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Abstract

Overcomplete latent representations have been very popular for unsupervised feature learn-
ing in recent years. In this paper, we specify which overcomplete models can be identified
given observable moments of a certain order. We consider probabilistic admixture or topic
models in the overcomplete regime, where the number of latent topics can greatly exceed
the size of the observed word vocabulary. While general overcomplete topic models are
not identifiable, we establish generic identifiability under a constraint, referred to as topic
persistence. Our sufficient conditions for identifiability involve a novel set of “higher order”
expansion conditions on the topic-word matrix or the population structure of the model.
This set of higher-order expansion conditions allow for overcomplete models, and require
the existence of a perfect matching from latent topics to higher order observed words.
We establish that random structured topic models are identifiable w.h.p. in the overcom-
plete regime. Our identifiability results allows for general (non-degenerate) distributions
for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in
our framework. Our identifiability results imply uniqueness of a class of tensor decompo-
sitions with structured sparsity which is contained in the class of Tucker decompositions,
but is more general than the Candecomp/Parafac (CP) decomposition.
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1. Introduction

The performance of many machine learning methods is hugely dependent on the choice
of data representations or features. Overcomplete representations, where the number of
features can be greater than the dimensionality of the input data, have been extensively
employed, and are arguably critical in a number of applications such as speech and computer
vision (Bengio et al., 2012). Overcomplete representations are known to be more robust to
noise, and can provide greater flexibility in modeling (Lewicki et al., 1998). Unsupervised
estimation of overcomplete representations has been hugely popular due to the availability
of large-scale unlabeled samples in many applications.

A probabilistic framework for incorporating features posits latent or hidden variables
that can provide a good explanation to the observed data. Overcomplete probabilistic
models can incorporate a much larger number of latent variables compared to the observed
dimensionality. In this paper, we characterize the conditions under which overcomplete
latent variable models can be identified from their observed moments.

For any parametric statistical model, identifiability is a fundamental question of whether
the model parameters can be uniquely recovered given the observed statistics. Identifiability
is crucial in a number of applications where the latent variables are the quantities of in-
terest, e.g. inferring diseases (latent variables) through symptoms (observations), inferring
communities (latent variables) via the interactions among the actors in a social network
(observations), and so on. Moreover, identifiability can be relevant even in predictive set-
tings, where feature learning is employed for some higher level task such as classification.
For instance, non-identifiability can lead to the presence of non-isolated local optima for
optimization-based learning methods, and this can affect their convergence properties, e.g.,
see Uschmajew (2012).

In this paper, we characterize identifiability for a popular class of latent variable models,
known as the admixture or topic models (Blei et al., 2003; Pritchard et al., 2000). These
are hierarchical mixture models, which incorporate the presence of multiple latent states
(i.e. topics) in each document consisting of a tuple of observed variables (i.e. words). Pre-
vious works have established that the model parameters can be estimated efficiently using
low order observed moments (second and third order) under some non-degeneracy assump-
tions, e.g. Anandkumar et al. (2012b); Anandkumar et al. (2012); Arora et al. (2012b).
However, these non-degeneracy conditions imply that the model is undercomplete, i.e., the
latent dimensionality (number of topics) cannot exceed the observed dimensionality (word
vocabulary size). In this paper, we remove this restriction and consider overcomplete topic
models, where the number of topics can far exceed the word vocabulary size.

It is perhaps not surprising that general topic models are not identifiable in the over-
complete regime. To this end, we introduce an additional constraint on the model, referred
to as topic persistence, which roughly means that topics (i.e. latent states) persist locally
in a sequence of observed words (but not necessarily globally). This “locality” effect among
the observed words is not present in the usual “bag-of-words” or exchangeable topic model.
Such local dependencies among observations abound in applications such as text, images
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Figure 1: Hierarchical structure of the n-persistent topic model is illustrated for 2rn number of
words (views) where r ≥ 1 is an integer. A single topic yj , j ∈ [2r], is chosen for each sequence of n
views {x(j−1)n+1, . . . , x(j−1)n+n}. Matrix A is the population structure or topic-word matrix.

and speech, and can lead to a more faithful representation. In addition, we establish that
the presence of topic persistence is central towards obtaining model identifiability in the
overcomplete regime, and we provide an in-depth analysis of this phenomenon in this paper.

1.1 Summary of Results

In this paper, we provide conditions for generic 1 model identifiability of overcomplete topic
models given observable moments of a certain order (i.e., having a certain number of words
in each document). We introduce the notion of topic persistence, and analyze its effect on
identifiability. We establish identifiability in the presence of a novel combinatorial object,
referred to as perfect n-gram matching, in the bipartite graph from topics to words. Finally,
we prove that random structured topic models satisfy these criteria, and are thus identifiable
in the overcomplete regime.

1.1.1 Persistent Topic Model

We first introduce the n-persistent topic model, where the parameter n determines the
persistence level of a common topic in a sequence of n successive words. For instance, in
Figure 1, the sequence of successive words x1, . . . , xn share a common topic y1, and similarly,
the words xn+1, . . . , x2n share topic y2, and so on. The n-persistent model reduces to the
popular “bag-of-words” model, when n = 1, and to the single topic model (i.e. only one topic
in each document) when n → ∞. Intuitively, topic persistence aids identifiability since we
have multiple views of the common hidden topic generating a sequence of successive words.
We establish that the bag-of-words model (with n = 1) is too non-informative about the
topics in the overcomplete regime, and is therefore, not identifiable. On the other hand, n-
persistent overcomplete topic models with n ≥ 2 can become identifiable, and we establish
a set of transparent conditions for identifiability.

1.1.2 Deterministic Conditions for Identifiability

Our sufficient conditions for identifiability are in the form of expansion conditions from
the latent topic space to the observed word space. In the overcomplete regime, there are
more topics than words in the vocabulary, and thus it is impossible to have expansion on
the bipartite graph from topics to words, i.e., the graph encoding the sparsity pattern of

1. A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost
surely. Refer to Definition 2 for more discussion.
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1.1.2 Deterministic Conditions for Identifiability

Our sufficient conditions for identifiability are in the form of expansion conditions from
the latent topic space to the observed word space. In the overcomplete regime, there are
more topics than words in the vocabulary, and thus it is impossible to have expansion on
the bipartite graph from topics to words, i.e., the graph encoding the sparsity pattern of
the topic-word matrix. Instead, we impose an expansion constraint from topics to “higher
order” words, which allows us to incorporate overcomplete models. We establish that this
condition translates to the presence of a novel combinatorial object, referred to as the
perfect n-gram matching, on the topic-word bipartite graph. Intuitively, the perfect n-gram
matching condition implies “diversity” among the higher-order word supports for different
topics which leads to identifiability. In addition, we present trade-offs among the following
quantities: number of topics, size of the word vocabulary, the topic persistence level, the
order of the observed moments at hand, the minimum and maximum degrees of any topic
in the topic-word bipartite graph, and the Kruskal rank (Kruskal, 1976) of the topic-word
matrix, under which identifiability holds. To the best of our knowledge, this is the first
work to provide conditions for characterizing identifiability of overcomplete topic models
with structured sparsity.

As a corollary of our result, we also show that the expansion condition can be removed
if the topic-word matrix is full column rank (and therefore undercomplete) and the model
is persistent with persistence level at least two.

1.1.3 Identifiability of Random Structured Topic Models

We explicitly characterize the regime of identifiability for the random setting, where each
topic i is supported on a random set of di words. Therefore, the bipartite graph from topics
to words is a random graph with prescribed degrees for topics. For this random model with
q topics, p-dimensional word vocabulary, and topic persistence level n, when q = O(pn) and
Θ(log p) ≤ di ≤ Θ(p1/n), for all topics i, the topic-word matrix is identifiable from 2nth

order observed moments with high probability. Intuitively, the upper bound on the degrees
di is needed to limit the overlap of word supports among different topics in the overcomplete
regime: as the number of topics q increases (i.e., n increases in the above degree bound),
the degree needs to be correspondingly smaller to ensure identifiability, and we make this
dependence explicit. Intuitively, as the extent of overcompleteness increases, we need sparser
connections from topics to words to ensure sufficient diversity in the word supports among
different topics. The lower bound on the degrees is required so that there are enough
edges in the topic-word bipartite graph so that various topics can be distinguished from one
another. Furthermore, we establish that the size condition q = O(pn) for identifiability is
tight.

