalent
representation of the observed statistics.

(A2) relates certain distance bounds to bounds on edge potentials. Intuitively,
dmin and dmax are bounds on information distances given by the local tree approx-
imation of the loopy model, and its precise definition is given in (18). Note that
e−dmax = �(θmin) and e−dmin = O(θmax).

(A3) uses bounds on the edge potentials to impose correlation decay on the
model. It is natural that the sample requirement of any graph estimation algorithm
depends on the “weakest” edge characterized by the minimum edge potential θmin.
Further, the maximum edge potential θmax characterizes the presence/absence of
long-range correlations in the model. Moreover, (A3) prescribes that the extent of
correlation decay be strong enough (i.e., a small α and a large enough girth g)
compared to the weakest edge in the model.

Conditions similar to (A3) have been imposed before for graphical model se-
lection in the regime of correlation decay when there are no hidden variables [3].

6Unless otherwise noted, the notation O(·), o(·),�(·),ω(·) are with respect to m, the number of
nodes in the graph.
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For instance, in [3], an upper bound is imposed on the edge potentials to limit the
effect of long paths on local conditional independence tests. A lower bound on
edge potentials is needed for edges to pass the conditional independence test.

(A4) provides the trade-off between the girth g and the depth δ. Intuitively,
the depth needs to be smaller than the girth to avoid encountering cycles during
the process of graph reconstruction. Recall that the parameter r in our algorithm
determines the neighborhood over which local MSTs are built in the first step. It
is chosen such that it is roughly larger than the depth δ in order for all the hidden
nodes to be discovered. The upper bound on r ensures that the distortion from an
additive metric is not too large. The parameters for latent tree learning routines
(such as confidence bounds for quartet tests) are chosen appropriately depending
on dmin and dmax. See Section 4.3.

4.2.2. Guarantees for Ising models. We now establish that the proposed
method correctly estimates the graph structure of an Ising model in high dimen-
sions. Recall that δ is the depth (distance from a hidden node to its closest observed
nodes), θmin is the minimum (absolute) edge potential and η = dmax

dmin
is the ratio of

distance bounds.

THEOREM 1 (Structural consistency for Ising models). Under (A1)–(A4), the
probability that LocalCLGrouping is structurally consistent tends to one, when the
number of samples scales as

n = �
(
θ

−δη(η+1)−2
min logp

)
.(16)

PROOF. See the supplementary material [4]. �

REMARKS.

(1) For learning Ising models on locally tree-like graphs, the sample complex-
ity is dependent both on the minimum edge potential θmin and on the depth δ.
Our method is efficient in high dimensions since the sample requirement is only
logarithmic in the number of nodes p.

(2) Dependence on maximum degree: For the correlation decay to hold (A3),
we require θmin ≤ θmax = �(1/�max). This implies that the sample complexity is
at least n = �(�

δη(η+1)+2
max logp).

(3) Comparison with fully observed models: In the special case when all the
nodes are observed (δ = 1) and the graph is locally tree-like, we strengthen the re-
sults for our method and establish that the sample complexity for graph estimation
is n = �(θ−2

min logp). This matches the best known sample complexity for learn-
ing fully observed Ising models [3, 27]. The sample complexity result holds for
a modified version of LocalCLGrouping: threshold r is applied to the information
distances at each node and local MSTs are formed as before. The threshold r can
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be chosen as r = dmax + ε, for some ε > 0. The graph estimate is obtained as the
union of local MSTs and local latent tree routines are not implemented in this case.
We prove an improved sample complexity in this special case which matches the
best known bounds.

(4) Comparison with learning latent trees: Our method is an extension of la-
tent tree methods for learning locally tree-like graphs. The sample complexity of
our method matches the sample requirements for learning general latent tree mod-
els [17, 23, 35]. Thus, we establish that learning locally tree-like graphs is akin to
learning latent trees in the regime of correlation decay.

4.3. Extension to general discrete models. We now extend the results to gen-
eral discrete models and provide nonasymptotic sample requirement guarantees
for success of our proposed method.