As in the deterministic case, we also argue the result in the undercomplete setting and
show that if q ≤ O(p) and di ≥ Ω(log p), then the topic-word matrix is identifiable from 2nth

order observed moment with high probability under the persistent model with persistence
level n at least equal to two. Here, the upper bound on the degree is relaxed and hence
there is no sparsity constraints on the topic-word matrix.
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1.1.4 Implications on Uniqueness of Overcomplete Tucker and CP Tensor
Decompositions

We establish that identifiability of an overcomplete topic model is equivalent to uniqueness of
decomposition of the observed moment tensor (of a certain order). Our identifiability results
for persistent topic models imply uniqueness of a structured class of tensor decompositions,
which is contained in the class of Tucker decompositions, but is more general than the
candecomp/parafac (CP) decomposition (Kolda and Bader, 2009). This sub-class of Tucker
decompositions involves structured sparsity and symmetry constraints on the core tensor,
and sparsity constraints on the inverse factors of the Tucker decomposition. The structural
constraints on the Tucker tensor decomposition are related to the topic model as follows: the
sparsity and symmetry constraints on the core tensor are related to the persistence property
of the topic model, and the sparsity constraints on the inverse factors are equivalent to the
sparsity constraints on the topic-word matrix. For n-persistent topic model with n = 1 (bag-
of-words model), the tensor decomposition is a general Tucker decomposition, where the
core tensor is fully dense, while for n → ∞ (single-topic model), the tensor decomposition
reduces to a CP decomposition, i.e. the core tensor is a diagonal tensor. For a finite
persistence level n, in between these two extremes, the core tensor satisfies certain sparsity
and symmetry constraints, which becomes crucial towards establishing identifiability in the
overcomplete regime.

1.2 Overview of Techniques

We now provide a short overview of the techniques employed in this paper.

Recap of Identifiability Conditions in Under-complete Setting (Expansion Conditions on
Topic-Word Matrix): Our approach is based on the recent results of Anandkumar et al.
(2012), where conditions for identifiability of topic models are derived, given pairwise ob-
served moments (specifically, co-occurrence of word-pairs in documents). Consider a topic
model with q topics and observed word vocabulary of size p. Let A ∈ Rp×q denote the
topic-word matrix. Expansion conditions are imposed in Anandkumar et al. (2012) on the
topic-word bipartite graph which imply that (generically) the sparsest vectors in the column
span of A, denoted by Col(A), are the columns of A themselves. Thus the topic-word ma-
trix A is identifiable from pairwise moments under expansion constraints. However, these
expansion conditions constrain the model to be under-complete, i.e., the number of topics
q ≤ p, the size of the word vocabulary. Therefore, the techniques derived in Anandkumar
et al. (2012) are not directly applicable here since we consider overcomplete models.

Identifiability in Overcomplete Setting and Why Topic-Persistence Helps: Pairwise mo-
ments are thus not sufficient for identifiability of overcomplete models, and the question
is whether higher order moments can yield identifiability. We can view the higher order
moments as pairwise moments of another equivalent topic model, which enables us to apply
the techniques of Anandkumar et al. (2012). The key question is whether we have expansion
in the equivalent topic model, which implies identifiability. For a general topic model (with-
out any topic persistence constraints), it can be shown that for identifiability, we require
expansion of the nth-order Kronecker product of the original topic-word matrix A, denoted
by A⊗n ∈ Rpn×qn , when given access to (2n)th-order moments, for any integer n ≥ 1. In
the overcomplete regime where q > p, A⊗n cannot expand, and therefore, overcomplete
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models are not identifiable in general. On the other hand, we show that imposing the con-
straint of topic persistence can lead to identifiability. For a n-persistent topic model, given
(2n)th-order moments, we establish that identifiability occurs when the nth-order Khatri-Rao
product of A, denoted by A�n ∈ Rpn×q, expands. Note that the Khatri-Rao product A�n is
a sub-matrix of the Kronecker product A⊗n, and the Khatri-Rao product A�n can expand
as long as q ≤ pn. Thus, the property of topic persistence is central towards achieving
identifiability in the overcomplete regime.

First-Order Approach for Identifiability of Overcomplete Models (Expansion of n-gram
Topic-Word Matrix): We refer to A�n ∈ Rpn×q as the n-gram topic-word matrix, and
intuitively, it relates topics to n-tuple words. Imposing the expansion conditions derived
in Anandkumar et al. (2012) on A�n implies that (generically) the sparsest vectors in
Col(A�n), are the columns of A�n themselves. Thus, the topic-word matrix A is identifiable
from (2n)th-order moments for a n-persistent topic model. We refer to this as the “first-
order” approach since we directly impose the expansion conditions of Anandkumar et al.
(2012) on A�n, without exploiting the additional structure present in A�n.

Why the First-Order Approach is not Enough: Note that A�n ∈ Rpn×q matrix relates
topics to n-tuples of words. Thus, the entries of A�n are highly correlated, even if the
original topic-word matrix A is assumed to be randomly generated. It is non-trivial to derive
conditions on A, so that A�n expands. Moreover, we establish that A�n fails to expand
on “small” sets, as required in Anandkumar et al. (2012), when the degrees are sufficiently
different 2. Thus, the first-order approach is highly restrictive in the overcomplete setting.

Incorporating Rank Criterion: Note that A�n is highly structured: the columns of A�n

matrix possess a tensor 3 rank of 1, when n > 1. This can be incorporated in our identifiabil-
ity criteria as follows: we provide conditions under which the sparsest vectors in Col(A�n),
which also possess a tensor rank of 1, are the columns of A�n themselves. This implies
identifiability of a n-persistent topic model, when given access to (2n)th-order moments.
Note that when a small number of columns of A�n are combined, the resulting vector can-
not possess a tensor rank of 1, and thus, we can rule out that such sparse combinations of
columns using the rank criterion. The maximum such number is at least the Kruskal rank 4

of A. Thus, sparse combinations of columns of A (up to the Kruskal rank) can be ruled out
using the rank criterion, and we require expansion on A�n only on large sets of topics (of
size larger than the Kruskal rank). This agrees with the intuition that when the topic-word
matrix A has a larger Kruskal rank, it should be easier to identify A, since the Kruskal rank
is related to the mutual incoherence 5 among the columns of A, see Gandy et al. (2011).

2. For A�n to expand on a set of size s ≥ 2, it is necessary that s ·
(
dmin+n−1

n

)
≥ s+

(
dmax+n−1

n

)
, where dmin

and dmax are the minimum and maximum degrees, and n is the extent of overcompleteness: q = Θ(pn).
When the model is highly overcomplete (large n) and we require small set expansion (small s), the
degrees need to be nearly the same. Thus, it is desirable to impose expansion only on large sets, since
it allows for more degree diversity.

3. When any column of A�n ∈ Rpn×q (of length pn) is reshaped as a nth-order tensor T ∈ Rp×p×···×p, the
tensor T is rank 1.

4. The Kruskal rank is the maximum number k such that every k-subset of columns of A are linearly
independent. Note that the Kruskal rank is equal to the rank of A, when A has full column rank. But
this cannot happen in the overcomplete setting.

5. It is easy to show that krank(A) ≥ (maxi6=j |a>i aj |)−1, where ai, aj are any pair of columns of A. Thus,
higher incoherence leads to a larger kruskal rank.
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Notion of Perfect n-gram Matching and Final Identifiability Conditions: Thus, we es-
tablish identifiability of overcomplete topic models subject to expansion conditions A�n on
sets of size larger than the Kruskal rank of the topic-word matrix A. However, it is desir-
able to impose transparent and interpretable conditions directly on A for identifiability. We
introduce the notion of perfect n-gram matching on the topic-word bipartite graph, which
ensures that each topic can be uniquely matched to a n-tuple word. This combined with
a lower bound on the Kruskal rank provides the final set of deterministic conditions for
identifiability of the overcomplete topic model. Intuitively, we require that the columns
of A be sparse, while still maintaining a large enough Kruskal rank; in other words, the
topics have to be sparse and have sufficiently diverse word supports. Thus, we establish
identifiability under a set of transparent conditions on the topic-word matrix A, consisting
of perfect n-gram matching condition and a lower bound on the Kruskal rank of A.

Analysis under Random-Structured Topic-Word Matrices: Finally, we establish that the
derived deterministic conditions are satisfied when the topic-word bipartite graph is ran-
domly generated, as long as the degrees satisfy certain lower and upper bounds. Intuitively,
a lower bound on the degrees of the topics is required to have degree concentration on
various subsets so that expansion can occur, while the upper bound is required so that the
Kruskal rank of the topic-word matrix is large enough compared to the sparsity level. Here,
the main technical result is establishing the presence of a perfect n-gram matching in a
random bipartite graph with a wide range of degrees. We present a greedy and a recursive
mechanism for constructing such a n-gram matching for overcomplete models, which can
be relevant even in other settings. For instance, our results imply the presence of a perfect
matching when the edges of a bipartite graph are correlated in a structured manner, as
given by the Khatri-Rao product.

1.3 Related Works

We now summarize some recent related works in the area of identifiability and learning of
latent variable models.

1.3.1 Identifiability, Learning and Applications of Overcomplete Latent
Representations

Many recent works employ unsupervised estimation of overcomplete features for higher level
tasks such classification, e.g. Coates et al. (2011); Le et al. (2011); Deng and Yu (2013);
Bengio et al. (2012), and record huge gains over other approaches in a number of applica-
tions such as speech recognition and computer vision. However, theoretical understanding
regarding learnability or identifiability of overcomplete representations is far more limited.