Local tree approximation. We first define the notion of a local tree metric
dtree(V ) computed by limiting the model to acyclic neighborhood subgraphs be-
tween the respective node pairs. Given a graph G = (W,E), let tree(i, j ;G) :=
G(Bl(i)∪Bl(j)), for l = �g/2�−1, denote the induced subgraph on Bl(i)∪Bl(j),
where g is the girth of the graph. Recall that Bl(i;G) denotes the set of nodes
within graph distance l from i in G. When l < g/2 − 1 no cycles are encountered,
and thus the induced subgraph tree(i, j ;G) is acyclic. Recall that PXi,j |G denotes
the pairwise marginal distribution between i and j induced by the distribution
P(xW) Markov on graph G. Let PXi,j | tree(i,j) denote the pairwise marginal distri-
bution between i and j induced by considering only the subgraph tree(i, j ;G) ⊂
G. Denote

d(i, j ; tree) := − log
∣∣detPXi,j | tree(i,j)

∣∣,
(17)

d(i, j ;G) := − log
∣∣detPXi,j |G

∣∣.
Denote dtree(V ) := {d(i, j ; tree) : i, j ∈ V } and d(V ) := {d(i, j ;G) : i, j ∈ V }.
Note that for loopy graphs in general, d(i, j ;G) is different from d(i, j ; tree). The
learner has access only to the empirical versions d̂(V ) of the distances d(V ), and
thus the learner cannot estimate dtree(V ). However, we use dtree(V ) to characterize
the performance of our algorithm, and we list the relevant assumptions below.

4.3.1. Conditions on the model parameters.

(B1) Minimum degree: The minimum degree of any hidden node in the graph
is three.

(B2) Bounds on local tree metric: Given a distribution PXW |G Markov on
graph G, the pairwise marginal distribution PXi,j | tree(i,j) between any two neigh-
bors (i, j) ∈ G are nonsingular and the distances

d(i, j ; tree) := − log
∣∣detPXi,j | tree(i,j)

∣∣
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satisfy

0 < dmin ≤ d(i, j ; tree) ≤ dmax < ∞ ∀(i, j) ∈ G, η := dmax

dmin
(18)

for suitable parameters dmin and dmax.
(B3) Regime of correlation decay: The pairwise statistics of the distribution

converge locally to a tree limit according to Definition 1 with function ζ(·) in (3)
satisfying

0 ≤ ζ

(
g

2
− r

dmin
− 1

)
<

υ

|X |2 ,(19)

where g is the girth, r is the distance bound parameter in LocalCLGrouping, |X | is
the dimension of each variable, dmin, dmax are the distance bounds in (18) and

υ := min
(
dmin,0.5e−r(edmin − 1

)
, e−0.5dmax(r/dmin+2),

(20)
g

4
dmin − r, r − dmaxδ(η + 1)

)
.

(B4) Confidence bound for quartet test: The confidence bound in Quartet(d̂,�)

routine in Algorithm 1 is chosen as

� = exp
[
−dmax

2

(
r

dmin
+ 2

)]
.(21)

(B5) Threshold for merging nodes: The threshold τ in RG(d̂,�, τ) routine in
Algorithm 2 is chosen as

τ = dmin

2
− |X |2ζ

(
g

2
− 1

)
> 0,(22)

where |X | is the dimension of the variable at each node, and ζ(·) is the correlation
decay function according to (3).

(B1) is a natural assumption on the minimum degree of the hidden nodes for
identifiability, which is also needed for latent trees. Assumption (B2) states that
every edge has bounded distances under local tree approximations. Recall that
in the special case of Ising models, this can be expressed via bounds on edge
potentials. Assumption (B3) on correlation decay imposes a constraint on the rate
function ζ(·), in terms of the girth of the graph g, the distance threshold r used by
the proposed method, the distance bounds dmin and dmax and depth δ. (B3) implies
that we require that the depth δ satisfies

g

4
dmin > δ(η + 1)dmax.(23)

Similarly, (B3) imposes constraints on the parameter r used by the proposed al-
gorithm for building local minimum spanning trees in the first step. (B3) implies
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that r needs to be chosen as

δ(η + 1)dmax < r <
g

4
dmin − r.(24)

Intuitively, the above constraint implies that r is relatively small compared to the
girth of the graph and large enough for every hidden node to be discovered. This
enables the proposed algorithm to correct reconstruct latent trees locally.

The confidence bound constraint in (B4) is based on the concentration bounds
for the empirical distances. The threshold for merging nodes in (B5) ensures that
spurious hidden nodes are not added. These conditions are inherited from latent
tree algorithms.

4.4. Guarantees for the proposed method. We now establish that the
LocalCLGrouping algorithm is structurally consistent under the above conditions.

THEOREM 2 (Structural consistency of LocalCLGrouping). Under assump-
tions (B1)–(B5), the LocalCLGrouping algorithm is structurally consistent with
probability at least 1 − κ , for any κ > 0, when the sample size n satisfies

n >
2|X |2

(υ − |X |2ζ(g/2 − r/dmin − 1))2

(
4 logp + |X | log 2 − log

κ

7

)
,(25)

where υ is given by (20).

REMARKS.

(1) We provide PAC guarantees for reconstructing latent graphical models on
girth-constrained graphs. The conditions for success imposed on the girth of the
graph are relatively mild. We require that the girth be roughly larger than the depth
and that the correlation decay function ζ(·) be sufficiently strong (B3). Thus, learn-
ing girth-constrained graphs is akin to learning latent tree models (in terms of sam-
ple and computational complexities) under a wide range of conditions.

(2) One notable additional condition required for learning girth-constrained
graphs in contrast to latent trees is the requirement of correlation decay (B3).
However, we note that this is only a sufficient condition, and not necessary for
learnability. For instance, the result in [20] establishes that the pairwise statistics
converge locally to a tree limit for all attractive Ising models with strictly positive
node potentials, but without any additional constraints on the parameters. Our re-
sults and analysis hold in such scenarios since we only require local convergence
to a tree metric.

(3) The results above are applicable for discrete models but can be extended
to Gaussian models using the notion of walk-summability in place of correlation
decay according to (3) (see [2]) and the negative logarithm of the correlation co-
efficient as the distance metric; see [17]. The results can also be extended to more
general linear models such as multivariate Gaussian models, Gaussian mixtures
and so on, along the lines of [1].
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PROOF OF THEOREM 2. The detailed proof is given in the supplementary
material [4]. It consists of the following main steps:

(1) We first prove correctness of LocalCLGrouping under the tree limit [i.e.,
distances dtree(V ) := {d(i, j ; tree)}i,j∈V ] and then show sample-based consis-
tency. The latter is based on concentration bounds, along the lines of analysis for
latent tree models [23, 35], with an additional distortion introduced due to the
presence of a loopy graph.

(2) We now briefly describe the proof establishing the correctness of
LocalCLGrouping algorithm under dtree in girth-constrained graphs. Intuitively,
the distances d(i, j ; tree) correspond to a tree metric when the graph distance
dist(i, j) < g/2 − 1, where g is the girth. Since LocalCLGrouping infers latent
trees only locally, it avoids running into cycles and thus correctly reconstructs
the local latent trees. The initialization step in LocalCLGrouping corresponds to
the correct merge of this local latent trees under the assumptions on parameter r

in (24), and the correctness of LocalCLGrouping is established. �

4.4.1. Guarantees under uniform sampling. We have so far given guarantees
for graph reconstruction, given an arbitrary set of observed nodes in the graph. We
now specialize the results to the case when there is a uniform sampling of nodes
and provide learning guarantees. This analysis provides intuitions on the relation-
ship between the fraction of sampled nodes and the resulting learning performance.

Consider an ensemble of graphs on m nodes with girth at least g and minimum
degree �min ≥ 3 and maximum degree �max. Let ρ := p

m
denote the uniform sam-

pling probability for selecting observed nodes. We have the following result on the
depth δ. Define a constant ε0 > 0 as

ε0 = − log(4m�max(1 − ρ)(�min−1)g/2
)

logm
.(26)

LEMMA 1 (Depth under uniform sampling). Given uniform sampling proba-
bility of ρ, for any ε ≤ max(0, ε0),

δ <
1

log(�min − 1)

(
log

[
log(4m1+ε�max)

| log(1 − ρ)|
])

w.p. ≥ 1 − m−ε.(27)

PROOF. The proof is by straightforward arguments on binomial random vari-
ables and the union bound. See the supplementary material [4]. �

REMARKS.