Overcomplete latent representations have been analyzed in the context of the indepen-
dent components analysis (ICA), where the sources are assumed to be independent, and
the mixing matrix is unknown. In the overcomplete or under-determined regime of the
ICA, there are more sources than sensors. Identifiability and learning of the overcomplete
ICA reduces to the problem of finding an overcomplete candecomp/parafac (CP) tensor
decomposition. The classical result by Kruskal provides conditions for uniqueness of a CP
decomposition (Kruskal, 1976, 1977), with recent extensions to the notion of robust iden-
tifiability (Bhaskara et al., 2013). These results provide conditions for strict identifiability
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of the model, and here, the dimensionality of the latent space is required to be of the same
order as the observed space dimensionality. In contrast, a number of recent works analyze
generic identifiability of overcomplete CP decomposition, which is weaker than strict iden-
tifiability, e.g. Jiang and Sidiropoulos (2004); Lathauwer (2006); Stegeman et al. (June
2006); De Lathauwer et al. (2007); Chiantini and Ottaviani (2012); Bocci et al. (2013);
Chiantini et al. (2013). These works assume that the factors (i.e. the components) of the
CP decomposition are generically drawn and provide conditions for uniqueness. They allow
for the latent dimensionality to be much larger (polynomially larger) than the observed
dimensionality. These results on the uniqueness of CP decompositions also lead to identifi-
ability of other latent variable models, such as latent tree models, e.g. Allman et al. (2009,
Dec. 2012), and the single-topic model, or more generally latent Dirichlet allocation (LDA).
Recently, Goyal et al. (2013) proposed an alternative framework for overcomplete ICA mod-
els based on the eigen-decomposition of the reweighted covariance matrix (or higher order
moments), where the weights are the Fourier coefficients. However, their approach requires
independence of sources (i.e. latent topics in our context), which is not imposed here.

In contrast to the above works dealing with the CP tensor decomposition, we require
uniqueness for a more general class of tensor decompositions, in order to establish identifia-
bility of topic models with arbitrarily correlated topics. We establish that our class of tensor
decomposition is contained in the class of Tucker decompositions which is more general than
CP decomposition. Moreover, we explicitly characterize the effect of the sparsity pattern
of the factors (i.e., the topic-word matrix) on model identifiability, while all the previous
works based on generic identifiability assume fully dense factors (since sparse factors are
not generic). For a general overview of tensor decompositions, see Kolda and Bader (2009);
Landsberg (2012).

1.3.2 Identifiability and Learning of Undercomplete/Over-determined
latent Representations

Much of the theoretical results on identifiability and learning of the latent variable models
are limited to non-singular models, which implies that the latent space dimensionality is at
most the observed dimensionality. We outline some of the recent works below.

The works of Anandkumar et al. (2012,a,b) provide an efficient moment-based approach
for learning topic models, under constraints on the distribution of the topic proportions, e.g.
the single topic model, and more generally latent Dirichlet allocation (LDA). In addition,
the approach can handle a variety of latent variable models such as Gaussian mixtures,
hidden Markov models (HMM) and community models (Anandkumar et al., 2013). The
high-level idea is to reduce the problem of learning of the latent variable model to finding a
CP decomposition of the (suitably adjusted) observed moment tensor. Various approaches
can then be employed to find the CP decomposition. In Anandkumar et al. (2012b), a
tensor power method approach is analyzed and is shown to be an efficient guaranteed
recovery method in the non-degenerate (i.e. undercomplete) setting. Previously, simulta-
neous diagonalization techniques have been employed for solving the CP decomposition,
e.g. Anandkumar et al. (2012); Mossel and Roch (2006); Chang (1996). However, these
techniques fail when the model is overcomplete, as considered here. We note that some
recent techniques, e.g. De Lathauwer et al. (2007), can be employed instead, albeit at a cost
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of higher computational complexity for overcomplete CP tensor decomposition. However,
it is not clear how the sparsity constraints affect the guarantees of such methods. Moreover,
these approaches cannot handle general topic models, where the distribution of the topic
proportions is not limited to these classes (i.e. either single topic or Dirichlet distribution),
and we require tensor decompositions which are more general than the CP decomposition.

There are many other works which consider learning mixture models when multiple
views are available. See Anandkumar et al. (2012) for a detailed description of these works.
Recently, Rabani et al. (2012) consider learning discrete mixtures given a large number of
“views”, and they refer to the number of views as the sampling aperture. They establish
improved recovery results (in terms of `1 bounds) when sufficient number of views are
available (2k − 1 views for a k-component mixture). However, their results are limited to
discrete mixtures or single-topic models, while our setting can handle more general topic
models. Moreover, our approach is different since we incorporate sparsity constraints in the
topic-word distribution. Another series of recent works by Arora et al. (2012a,b) employ
approaches based on non-negative matrix factorization (NMF) to recover the topic-word
matrix. These works allow models with arbitrarily correlated topics, as considered here.
They establish guaranteed learning when every topic has an anchor word, i.e. the word is
uniquely generated from that topic, and does not occur under any other topic. Note that
the anchor-word assumption cannot be satisfied in the overcomplete setting.

Our work is closely related to the work of Anandkumar et al. (2012) which considers
identifiability and learning of topic models under expansion conditions on the topic-word
matrix. The work of Spielman et al. (2012b) considers the problem of dictionary learning,
which is closely related to the setting of Anandkumar et al. (2012), but in addition assumes
that the coefficient matrix is random. However, these works in Anandkumar et al. (2012);
Spielman et al. (2012b) can handle only the under-complete setting, where the number of
topics is less than the dimensionality of the word vocabulary (or the number of dictionary
atoms is less than the number of observations in Spielman et al. (2012b)). We extend these
results to the overcomplete setting by proposing novel higher order expansion conditions on
the topic-word matrix, and also incorporate additional rank constraints present in higher
order moments.

1.3.3 Dictionary Learning/Sparse Coding

Overcomplete representations have been very popular in the context of dictionary learning
or sparse coding. Here, the task is to jointly learn a dictionary as well as a sparse selec-
tion of the dictionary atoms to fit the observed data. There have been Bayesian as well as
frequentist approaches for dictionary learning (Lewicki et al., 1998; Kreutz-Delgado et al.,
2003; Rao and Kreutz-Delgado, 1999). However, the heuristics employed in these works
(Lewicki et al., 1998; Kreutz-Delgado et al., 2003; Rao and Kreutz-Delgado, 1999) have
no performance guarantees. The work of Spielman et al. (2012b) considers learning (un-
dercomplete) dictionaries and provide guaranteed learning under the assumption that the
coefficient matrix is random (distributed as Bernoulli-Gaussian variables). Recent works
in Mehta and Gray (2013); Maurer et al. (2012) provide generalization bounds for predictive
sparse coding, where the goal of the learned representation is to obtain good performance
on some predictive task. This differs from our framework since we do not consider predic-
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tive tasks here, but the task of recovering the underlying latent representation. Hillar and
Sommer (2011) consider the problem of identifiability of sparse coding and establish that
when the dictionary succeeds in reconstructing a certain set of sparse vectors, then there
exists a unique sparse coding, up to permutation and scaling. However, our setting here is
different, since we do not assume that a sparse set of topics occur in each document.

2. Model

We first introduce some notations, and then we provide the persistent topic model.

2.1 Notation

The set {1, 2, . . . , n} is denoted by [n] := {1, 2, . . . , n}. Given a set X = {1, . . . , p}, set
X(n) denotes all ordered n-tuples generated from X. The cardinality of a set S is denoted
by |S|. For any vector u (or matrix U), the support is denoted by Supp(u), and the `0
norm is denoted by ‖u‖0, which corresponds to the number of non-zero entries of u, i.e.,
‖u‖0 := | Supp(u)|. For a vector u ∈ Rq, Diag(u) ∈ Rq×q is the diagonal matrix with vector
u on its diagonal. The column space of a matrix A is denoted by Col(A). Vector ei ∈ Rq
is the i-th basis vector, with the i-th entry equal to 1 and all the others equal to zero. For
A ∈ Rp×q and B ∈ Rm×n, the Kronecker product A⊗B ∈ Rpm×qn is defined as (Golub and
Loan, 2012)

A⊗B =




a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB


 ,

and for A = [a1|a2| · · · |ar] ∈ Rp×r and B = [b1|b2| · · · |br] ∈ Rm×r, the Khatri-Rao product
A�B ∈ Rpm×r is defined as

A�B = [a1 ⊗ b1|a2 ⊗ b2| · · · |ar ⊗ br] .

2.2 Persistent Topic Model

In this section, the n-persistent topic model is introduced and this imposes an additional
constraint, known as topic persistence on the popular admixture model(Blei et al., 2003;
Pritchard et al., 2000; Nguyen, 2012). The n-persistent topic model reduces to the bag-of-
words admixture model when n = 1.

An admixture model specifies a q-dimensional vector of topic proportions h ∈ ∆q−1 :=
{u ∈ Rq : ui ≥ 0,

∑q
i=1 ui = 1} which generates the observed variables xl ∈ Rp through

vectors a1, . . . , aq ∈ Rp. This collection of vectors ai, i ∈ [q], is referred to as the popula-
tion structure or the topic-word matrix (Nguyen, 2012). For instance, ai is the conditional
distribution of words given topic i. The latent variable h is a q dimensional random vec-
tor h := [h1, . . . , hq]

> known as proportion vector. A prior distribution P (h) over the
probability simplex ∆q−1 characterizes the prior joint distribution over the latent variables
hi, i ∈ [q]. In the topic modeling, this is the prior distribution over the q topics.
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The n-persistent topic model has a three-level multi-view hierarchy in Figure 1. 2rn
number of words (views) are shown in the model for some integer r ≥ 1. In this model, a
common hidden topic is persistent for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈
[2r]. Note that the random observed variables (words) are exchangeable within groups of
size n, where n is the persistence level, but are not globally exchangeable.

We now describe a linear representation of the n-persistent topic model, on lines of
Anandkumar et al. (2012b), but with extensions to incorporate persistence. Each random
variable yj , j ∈ [2r], is a discrete valued random variable taking one of the q possibilities
{1, . . . , q}, i.e., yj ∈ [q] for j ∈ [2r]. In the n-persistent model, a single common topic
is chosen for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈ [2r], i.e., the topic is
persistent for n successive views. For notational purposes, we equivalently assume that
variables yj , j ∈ [2r], are encoded by the basis vectors ei, i ∈ [q]. Thus, the variable
yj , j ∈ [2r], is

yj = ei ∈ Rq ⇐⇒ the topic of the j-th group of words is i.

Given proportion vector h, topics yj , j ∈ [2r], are independently drawn according to the
conditional expectation

E
[
yj |h

]
= h, j ∈ [2r],

or equivalently Pr
[
yj = ei|h

]
= hi, j ∈ [2r], i ∈ [q].

Finally, at the bottom layer, each observed variable xl for l ∈ [2rn], is a discrete-valued
p-dimensional random variable, where p is the size of word vocabulary. Again, we assume
that variables xl, are encoded by the basis vectors ek, k ∈ [p], such as

xl = ek ∈ Rp ⇐⇒ the l-th word in the document is k.

Given the corresponding topic yj , j ∈ [2r], words xl, l ∈ [2rn], are independently drawn
according to the conditional expectation

E
[
x(j−1)n+k|yj = ei

]
= ai, i ∈ [q], j ∈ [2r], k ∈ [n], (1)

where vectors ai ∈ Rp, i ∈ [q], are the conditional probability distribution vectors. The
matrix A = [a1|a2| · · · |aq] ∈ Rp×q collecting these vectors is the population structure or
topic-word matrix.

The (2rn)-th order moment of observed variables xl ∈ Rp, l ∈ [2rn], for some integer
r ≥ 1, is defined as (in the matrix form) 6

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn . (2)

We now briefly remind why this matrix corresponds to the (2rn)-th order moment. Let
vectors i := (i1, . . . , irn) and j := (j1, . . . , jrn) index the rows and columns of moment
matrix M2rn(x). Then, from the above definition, the (i, j)-th entry of M2rn(x) is equal to

E [(x1)i1 · · · (xrn)irn(xrn+1)j1 · · · (x2rn)jrn ] ,

6. Vector x is the vector generated by concatenating all vectors xl, l ∈ [2rn].
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which specifies the corresponding (2rn)-th observed moment.
For the n-persistent topic model with 2rn number of observations (words) xl, l ∈ [2rn],

the corresponding moment is denoted by M
(n)
2rn(x). Note that to estimate the (2rn)th mo-

ment, we require a minimum of 2rn words in each document. We can select the first 2rn
words in each document, and average over the different documents to obtain a consistent
estimate of the moment. In this paper, we consider the problem of identifiability when
exact moments are available.

The moment characterization of the n-persistent topic model is provided in Lemma 2 in

Section 4.1. Given M
(n)
2rn(x), what are the sufficient conditions under which the population

structure A is identifiable? This is answered in Section 3.

Remark 1 Note that our results are valid for the more general linear model xl = Ayj (more
precisely, x(j−1)n+k = Ayj , j ∈ [2r], k ∈ [n]), i.e., each column of matrix A does not need to
be a valid probability distribution. Furthermore, the observed random variables xl, can be
continuous while the hidden ones yj are assumed to be discrete.

3. Sufficient Conditions for Generic Identifiability

In this section, the identifiability result for the n-persistent topic model with access to
(2n)-th order observed moment is provided. First, sufficient deterministic conditions on the
population structure A are provided for identifiability in Theorem 9. Next, the deterministic
analysis is specialized to a random structured model in Theorem 15.

We now make the notion of identifiability precise. As defined in literature, (strict) identi-
fiability means that the population structure A can be uniquely recovered up to permutation
and scaling for all A ∈ Rp×q. Instead, we consider a more relaxed notion of identifiability,
known as generic identifiability.

Definition 2 (Generic identifiability) We refer to a matrix A ∈ Rp×q as generic, with
a fixed sparsity pattern when the nonzero entries of A are drawn from a distribution which is
absolutely continuous with respect to Lebesgue measure 7. For a given sparsity pattern, the
class of population structure matrices is said to be generically identifiable (Allman et al.,
Dec. 2012), if all the non-identifiable matrices form a set of Lebesgue measure zero.

The (2r)-th order moment of hidden variables h ∈ Rq, denoted by M2r(h) ∈ Rqr×qr , is
defined as

M2r(h) := E
[( r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)>]
∈ Rq

r×qr . (3)

We now provide a set of sufficient conditions for generic identifiability of structured topic
models given (2rn)-th order observed moment. We first start with a natural assumption on
the hidden variables.

Condition 1 (Non-degeneracy) The (2r)-th order moment of hidden variables h ∈ Rq,
defined in equation (3), is full rank (non-degeneracy of hidden nodes).

7. As an equivalent definition, if the non-zero entries of an arbitrary sparse matrix are independently
perturbed with noise drawn from a continuous distribution to generate A, then A is called generic.
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Note that there is no hope of distinguishing distinct hidden nodes without this non-degeneracy
assumption. We do not impose any other assumption on hidden variables and can incorpo-
rate arbitrarily correlated topics.

Furthermore, we can only hope to identify the population structure A up to scaling and
permutation. Therefore, we can identify A up to a canonical form defined as:

Definition 3 (Canonical form) Population structure A is said to be in canonical form
if all of its columns have unit norm.

3.1 Deterministic Conditions for Generic Identifiability

In this section, we consider a fixed sparsity pattern on the population structure A and
establish generic identifiability when non-zero entries of A are drawn from some continuous
distribution. Before providing the main result, a generalized notion of (perfect) matching
for bipartite graphs is defined. We subsequently impose these conditions on the bipartite
graph from topics to words which encodes the sparsity pattern of population structure A.

3.1.1 Generalized Matching for Bipartite Graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them
is denoted by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also
used to denote a bipartite graph. Here, the rows and columns of matrix A ∈ R|X|×|Y | are
respectively indexed by X and Y vertex sets. For any subset S ⊆ Y , the set of neighbors of
vertices in S with respect to A is defined as NA(S) := {i ∈ X : Aij 6= 0 for some j ∈ S},
or equivalently, NE(S) := {i ∈ X : (j, i) ∈ E for some j ∈ S} with respect to edge set E.

Here, we define a generalized notion of matching for a bipartite graph and refer to it as
n-gram matching.

Definition 4 ((Perfect) n-gram matching) A n-gram matching M for a bipartite graph
G(Y,X;E) is a subset of edges M ⊆ E which satisfies the following conditions. First,
for any j ∈ Y , we have |NM (j)| ≤ n. Second, for any j1, j2 ∈ Y, j1 6= j2, we have
min{|NM (j1)|, |NM (j2)|} > |NM (j1) ∩NM (j2)|.

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph
G(Y,X;E) is a n-gram matching M in which each vertex in Y is exactly connected to n
edges in M .

In words, in a n-gram matching M , each vertex j ∈ Y is at most connected to n
edges in M and for any pair of vertices in Y (j1, j2 ∈ Y, j1 6= j2), there exists at least one
non-common neighbor in set X for each of them (j1 and j2).

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in
Figure 2 for which the edge set E itself is a perfect 2-gram matching.

We also define the following definition of a n-gram matrix.

Definition 5 (n-gram Matrix) Given a matrix A ∈ Rp×q, its n-gram matrix A�n ∈
Rpn×q is defined as the matrix whose (i, j)-th entry is given by, for i := (i1, i2, . . . , in) ∈ [p]n

and j ∈ [q],

A�n(i, j) := Ai1,jAi2,j · · ·Ain,j , or A�n :=

n times︷ ︸︸ ︷
A� · · · �A .
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Y

X

Figure 2: A bipartite graph G(Y, X ; E) with |X | = 4 and |Y | = 6 where the edge set E itself is a
perfect 2-gram matching.

Definition 3 (Canonical form) Population structure A is said to be in canonical form
if all of its columns have unit norm.

3.1 Deterministic Conditions for Generic Identifiability

In this section, we consider a fixed sparsity pattern on the population structure A and
establish generic identifiability when non-zero entries of A are drawn from some continuous
distribution. Before providing the main result, a generalized notion of (perfect) matching
for bipartite graphs is defined. We subsequently impose these conditions on the bipartite
graph from topics to words which encodes the sparsity pattern of population structure A.

3.1.1 Generalized Matching for Bipartite Graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them
is denoted by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also
used to denote a bipartite graph. Here, the rows and columns of matrix A ∈ R|X|×|Y | are
respectively indexed by X and Y vertex sets. For any subset S ⊆ Y , the set of neighbors of
vertices in S with respect to A is defined as NA(S) := {i ∈ X : Aij #= 0 for some j ∈ S},
or equivalently, NE(S) := {i ∈ X : (j, i) ∈ E for some j ∈ S} with respect to edge set E.