(1) Assuming that the girth satisfies g > 2δ(1 + dmax/dmin) w.h.p., when the
sampling probability and the degrees are both constant, then

ρ = �(1), �min,�max = O(1) ⇒ δ = O(log logm) ⇒ n = �
(
poly(logm)

)
,

w.h.p.,
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where poly(logm) refers to a polylogarithmic dependence in m. On the other hand,
with vanishing sampling probability, for β ∈ [0,1), we have

ρ = �
(
mβ−1)

, �min,�max = O(1) ⇒ δ = O(logm) ⇒ n = �
(
poly(m)

)
,

w.h.p.

(2) Recall that for Ising models, the best-case sample complexity of
LocalCLGrouping for structural consistency [when η = 1 and θmin = θmax =
�(1/�max)] scales as

n = �
(
�2(δ+1)

max logp
)
.

Thus, under uniform sampling, the sample complexity required for consistency
scales as

n = �

(
�2

max

(
logp

| log(1 − ρ)|
)4log�max/log(�min−1)

logp

)
.

For the special case when the graph is regular (�min = �max), this reduces to

n = �
(
�2

maxρ
−2(logp)3)

.(28)

5. Necessary conditions for graph estimation. We have so far provided
sufficient conditions for recovering latent graphical Markov models on girth-
constrained graphs. We now provide necessary conditions on the number of sam-
ples required by any algorithm to reconstruct the graph. Let Ĝn : (X |V |)n → Gm

denote any deterministic graph estimator using n i.i.d. samples from node set V ,
and Gm is the set of all possible graphs on m nodes.

We first define the notion of the graph edit distance based on inexact graph
matching [11]. Let G,Ĝ be two graphs with common labeled node set V and
unlabeled node sets U and Û . Without loss of generality, let |U | ≥ |Û | and add
|U | − |Û | number of isolated nodes to Ĝ. Let AG,AĜ be the resulting adjacency
matrices. Then the edit distance between G,Ĝ is defined as

dist(Ĝ,G;V ) := min
π

∥∥AĜ − π(AG)
∥∥

1,

where π is any permutation on the unlabeled nodes while keeping the labeled node
set V fixed.

In other words, the edit distance is the minimum number of entries that are
different in AĜ and in any permutation of AG over the unlabeled nodes. In our
context, the labeled nodes correspond to the observed nodes V while the unlabeled
nodes correspond to latent nodes H . We now provide necessary conditions for
graph reconstruction up to certain edit distance.

THEOREM 3 (Necessary condition). For any deterministic estimator Ĝm :
(X mβ

)n �→ Gm based on n i.i.d. samples from mβ observed nodes β ∈ [0,1] of
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a latent graphical Markov model on graph Gm on m nodes with girth g, minimum
degree �min and maximum degree �max, for all ε > 0, we have

P
[
dist(Ĝm,Gm;V ) > εm

] ≥ 1 − |X |nmβ
m(2ε+1)m3εm

m0.5�minm(m − g�
g
max)0.5�minm

,(29)

under any sampling process used to choose the observed nodes.

PROOF. The proof is based on counting arguments. See the supplementary
material [4] for details. �

REMARKS.

(1) The above result states that roughly

n = �
(
�minm

1−β logm
) = �

(
�min

ρ
logp

)
(30)

samples are required for structural consistency. Thus, when β = 1 (constant frac-
tion of observed nodes), logarithmic number of samples are necessary while when
β < 1 (vanishing fraction of observed nodes), polynomial number of samples
are necessary for reconstruction. From (28), recall that for Ising models, un-
der uniform sampling of observed nodes, the best-case sample complexity of
LocalCLGrouping [for homogeneous models on regular graphs with degree � and
θmin = θmax = �(1/�)] scales as

n = �
(
�2ρ−2(logp)3)

,

and thus nearly matches the lower bound on sample complexity in (30).

6. Experiments. In this section we present experimental results on real and
synthetic data. We evaluate performance in terms of perplexity, predictive per-
plexity and topic coherence, used frequently in topic modeling. In addition,
we also study trade-off between model complexity and data fitting through the
Bayesian information criterion (BIC) [42]. Experiments are conducted using
the 20-newsgroup data set, monthly stock returns from the S&P 100 compa-
nies and synthetic data. The datasets, software code and results are available at
http://newport.eecs.uci.edu/anandkumar.