Here, we define a generalized notion of matching for a bipartite graph and refer to it as
n-gram matching.

Definition 4 ((Perfect) n-gram matching) A n-gram matching M for a bipartite graph
G(Y,X;E) is a subset of edges M ⊆ E which satisfies the following conditions. First,
for any j ∈ Y , we have |NM (j)| ≤ n. Second, for any j1, j2 ∈ Y, j1 #= j2, we have
min{|NM (j1)|, |NM (j2)|} > |NM (j1) ∩ NM (j2)|.

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph
G(Y,X;E) is a n-gram matching M in which each vertex in Y is exactly connected to n
edges in M .

In words, in a n-gram matching M , each vertex j ∈ Y is at most connected to n
edges in M and for any pair of vertices in Y (j1, j2 ∈ Y, j1 #= j2), there exists at least one
non-common neighbor in set X for each of them (j1 and j2).

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in
Figure 2 for which the edge set E itself is a perfect 2-gram matching.

We also define the following definition of a n-gram matrix.

Definition 5 (n-gram Matrix) Given a matrix A ∈ Rp×q, its n-gram matrix A"n ∈
Rpn×q is defined as the matrix whose (i, j)-th entry is given by, for i := (i1, i2, . . . , in) ∈ [p]n

13

Figure 2: A bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 where the edge set E itself is a
perfect 2-gram matching.

That is, A�n is the column-wise nth order Kronecker product of n copies of A, and is known
as the Khatri-Rao product (Golub and Loan, 2012). Given bipartite graph G(Y,X;A),
the notation G(Y,X(n);A�n) is also used to denote the bipartite graph corresponding to
bi-adjacency matrix A�n. Here X(n) denotes all ordered n-tuples generated from elements
of set X which indexes the rows of A�n.

The above two definitions might seem unrelated at the first glance, but the following
lemma connects them where an interesting property is stated relating the existence of perfect
matching in G(Y,X(n);A�n) to the existence of perfect n-gram matching in G(Y,X;A).
This property is also the original motivation behind defining such notion of generalized
matching.

Lemma 1 If G(Y,X;A) has a perfect n-gram matching, then G(Y,X(n);A�n) has a perfect
matching. In the other direction, if G(Y,X(n);A�n) has a perfect matching M�n, then
G(Y,X;A) has a perfect n-gram matching under the following condition on M�n. All the
matching edges (j, (i1, . . . , in)) ∈ M�n should satisfy i1 6= i2 6= · · · 6= in for all j ∈ Y . In
words, the matching edges should be connected to nodes in X(n), which are indexed by tuples
of distinct indices.

See Appendix A.4 for the proof.
We also provide more discussions and remarks on the n-gram matching as follows.

Remark 6 (Relationship to other matchings) The relationship of n-gram matching
to other types of matchings is discussed below.

• Regular matching: For special case n = 1, the (perfect) n-gram matching reduces to
the usual (perfect) matching for bipartite graphs.

• b-matching: For a bipartite graph G(Y,X;E), a b-matching for vertices in Y is a
subset of edges Mb ⊆ E, where each vertex in Y is connected to b edges. Comparing
with the proposed perfect (Y -saturating) b-gram matching, b-matching does not enforce
that the set of neighbors be different.

Remark 7 (Necessary size bound) Consider a bipartite graph G(Y,X;E) with |Y | = q
and |X| = p which has a perfect n-gram matching. Note that there are

(
p
n

)
n-combinations on

X side and each combination can at most have one neighbor (a node in Y which is connected
to all nodes in the combination) through the matching, and therefore we necessarily have
q ≤

(
p
n

)
.
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Finally, note that the existence of perfect n-gram matching results in the existence of
perfect (n+1)-gram matching 8, but the reverse is not true. For example, the bipartite graph
G(Y,X;E) with |X| = 4 and |Y | =

(
4
2

)
= 6 in Figure 2, has a perfect 2-gram matching, but

not a perfect (1-gram) matching (since 6 > 4).

3.1.2 Identifiability Conditions Based on Existence of Perfect n-gram
Matching in Topic-word Graph

Now, we are ready to propose the identifiability conditions and result.

Condition 2 (Perfect n-gram matching on A) The bipartite graph G(Vh, Vo;A) between
hidden and observed variables, has a perfect n-gram matching 9.

The above condition implies that the sparsity pattern of matrix A is appropriately
scattered in the mapping from hidden to observed variables to be identifiable. Intuitively, it
means that every hidden node can be distinguished from another hidden node by its unique
set of neighbors under the corresponding n-gram matching.

Furthermore, condition 2 is the key to be able to propose identifiability in the overcom-
plete regime. As stated in the size bound in Remark 7, for n ≥ 2, the number of hidden
variables can be more than the number of observed variables and we can still have perfect
n-gram matching.

Definition 8 (Kruskal rank, (Kruskal, 1977)) The Kruskal rank or the krank of ma-
trix A is defined as the maximum number k such that every subset of k columns of A is
linearly independent.

Note that krank is different from the general notion of matrix rank and it is a lower
bound for the matrix rank, i.e., Rank(A) ≥ krank(A).

Condition 3 (Krank condition on A) The Kruskal rank of matrix A satisfies the bound
krank(A) ≥ dmax(A)n, where dmax(A) is the maximum node degree of any column of A, i.e.,
dmax(A) := maxi∈[q] ‖Aei‖0. Here n is the same as parameter n in Condition 2.

In the overcomplete regime, it is not possible forA to be full column rank and krank(A) <
|Vh| = q. However, note that a large enough krank ensures that appropriate sized subsets of
columns of A are linearly independent. For instance, when krank(A) > 1, any two columns
cannot be collinear and the above condition rules out the collinear case for identifiability. In
the above condition, we see that a larger krank can incorporate denser connections between
topics and words.

On the other hand, the bound in Condition 3 imposes sparsity on the columns of topic-
word matrix as dmax(A) ≤ krank(A)1/n. Under such sparsity constraint, each topic (index-

8. Note that the degree of each node (on matching side Y ) in the original bipartite graph should be at least
n+ 1.

9. Parameter n in all of the conditions refer to the same parameter n as the persistence level of the model.
Note that we are considering the n-persistent topic model proposed in Section 2.
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ing the columns of A) is supported on a specific set of words which enables us to distinguish
between different topics and identify the model. But, it seems that this bound is not tight10.

The main identifiability result under a fixed graph structure is stated in the following
theorem for n ≥ 2, where n is the topic persistence level. The identifiability result relies on
having access to the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in
equation (2) as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn ,

for some integer r ≥ 1.

Theorem 9 (Generic identifiability under deterministic topic-word graph structure)

Let M
(n)
2rn(x) in equation (2) be the (2rn)-th order observed moment of the n-persistent topic

model for some integer r ≥ 1. If the model satisfies conditions 1, 2 and 3, then, for any

n ≥ 2, all the columns of population structure A are generically identifiable from M
(n)
2rn(x).

Furthermore, the (2r)-th order moment of the hidden variables, denoted by M2r(h), is also
generically identifiable.

The theorem is proved in Appendix A. It is seen that the population structure A is iden-
tifiable, given any observed moment of order at least 2n. Increasing the order of observed
moment results in identifying higher order moments of the hidden variables.

The above theorem does not cover the case when the persistence level n = 1. This is the
usual bag-of-words admixture model. Identifiability of this model has been studied earlier
in Anandkumar et al. (2012) and we recall it below.

Remark 10 (Bag-of-words admixture model, (Anandkumar et al., 2012)) Given (2r)-
th order observed moments with r ≥ 1, the structure of the popular bag-of-words admixture
model and the (2r)-th order moment of hidden variables are identifiable, when A is full
column rank and the following expansion condition holds (Anandkumar et al., 2012)

|NA(S)| ≥ |S|+ dmax(A), ∀S ⊆ Vh, |S| ≥ 2. (4)

Our result for n ≥ 2 in Theorem 9, provides identifiability in the overcomplete regime with
weaker matching condition 2 and krank condition 3. The matching condition 2 is weaker
than the above expansion condition which is based on the perfect matching and hence, does
not allow overcomplete models. Furthermore, the above result for the bag-of-words admixture
model requires full column rank of A which is more stringent than our krank condition 3.

Remark 11 (Kruskal rank and degree diversity) Condition 3 requires that the Kruskal
rank of the topic-word matrix be large enough compared to the maximum degree of the top-
ics. Intuitively, a larger Kruskal rank ensures enough diversity in the word supports among
different topics under a higher level of sparsity. This Kruskal rank condition also allows
for more degree diversity among the topics, when the topic persistence level n > 1. On

10. The looseness originates from bound (37) as
∣∣∣NA�n

Rest.
(S)
∣∣∣ ≥ |NA(S)| + |S| in the proof. See Defini-

tions 5 and 25 for the definition of A�n
Rest.. Note that many terms in this lower bound on

∣∣∣NA�n
Rest.

(S)
∣∣∣

are ignored which leads to a loose bound that might be improved.
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the other hand, for the bag-of-words model (n = 1), using (4) implies that 2dmin > dmax,
where dmin, dmax are the minimum and maximum degrees of the topics. Thus, we provide
identifiability results with more degree diversity when higher order moments are employed.

Remark 12 (Recovery using `1 optimization) It turns out that our conditions for iden-
tifiability imply that the columns of the n-gram matrix A�n, defined in Definition 5, are the

sparsest vectors in Col
(
M

(n)
2n (x)

)
, having a tensor rank of one. See Appendix A. This im-

plies recovery of the columns of A through exhaustive search, which is not efficient. On
the other hand, efficient `1-based recovery algorithms have been analyzed in Spielman et al.
(2012a); Anandkumar et al. (2012) for the undercomplete case (n = 1). They can be em-
ployed here for recovery from higher order moments as well. Exploiting additional structure
present in A�n, for n > 1, such as rank-1 test devices proposed in De Lathauwer et al.
(2007) are interesting avenues for future investigation.

In Theorem 9, we provide our identifiability result for the overcomplete topic-word
matrix A under topic persistent model. The result for the bag-of-words admixture model
is also reviewed in Remark 10 under the assumption that A is full column rank. In the
following corollary, we provide the strong identifiability result for the full column rank
topic-word matrix under the topic persistent model.

Corollary 13 (Identifiability for undercomplete topic-word matrix) Let M
(n)
2rn(x) in

equation (2) be the (2rn)-th order observed moment of the n-persistent topic model for some
integer r ≥ 1. If the model satisfies condition 1, and in addition A is full column rank,
then for any n ≥ 2, all the columns of population structure A are generically identifiable

from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of the hidden variables, denoted by

M2r(h), is also generically identifiable.

Comparing to Theorem 9 and Remark 10, the expansion (and krank) conditions are not
required in the above result which is a huge relaxation. The reason is both undercomplete
regime and topic persistence are assumed here which relaxes the other conditions. Note
that the assumptions that topic persists with persistence n ≥ 2, and the topic-word matrix
is full column rank (and therefore undercomplete) is reasonable in many applications.

3.2 Analysis Under Random Topic-word Graph Structures

In this section, we specialize the identifiability result to the random case. This result is based
on more transparent conditions on the size and the degree of the random bipartite graph
G(Vh, Vo;A). We consider the random model where in the bipartite graph G(Vh, Vo;A),
each node i ∈ Vh is randomly connected to di different nodes in set Vo. Note that this is a
heterogeneous degree model.

Furthermore, the random identifiability result is provided with high probability which
is defined as follows.

Definition 14 (whp) A sequence of events Ep (depending on size parameter p) occurs with
high probability (whp) if Pr(Ep) = 1−O(p−ε) for some ε > 0.

Condition 4 (Size condition) The random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| =
p, and A ∈ Rp×q, satisfies the size condition q ≤

(
c pn
)n

for some constant 0 < c < 1.
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Parameter Representing

p dimension of observed variables
q dimension of hidden variables
n persistence level
c size ratio such that q ≤

(
c pn
)n

α, β
Constants for lower bound on degree
such that dmin ≥ max{1 + β log p, α log p}

Table 1: Table of parameters.

This size condition is required to establish that the random bipartite graph has a perfect
n-gram matching (and hence satisfies deterministic condition 2). It is shown in Section
5.2.1 that the necessary size constraint q = O(pn) stated in Remark 7, is achieved in the
random case. Thus, the above constraint allows for the overcomplete regime, where q � p
for n ≥ 2, and is tight.

Condition 5 (Degree condition) In the random bipartite graph G(Vh, Vo;A) with |Vh| =
q, |Vo| = p, and A ∈ Rp×q, the degree di of nodes i ∈ Vh satisfies the following lower and
upper bounds (di ∈ [dmin, dmax]):

• Lower bound: dmin ≥ max{1 + β log p, α log p} for some constants β > n−1
log 1/c , α >

max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
.

• Upper bound: dmax ≤ (cp)
1
n .

Intuitively, the lower bound on the degree is required to show that the corresponding bi-
partite graph G(Vh, Vo;A) has sufficient number of random edges to ensure that it has
perfect n-gram matching with high probability. The upper bound on the degree is mainly
required to satisfy the krank condition 3, where dmax(A)n ≤ krank(A). As discussed after
Condition 3, this upper bound is not tight.

It is important to see that, for n ≥ 2, the above condition on degree covers a range of
models from sparse to intermediate regimes and it is reasonable in a number of applications
that each topic does not generate a very large number of words.

The proposed parameters in Conditions 4 and 5 are summarized in Table 1.

The main random identifiability result is stated in the following theorem for n ≥ 2, while
n = 1 case is addressed in Remark 17. The identifiability result relies on having access to
the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in equation (2) as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn ,

for some integer r ≥ 1.

Probability rate constants: The probability rate of success in the following random iden-
tifiability result is specified by constants β′ > 0 and γ = γ1 + γ2 > 0 as

β′ = −β log c− n+ 1, (5)
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γ1 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)
, (6)

γ2 =
cn−1e2

nn(1− δ2)
, (7)

where δ1 and δ2 are some constants satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1 and cn−1e2

nn p−β
′
<

δ2 < 1.

Theorem 15 (Random identifiability) Let M
(n)
2rn(x) in equation (2) be the (2rn)-th or-

der observed moment of the n-persistent topic model for some integer r ≥ 1. If the model
with random population structure A satisfies conditions 1, 4 and 5, then whp (with proba-
bility at least 1− γp−β′ for constants β′ > 0 and γ > 0, specified in (5)-(7)), for any n ≥ 2,

all the columns of population structure A are identifiable from M
(n)
2rn(x). Furthermore, the

(2r)-th order moment of hidden variables, denoted by M2r(h), is also identifiable, whp.

The theorem is proved in Appendix B. Similar to the deterministic analysis, it is seen
that the population structure A is identifiable given any observed moment with order at
least 2n. Increasing the order of observed moment results in identifying higher order mo-
ments of the hidden variables.

Remark 16 (Trade-off between topic-word size ratio and degree) When the num-
ber of hidden variables increases, i.e. c increases, but the order n is kept fixed, the bounds
on degree in condition 5 also needs to grow. Intuitively, a larger degree is needed to provide
more flexibility in choosing the subsets of neighbors for hidden nodes to ensure the existence
of a perfect n-gram matching in the bipartite graph, which in turn ensures identifiability.
Note that as c grows, the parameter β, which is the lower bound on d also grows, and the
probability rate (i.e., the term −β log c) remains constant. Hence, the probability rate does
not change as c increases, since the increase in the degree d compensates the additional
“difficulty” arising due to a larger number of hidden variables.

The above identifiability theorem only covers for n ≥ 2 and the n = 1 case is addressed in
the following remark.

Remark 17 (Bag-of-words admixture model) The identifiability result for the ran-
dom bag-of-words admixture model is comparable to the result in Spielman et al. (2012a),
which considers exact recovery of sparsely-used dictionaries. They assume that Y = DX
is given for some unknown arbitrary dictionary D ∈ Rq×q and unknown random sparse
coefficient matrix X ∈ Rq×p. They establish that if D ∈ Rq×q is full rank and the random
sparse coefficient matrix X ∈ Rq×p follows the Bernoulli-subgaussian model with size con-
straint p > Cq log q and degree constraint O(log q) < E[d] < O(q log q), then the model is
identifiable, whp. Comparing the size and degree constraints, our identifiability result for
n ≥ 2 requires more stringent upper bound on the degree (d = O(p1/n)), while more relaxed
condition on the size (q = O(pn)) which allows to identifiability in the overcomplete regime.

2661



Anandkumar, Hsu, Janzamin and Kakade

Remark 18 (The size condition is tight) The size bound q = O(pn) in the above theo-
rem achieves the necessary condition that q ≤

(
p
n

)
= O(pn) (see Remark 7), and is therefore

tight. The sufficiency is argued in Theorem 22, where we show that the matching condition
2 holds under the above size and degree conditions 4 and 5.

As in the deterministic case, we finish this section by providing random identifiability
result for the full column rank topic-word matrix under the topic persistent model.

Corollary 19 (Random identifiability for undercomplete topic-word matrix) Let

M
(n)
2rn(x) in equation (2) be the (2rn)-th order observed moment of the n-persistent topic

model for some integer r ≥ 1. If the model with random population structure A ∈ Rp×q
satisfies condition 1, size condition q ≤ cp for some constant 0 < c < 1 and the degree
condition dmin ≥ 1 + β log p for some constant β > 0, then whp (with probability at least
1−O(z−β log 1/c) where β log 1

c > 0), for any n ≥ 2, all the columns of population structure A

are identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of hidden variables,

denoted by M2r(h), is also identifiable, whp.

Comparing to Theorem 15, the upper bound on the degree (sparsity constraint) is not
required in the above result which is a huge relaxation.

4. Identifiability via Uniqueness of Tensor Decompositions

In this section, we characterize the moments of the n-persistent topic model in terms of
the model parameters, i.e. the topic-word matrix A and the moment of hidden variables.
We relate identifiability of the topic model to uniqueness of a certain class of tensor de-
compositions, which in turn, enables us to prove Theorems 9 and 15. We then discuss the
special cases of the persistent topic model, viz., the single topic model (infinite-persistent
topic model) and the bag-of-words admixture model (1-persistent topic model).