6.1. Experimental setup. Synthetic data. We generate samples from an Ising
model Markov on a cycle (see Figure 2) with a fixed depth δ = 1, a fixed latent
node degree � = 4 and different girths g = 10,20,30, . . . ,100. The node poten-
tials are kept at zero, while the edge potentials are chosen randomly in the range
[0.05,0.2]. This ensures that the model remains in the regime of correlation decay
since the critical potential θ∗ = atanh(�−1) = 0.2554 > 0.2.

http://newport.eecs.uci.edu/anandkumar
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Newsgroup data. We employ latent graphical models for topic modeling, that
is, modeling the relationships between various words co-occurring in documents.
Each hidden variable in the model can be thought of as representing a topic, and
topics and words in a document are drawn jointly from the graphical model. For a
latent tree graphical model, topics and words are constrained to form a tree, while
loopy models relax this assumption. We consider n = 16,242 binary samples of
p = 100 keywords selected from the 20 newsgroup data. Each binary sample indi-
cates the appearance of the given words in each posting. These samples are divided
in to two equal groups, training and test sets for learning and testing purposes.

S&P data. We also employ latent graphical models for financial modeling and
in particular, for estimating the dependencies between the stock trends of different
companies. The data set consists of monthly stock returns of p = 84 companies7

listed in S&P 100 index from 1990 to 2007. Experiments with this dataset allows us
to demonstrate the performance of our algorithm on data using a Gaussian graphi-
cal model. The Gaussian model is a simplifying assumption but reveals interesting
relationships between the companies. We note that more sophisticated kernel mod-
els can indeed be used in place of the Gaussian approximation, for example, [44].

This allows us to trade-off model complexity and data fitting. In addition,
we obtain better generalization by avoiding overfitting. Note that our proposed
method only deals with structure estimation and we use expectation maximization
(EM) for parameter estimation. For the newsgroup data we compare the proposed
method with the LDA model.8

Implementation. The above method is implemented in MATLAB. We used the
modules for LBP, made available with UGM9 package. The LDA models are
learned using the lda package.10

Threshold selection r for our method. Recall that the parameter r in our method
controls the size of neighborhoods over which the local MSTs are constructed in
the first step of our method. We earlier presented ranges of r , where recovery of
the loopy structure is theoretically guaranteed (w.h.p.). However, in practice, this
range is unknown, since the model parameters are unknown to the learner, and
also since there is no ground truth with respect to real datasets. Here, we present
intuitive criterion for selecting the threshold based on the BIC score. We choose
the range for threshold r as

rmax := max
(i,j)∈V ×V

d(i, j), rmin := max
j∈V

min
i∈V

d(i, j),(31)

thereby disallowing disconnected components in the output graph. Note that if
we choose r ≥ rmax, then the output is a latent tree. In our experiments, we

7The 16 companies added after 1990 are dropped from the list of 100 companies listed in S&P 100
stock index for this analysis.

8Typically, LDA models the counts of different words in documents. Here, since we have binary
data, we consider a binary LDA model where the observed variables are binary.

9These codes can be downloaded from http://www.di.ens.fr/~mschmidt/Software/UGM.html.
10http://chasen.org/~daiti-m/dist/lda/.

http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://chasen.org/~daiti-m/dist/lda/
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choose one value above rmax to find a reference tree model and compare it
with other outcomes. For the 20 newsgroup dataset, we find that rmin = 2.3678
and rmax = 12.2692. Therefore, we choose r ∈ {3,5,7,9,11,13} for our experi-
ments on newsgroup data. For the monthly stock returns data, rmin = 1.0337 and
rmax = 8.1172, and we choose r from 1.1 to 8.2. The tuning of parameters � and
τ has been previously discussed in the context of learning latent trees (e.g., [17],
page 1796), and we leverage on those results here.

Performance evaluation. We evaluate performance based on the test perplex-
ity [38] given by

Perp-LL := exp

[
− 1

np

n∑
k=1

logP
(
xtest(k)

)]
,(32)

where n is the number of test samples and p is the number of observed variables
(i.e., words). Thus the perplexity is monotonically decreasing in the test likelihood
and a lower perplexity indicates a better generalization performance. Along the
lines of (32), we also evaluate the predictive perplexity [7]

Pred-Perp-LL := exp

[
− 1

np

n∑
k=1

logP
(
xtest

pred(k)|xtest
obs(k)

)
,

]
(33)

where a subset of word occurrences xtest
obs is observed in test data, and the perfor-

mance of predicting the rest of words is evaluated. In our experiments, we ran-
domly select half the words in test samples.

We also consider regularized versions of perplexity that capture trade-off be-
tween model complexity and likelihood, given by

Perp-BIC := exp
[
− 1

np
BIC

(
xtest)],(34)

where the BIC score [42] is defined as

BIC
(
xtest) :=

n∑
k=1

logP
(
xtest(k)

) − 0.5(df) logn,(35)

where df is the degrees of freedom in the model. For a graphical model, we set
dfGM := m + |E|, where m is the total number of variables (both observed and
hidden), and |E| is the number of edges in the model. For the LDA model, we
set dfLDA := (p(m − p) − 1), where p is the number of observed variables (i.e.,
words) and m − p is the number of hidden variables (i.e., topics). This is because
a LDA model is parameterized by a p × (m − p) topic probability matrix and a
(m − p)-length Dirichlet prior. Thus, the BIC perplexity in (34) is monotonically
decreasing in the BIC score, and a lower BIC perplexity indicates better trade-off
between model complexity and data fitting. However, the likelihood and BIC score
in (32) and (34) are not tractable for exact evaluation in general graphical mod-
els since they involve the partition function. We employ loopy belief propagation
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(LBP) to evaluate them.11 Note that it is exact on a tree model and approximate for
loopy models. Along the lines of predictive perplexity in (33), we also consider its
regularized version

Pred-Perp-BIC := exp
[
− 1

np
BIC

(
xtest

pred|xtest
obs

)]
,(36)

where the conditional BIC score is given by

BIC
(
xtest

pred|xtest
obs

) :=
n∑

k=1

logP
(
xtest

pred(k)|xtest
obs(k)

) − 0.5(df) logn.(37)

In addition, we also evaluate topic coherence, frequently considered in topic
modeling. It is based on the average pointwise mutual information (PMI) score

PMI := 1

45|H |
∑
h∈H

∑
i,j∈A(h)

i<j

PMI(Xi;Xj),

(38)

PMI(Xi;Xj) := log
P(Xi = 1,Xj = 1)

P (Xi = 1)P (Xj = 1)
,

where the set A(h) represents the “top-10” words associated with topic h ∈ H . The
number of such word pairs for each topic is

(10
2

) = 45, and is used for normaliza-
tion. In [39], it is found that the PMI scores are a good measure of human evaluated
topic coherence when it is computed using an external corpus. It is also observed
that using a related external corpus gives a high PMI. Hence, in our experiments,
we choose a corpus containing news articles from the NYT articles bag-of-words
dataset. This dataset has a vocabulary of 102,660 words from 300,000 separate
articles [24]. For LDA models, the top 10 words for each topic are selected based
on the topic probability vector. For latent graphical models, we use the criterion of
information distances on the learned model to select the 10 nearest words for each
topic.

6.2. Experimental results.
Results for synthetic data. We observe that our method outputs graphs with a

similar number of latent variables as the ground truth when r is chosen close to
the bound rmax, defined in (31). On the other hand, lower values of r lead to more
cycles and hidden variables in the output graph. The normalized BIC scores (nor-
malized with respect to n and p) of the loopy graphs improve with the number of
samples n, as shown in Figure 3(b). This is expected since the data becomes less

11The likelihood is evaluated using P(xV ) = P(xV ∪H )
P (xH |xV )

, where P(xH |xV ) and P(xV ∪H ) are com-
puted using LBP, which is exact for trees. The above expression holds for any configuration of hidden
variables xH , however we use the most likely hidden state to avoid numerical issues.
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FIG. 3. Results for synthetic data with girth g = 10 using the proposed method.

noisy with more samples. Figure 3(b) shows an overall improvement in the nor-
malized BIC score with increasing number of samples n for different thresholds r .
Figure 3(b) shows the variation of normalized BIC scores for graphs learned us-
ing thresholds r = 4 to 9 with girth g = 10. We observe that the normalized BIC
score decreases for the lowest threshold (r = 4), where the output graph shows a
significant increase in latent nodes and edges, resulting in overfitting, and higher
thresholds have better BIC. However, once the threshold results in a tree model,
the BIC degrades since the cycles are no longer present.