4.1 Moment Characterization of the Persistent Topic Model

In the following lemma, which is proved in Appendix A.2, we characterize the observed
moments of a persistent topic model. Throughout this section, the order of the observed
moment is fixed to 2m.

Lemma 2 (n-persistent topic model moment characterization) The (2m)-th order
moment of observed variables, defined in equation (2), for the n-persistent topic model is
characterized as 11:

• if m = rn, for some integer r ≥ 1, then

M
(n)
2m (x) =

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n

)
M2r(h)

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n

)>
, (8)

where M2r(h) ∈ Rqr×qr is the (2r)-th order moment of hidden variables h ∈ Rq,
defined in equation (3), and the n-gram matrix A�n is defined in Definition 5.

11. The other cases not covered in Lemma 2 are deferred to Appendix A.2. See Remark 30.
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(b) Bag-of-words admixture model
(1-persistent topic model)

Figure 3: Hierarchical structure of the single topic model and bag-of-words admixture model shown
for 2m number of words (views).

the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n → ∞ in this case, and we have

M
(∞)
2m (x) =

(
A"m

)
M1(h)

(
A"m

)#
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)
M2m(h)

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)#
, (11)

where M2m(h) ∈ Rqm×qm
is the (2m)-th order moment of hidden variables h ∈ Rq, defined

in (3). Note that M2m(h) is a full matrix in general.
Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-

tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A & A)Diag

(
E

[
h]

)
(A & A)#, (12)

21
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the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n → ∞ in this case, and we have

M
(∞)
2m (x) =

(
A"m

)
M1(h)

(
A"m

)#
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)
M2m(h)

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)#
, (11)

where M2m(h) ∈ Rqm×qm
is the (2m)-th order moment of hidden variables h ∈ Rq, defined

in (3). Note that M2m(h) is a full matrix in general.
Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-

tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A & A)Diag

(
E

[
h]

)
(A & A)#, (12)
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Figure 3: Hierarchical structure of the single topic model and bag-of-words admixture model shown
for 2m number of words (views).

• If n ≥ 2m, then

M
(n)
2m (x) =

(
A�m

)
M1(h)

(
A�m

)>
, (9)

where M1(h) := Diag(E[h]) ∈ Rq×q is the first order moment of hidden variables
h ∈ Rq, stacked in a diagonal matrix.

Thus, we see that the observed moments can be expressed in terms of the hidden mo-
ments M(h) and the Kronecker products of the n-gram matrices. In the special case, when
the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n→∞ in this case, and we have

M
(∞)
2m (x) =

(
A�m

)
M1(h)

(
A�m

)>
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)
M2m(h)

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)>
, (11)

where M2m(h) ∈ Rqm×qm is the (2m)-th order moment of hidden variables h ∈ Rq, defined
in (3). Note that M2m(h) is a full matrix in general.
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Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-
tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A�A) Diag

(
E
[
h]
)

(A�A)>, (12)

M
(1)
4 (x) = (A⊗A)E

[
(h⊗ h)(h⊗ h)>

]
(A⊗A)>. (13)

Note that for the single topic model in (12), the Khatri-Rao product matrix A�A ∈ Rp2×q
has the same as the number of columns (i.e. the latent dimensionality) of the original
matrix A, while the number of rows (i.e. the observed dimensionality) is increased. Thus,
the Khatri-Rao product “expands” the effect of hidden variables to higher order observed
variables, which is the key towards identifying overcomplete models. In other words, the
original overcomplete representation becomes determined due to the ‘expansion effect’ of
the Khatri-Rao product structure of the higher order observed moments.

On the other hand, in the bag-of-words admixture model in (13), this interesting ‘expan-
sion property’ does not occur, and we have the Kronecker product A⊗A ∈ Rp2×q2 , in place
of the Khatri-Rao products. The Kronecker product operation increases both the number
of the columns (i.e. latent dimensionality) and the number of rows (i.e. observed dimen-
sionality), which implies that higher order moments do not help in identifying overcomplete
models.

An example is provided in Figure 4 which helps to see how the matrices A � A and
A⊗A behave differently in terms of mapping topics to word tuples.

Note that for the n-persistent model, for n = 2, the 4th order moment reduces to

M
(2)
4 (x) = (A�A)E

[
hh>](A�A)>. (14)

Contrasting the above equation with (12) and (13), we find that the 2-persistent model
retains the desirable property of possessing Khatri-Rao products, while being more general
than the form for single topic model in (12). This key property enables us to establish
identifiability of topic models with finite persistence levels.

4.2 Tensor Algebra of the Moments

In Section 4.1, we provided a representation of the moment forms in the matrix form. We
now provide the equivalent tensor representation of the moments. The tensor representation
is more compact and transparent, and allows us to compare the topic models under different
levels of persistence. We compare the derived tensor form with the well-known Tucker and
CP decompositions. We first introduce some tensor notations and definitions.

4.2.1 Tensor Notations and Definitions

A real-valued order-n tensor A ∈ ⊗n
i=1Rpi := Rp1×···×pn is a n dimensional array A(1 :

p1, . . . , 1 : pn), where the i-th mode is indexed from 1 to pi. In this paper, we restrict
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(a) Structure of an overcomplete matrix A ∈ R4×5 having a perfect 2-gram matching.

X(2)

Y
1 2 3 4 5

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)
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dashed edges denote the bunch of edges connected to each node, not specifically shown.

Figure 4: An example of an overcomplete matrix A and the matrices A " A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A " A expands
the effect of hidden variables to second order observed variables which is crucial for overcomplete
identifiability, while in the A⊗A, the order of both the hidden and observed variables are increased.
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Figure 4: An example of an overcomplete matrix A and the matrices A � A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A�A
expands the effect of hidden variables to second order observed variables which is crucial
for overcomplete identifiability, while in the A ⊗ A, the order of both the hidden and
observed variables are increased.
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ourselves to the case that p1 = · · · = pn = p, and simply write A ∈ ⊗nRp. A fiber of a
tensor A is a vector obtained by fixing all indices of A except one, e.g., for A ∈⊗4R3, the
vector f = A(2, 1 : 3, 3, 1) is a fiber.
For a vector u ∈ Rp, Diagn(u) ∈⊗nRp is the n-th order diagonal tensor with vector u on
its diagonal. The tensor A ∈⊗nRp, is stacked as a vector a ∈ Rpn by the vec(·) operator,
defined as

a = vec(A)⇔ a
(
(i1 − 1)pn−1 + (i2 − 1)pn−2 + · · ·+ (in−1 − 1)p+ in)

)
= A(i1, i2, . . . , in).

The inverse of a = vec(A) operation is denoted by A = ten(a).
For vectors ai ∈ Rpi , i ∈ [n], the tensor outer product operator “◦” is defined as (Golub and
Loan, 2012)

A = a1 ◦ a2 ◦ · · · ◦ an ∈
n⊗

i=1

Rpi ⇔ A(i1, i2, . . . , in) := a1(i1)a2(i2) · · · an(in). (15)

The above generated tensor is a rank-1 tensor. The tensor rank is the minimal number
of rank-1 tensors into which a tensor can be decomposed. This type of rank is called CP
(Candecomp/Parafac) tensor rank in the literature (Golub and Loan, 2012).
According to above definitions, for any set of vectors ai ∈ Rpi , i ∈ [n], we have the following
pair of equalities:

vec(a1 ◦ a2 ◦ · · · ◦ an) = a1 ⊗ a2 ⊗ · · · ⊗ an,
ten(a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ◦ a2 ◦ · · · ◦ an.

For any vector a ∈ Rp, the power notations are also defined as

a⊗n :=

n times︷ ︸︸ ︷
a⊗ a⊗ · · · ⊗ a ∈ Rp

n
,

a◦n :=

n times︷ ︸︸ ︷
a ◦ a ◦ · · · ◦ a ∈

n⊗
Rp.

The second power is usually called the n-th order tensor power of vector a.
Finally, the Tucker and CP (Candecomp/Parafac) representations are defined as follows
(Golub and Loan, 2012; Kolda and Bader, 2009).

Definition 20 (Tucker representation) Given a core tensor S ∈⊗n
i=1Rri and inverse

factors Ui ∈ Rpi×ri , i ∈ [n], the Tucker representation of the n-th order tensor A ∈⊗n
i=1Rpi

is

A =

r1∑

i1=1

r2∑

i2=1

· · ·
rn∑

in=1

S(i1, i2, . . . , in)U1(:, i1) ◦ U2(:, i2) ◦ · · · ◦ Un(:, in) =: [[S;U1, U2, . . . , Un]],

(16)

where Uj(:, ij) denotes the ij-th column of matrix Uj. The tensor S is referred to as the
core tensor.
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Definition 21 (CP representation) Given λ ∈ Rr, Ui ∈ Rpi×r, i ∈ [n], the CP represen-
tation of the n-th order tensor A ∈⊗n

i=1Rpi is

A =
r∑

i=1

λiU1(:, i) ◦ U2(:, i) ◦ · · · ◦ Un(:, i) =: [[Diagn(λ);U1, U2, . . . , Un]], (17)

where Uj(:, i) denotes the i-th column of matrix Uj.