Graph structure for newsgroup data. We employ our method to learn the graph
structures under different thresholds r ∈ {3,5,7,9,11,13} on newsgroup data,
which controls the length of cycles. At r = 13 as shown in Figure 4, we obtain
a latent tree, and for r ∈ {3,5,7,9}, we obtain loopy models. The first long cy-
cle appears at r = 9 shown in Figure 5. At r = 7, we find a combination of short
and long cycles. We find that models with cycles are more effective in discovering
intuitive relationships. For instance, in the latent tree (r = 13), the link between
“computer” and “software” is missing due to the tree constraint, but is discovered
when r ≤ 9. Moreover, we see that common words across different topics tend to
connect the local subgraphs. For instance, the word “program” is used in the con-
text of both space program and computer programs. Similarly, the word “earth” is
used both in the context of religion and space exploration.

Perplexity and topic coherence for newsgroup data. In Table 1, we present re-
sults under our method and under LDA modeling on newsgroup data. For the LDA
model, we vary the number of hidden variables (i.e., topics) as {10,20,30,40}. In
contrast, our method is designed to optimize for the number of hidden variables,
and does not need this input. We note that our method is competitive in terms of
both predictive perplexity and topic coherence. We find that the topic coherence
(i.e., PMI) for our method is optimal at r = 9, where the graph has a single long
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FIG. 4. Tree Graph Learned using r = 13 with RegLocalCLGrouping on 20 newsgroup data.
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FIG. 5. Loopy Graph Learned using r = 9 with RegLocalCLGrouping on 20 newsgroup data.
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TABLE 1
Comparison of proposed method under different thresholds (r) with LDA under different number of

topics (i.e., number of hidden variables) on 20 newsgroup data. For definition of perplexity and
predictive perplexity based on test likelihood and BIC scores, and PMI, see (32), (33), (34), (36)

and (38)

Method r Hidden Edges PMI Perp-LL Perp-BIC Pred-Perp-LL Pred-Perp-BIC

Proposed 3 55 265 0.2638 1.1533 1.1560 1.0695 1.0720
Proposed 5 39 293 0.4875 1.1567 1.1594 1.0424 1.0448
Proposed 7 32 183 0.4313 1.1498 1.1518 1.0664 1.0682
Proposed 9 24 129 0.6037 1.1543 1.1560 1.0780 1.0795
Proposed 11 26 125 0.4585 1.1555 1.1571 1.0787 1.0802
Proposed 13 24 123 0.4289 1.1560 1.1576 1.0788 1.0803
LDA NA 10 NA 0.2921 1.1480 1.1544 1.1623 1.1656
LDA NA 20 NA 0.1919 1.1348 1.1474 1.1572 1.1638
LDA NA 30 NA 0.1653 1.1421 1.1612 1.1616 1.1715
LDA NA 40 NA 0.1470 1.1494 1.1752 1.1634 1.1767

cycle and a few short cycles. Intuitively, this model is able to discover more rela-
tionships between words, which the latent tree (r = 13) is unable to do so. On the
other hand, for r < 9, topic coherence is degraded which suggests that adding too
many cycles is counterproductive. However, the model at r = 5 performs better in
terms of predictive perplexity indicating that it is able to use evidence from more
observed words for prediction on test data. Moreover, all of our latent graphical
models outperform the LDA models in terms of predictive perplexity. The top 10
topic words for selected topics are given for our method at (r = 9) and for the LDA
model (with 10 topics) are given in Tables 2 and 3.

TABLE 2
Top 10 topic words from selected topics in loopy graphical model with threshold r = 9, the topic

number corresponds to the labels of hidden variables in the loopy graph shown in Figure 5

Topic 16 Topic 18 Topic 12 Topic 1 Topic 8

lunar disk card god software
moon drive video jesus pc
orbit dos windows bible computer
solar memory driver christian system
mission windows graphics religion dos
satellite pc dos earth windows
earth software version question disk
shuttle scsi ftp fact science
mars computer pc jews drive
space system disk evidence university
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TABLE 3
Top 10 topic words corresponding to selected topics from the LDA model with 10 topics

Topic 4 Topic 8 Topic 7 Topic 6 Topic 5

Space windows card god drive
nasa files graphics world states
insurance dos video fact research
earth format driver christian disk
moon ftp windows jesus university
orbit program computer religion mac
mission software pc bible scsi
launch win version evidence computer
gun version software human system
shuttle pc system question power

Graph structure for stock market data. The outcome of applying the proposed
algorithm to stock market data is presented in Table 4. We observe that the number
of edges and hidden variables remain fairly constant over a large range of thresh-
olds. Specifically for r ∈ [5.9,6.7] ∪ [6.8,7.7], we obtain the same graph structure
(for r > rmax, we obtain a tree). Another general trend observed is the improve-
ment of the BIC score as the threshold decreases up till a certain point. The graphs
learned using r = 5,7.7 and 8.2 are shown in Figures 6, 7 and 8. Interesting con-
nections between companies emerge. The latent tree structure in Figure 8 captures
many key relationships. In particular, the S&P index node has a high degree since it
captures the overall trend of various companies. Companies in similar sectors and
divisions are grouped together. For instance, retail stores such as “Target,” “Wal-
mart,” “CVS” and “Home Depot” are grouped together. However, additional rela-
tionships emerge as the threshold is decreased and cycles are added. We observe
that the first cycle that is added connects the various oil companies which suggests
strong interdependencies and influence on the S&P 100 index. In addition, more

TABLE 4
Comparison of proposed method under different thresholds (r) on Stock data using the proposed

method. For definition of perplexity based on test likelihood and BIC scores; see (32) and (34)

r Hidden Edges Perp-LL Perp-BIC

2.7 35 154 1.9498 2.0296
3.9 39 139 2.0200 2.0993
4.9 35 129 2.0210 2.0960
5 36 131 2.0169 2.0927
6.7 26 111 2.0344 2.1016
7.7 26 111 2.0353 2.1025
8.2 26 110 2.0405 2.1076
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FIG. 6. Loopy Graph Learned using r = 5 with LocalCLGrouping on S&P 100 monthly stock return data.
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FIG. 7. Loopy Graph Learned using r = 7.7 with LocalCLGrouping on S&P 100 monthly stock return data.
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FIG. 8. Tree Graph Learned using r = 8.2 with LocalCLGrouping on S&P 100 monthly stock return data.
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FIG. 9. Variation of edge density of graphs at the initialization stage of LocalCLGrouping vs. thresh-
old r .

cycles emerge when the threshold is decreased further. For instance, in Figure 6,
we find a cycle connecting aviation company “Boeing” with “Honeywell” which
is in the aviation industry, but also additionally is in the chemical industry and
connects to companies such as “Dow Chemicals.” Thus as in newsgroup data, we
find that companies in multiple categories lead to cycles in the underlying graph.

Edge density vs. threshold r . We now study the edge density (i.e., number of
edges) in the initialization step of our method as a function of the threshold r for
both newsgroup and stock data. Recall that the initialization step involves building
a loopy graph on observed variables (and no hidden variables). The edge density in
this step is indicative of the number of cycles added to the ultimate latent model.
We observe that the graphs become denser as r is reduced from rmax. However,
when r is very small, the number of edges decreases since the nodes have sparser
neighborhoods. This trend is seen in both Figures 9(a) and 9(b) which show the
variation for newsgroup and stock data. For the newsgroup data, the graph density
peaks at r = 5, which also achieves the highest predictive perplexity; see Table 1.
Thus, we see a direct relationship between the edge density and the corresponding
predictive perplexity in the learned model. Intuitively, this is because as the number
of edges increases, prediction at any node involves more evidence. However, as
the threshold r is reduced further, graphs become less denser, and there is also a
corresponding degradation in the predictive perplexity.

The above experiments confirm the effectiveness of our approach for discover-
ing hidden topics and are in line with the theoretical guarantees established earlier
in the paper. Our analysis reveals that a large class of loopy graphical models with
latent variables can be learned efficiently in different domains.

7. Conclusion. In this paper, we considered latent graphical models Markov
on girth-constrained graphs and proposed a novel approach for structure estima-
tion. We established the correctness of the method when the model is in the regime
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of correlation decay and also derived PAC learning guarantees. We compared these
guarantees with other methods for graphical model selection, where there are no
latent variables. Our findings reveal that latent variables do not add much complex-
ity to the learning process in certain models and regimes, even when the number of
hidden variables is large. These findings push the realm of tractable latent models
for learning.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Learning loopy graphical models with latent
variables: Efficient methods and guarantees” (DOI: 10.1214/12-
AOS1070SUPP; .pdf). Proofs of various theorems.
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