Note that the CP representation is a special case of the Tucker representation when the
core tensor S is square and diagonal.

4.2.2 Tensor Representation of Moments Under Topic Model

We now provide a tensor representation of the moments.

For the n-persistent topic model, the 2m-th observed moment is denoted by T
(n)
2m (x),

which is the tensor form of the moment matrix M
(n)
2m (x), characterized in Lemma 2. It is

given by

T2m(x)(i1,i2,...,i2m) := E[x1(i1)x2(i2) · · ·x2m(i2m)], i1, i2, . . . , i2m ∈ [p], (18)

where T2m(x) ∈⊗2mRp.
This tensor is characterized in the following lemma, and is proved in Appendix A.2.

Lemma 3 (n-persistent topic model moment characterization in tensor form) The
(2m)-th order moment of words, defined in equation (18), for the n-persistent topic model
is characterized as 12:

• if m = rn for some integer r ≥ 1, then

T
(n)
2m (x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2r=1

E[hi1hi2 · · ·hi2r ]a◦ni1 ◦ a◦ni2 ◦ · · · ◦ a◦ni2r (19)

=
[[
Sr;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where Sr ∈
⊗2rnRq is the core tensor in the above Tucker representation with the

sparsity pattern as

Sr
(
i
)

=

{
M2r(h)(

(in,i2n,...,irn),(i(r+1)n,i(r+2)n,...,i2rn)
) , i1= i2= · · ·= in, in+1= in+2= · · ·= i2n, . . .

0 , o.w.,

where i := (i1, i2, . . . , i2rn).

• If n ≥ 2m, then

T
(n)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (20)

12. The other cases not covered in Lemma 3 are deferred to Appendix A.2. See Remark 30.
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The tensor representation in (19) is a specific type of tensor decomposition which is a
special case of the Tucker representation (since Sr is not fully dense), but more general than
the CP representation. The tensor representation in (20) has a CP form.

4.2.3 Comparison with Single Topic Model and Bag-of-words Admixture
Model

We now provide the tensor form for the special cases single topic model and bag-of-words
admixture model. In order to have a fair comparison, the number of observed variables is
fixed to 2m and the persistence level is varied.

CP representation of the single topic model: The (2m)-th order moment of the words
for the single topic model (infinite-persistent topic model) is provided in equation (20) as

T
(∞)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (21)

This representation is the symmetric CP representation of T
(∞)
2m (x). In Appendix C, we

provide a more detailed comparison between our approach and some of the previous iden-
tifiability results for the (overcomplete) CP decomposition. In particular, we show that
our uniqueness result for CP decomposition is the sparse analogue of uniqueness result
in Lathauwer (2006) where the factors of CP tensor decomposition (the columns of matrix
A) satisfy specific sparsity constraints. See Appendix C for the details.

Tucker representation of the bag-of-words admixture model: From Lemma 3, the tensor
form of the (2m)-th order moment of observed variables xl, l ∈ [2m], for the bag-of-words
admixture model (1-persistent topic model) is given by

T
(1)
2m(x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2m=1

E[hi1hi2 · · ·hi2m ]ai1 ◦ ai2 ◦ · · · ◦ ai2m

=
[[
E
[
h◦(2m)

]
;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (22)

This representation is the Tucker representation (decomposition) of T
(1)
2m(x) where the core

tensor S = E
[
h◦(2m)

]
is the tensor form of the (2m)-th order hidden moment M2m(h),

defined in equation (3), and the inverse factors correspond to the population structure A.
Comparing the tensor forms for the n-persistent topic model (19), single topic model

(21), and bag of words admixture model (22), we find that all of them involve Tucker
decompositions, where the inverse factors correspond to the topic-word matrix A, and the
only difference is in the sparsity level of the core tensor S. For the bag of words model,
with n = 1, the core tensor is fully dense in general, while for the single topic model,
with n → ∞, the core tensor is diagonal which reduces to the CP decomposition. For
a general topic model with persistence level n, the core tensor is in between these two
extremes and has structured sparsity. This sparsity property of the core tensor is crucial
towards establishing identifiability in the overcomplete regime. The bag-of-words model is
not identifiable in the overcomplete regime since the core tensor is fully dense in this case,
while an overcomplete n-persistent topic model can be identified under certain constraints
provided in Section 3, since the core tensor has structured sparsity and symmetry.
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5. Proof Techniques and Auxiliary Results

The main identifiability results are given in Theorems 9 and 15 for deterministic and random
cases of topic-word graph structures. In this section, we provide a proof sketch of these
results, and then, we propose auxiliary results on the existence of perfect n-gram matching
for random bipartite graphs and a lower bound on the Kruskal rank of random matrices.

5.1 Proof Sketch

Summary of relationships among different conditions: To summarize, there exists a hierar-
chy among the proposed conditions as follows. See Figure 5. First, in the random analysis,
the size and the degree conditions 4 and 5 are sufficient for satisfying the perfect n-gram
matching and the krank conditions 2 and 3, shown by Theorems 22 and 24. Then, these
conditions 2 and 3 ensure that the rank and the expansion conditions 6 and 7 hold, shown
by Lemma 5. And finally, these conditions 6 and 7 together with non-degeneracy condition
1 conclude the primary identifiability result in Theorem 27. Note that the genericity of A
is also required for these results to hold.

Primary deterministic analysis in Theorem 27: The deterministic analysis is primarily
based on conditions on the n-gram matrix A!n; but since these conditions are opaque
(mainly expansion condition on A!n, provided in condition 7), this analysis is related to
conditions on the matrix A itself (see Lemma 5). See Theorem 27 in Appendix A.1 for
the identifiability result based on A!n. We briefly discuss it below for the case when 2n
words are available under the n-persistent topic model. From equation (8), the (2n)-th
order moment of the observed variables under the n-persistent topic model can be written
as

M
(n)
2n (x) =

(
A!n

)
E

[
hh"](

A!n
)"

. (23)

The question is whether we can recover A, given the M
(n)
2n (x). Obviously, the matrix A is

not identifiable without any further conditions. First, non-degeneracy and rank conditions
(conditions 1 and 6) are required. Assuming these two conditions, we have from (23) that

Col
(
M

(n)
2n (x)

)
= Col

(
A!n

)
.

Therefore, the problem of recovering A from M
(n)
2n (x) reduces to finding A!n in Col

(
A!n

)
.

Then, we show that under the following expansion condition on A!n and the genericity
property, matrix A is identifiable from Col

(
A!n

)
. The expansion condition (refer to con-

dition 7 for a more detailed statement), imposes the following property on the bipartite
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1 conclude the primary identifiability result in Theorem 27. Note that the genericity of A
is also required for these results to hold.
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(n)
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The question is whether we can recover A, given the M
(n)
2n (x). Obviously, the matrix A is

not identifiable without any further conditions. First, non-degeneracy and rank conditions
(conditions 1 and 6) are required. Assuming these two conditions, we have from (23) that

Col
(
M

(n)
2n (x)

)
= Col

(
A�n

)
.

Therefore, the problem of recovering A from M
(n)
2n (x) reduces to finding A�n in Col

(
A�n

)
.

Then, we show that under the following expansion condition on A�n and the genericity

2669



Anandkumar, Hsu, Janzamin and Kakade

property, matrix A is identifiable from Col
(
A�n

)
. The expansion condition (refer to con-

dition 7 for a more detailed statement), imposes the following property on the bipartite

graph 13 G
(
Vh, V

(n)
o ;A�n

)
,

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A�n

)
, ∀S ⊆ Vh, |S| > krank(A), (24)

where dmax

(
A�n

)
is the maximum node degree in set Vh, and the restricted version of

n-gram matrix, denoted by A�nRest., is obtained by removing its redundant (identical) rows
(see Definition 25). The identifiability claim is proved by showing that the columns of A�n

are the sparsest and rank-1 vectors (in the tensor form) in Col
(
A�n

)
under the expansion

condition in (24) and genericity conditions. Note that since we only require expansion on
sets larger than Kruskal rank, the expansion condition (24) is a more relaxed condition
compared to expansion condition proposed in Anandkumar et al. (2012); Spielman et al.
(2012a) for identifiability in the undercomplete regime. For a more detailed comparison,
refer to Remark 26 in Appendix A.1.

Deterministic analysis in Theorem 9: Expansion and rank conditions in Theorem 27
are imposed on the n-gram matrix A�n. According to the generalized matching notions,
defined in Section 3.1, sufficient combinatorial conditions on matrix A (conditions 2 and 3)
are introduced which ensure that the expansion and rank conditions on A�n are satisfied.

Recall Lemma 1 which says that existence of perfect n-gram matching in G(Y,X;A)
(condition 2) implies that G(Y,X(n);A�n) has a perfect matching. Then, it is straight-
forward to argue that the expansion and rank conditions on A�n are satisfied, which is
shown in Lemma 5 in Appendix A.3. This leads to the generic identifiability result stated
in Theorem 9.

5.2 Analysis of Random Structures

The identifiability result for a random structured matrix A is provided in Theorem 15.
Sufficient size and degree conditions 4 and 5 on the random matrix A are proposed such
that the deterministic combinatorial conditions 2 and 3 on A are satisfied. The details of
these auxiliary results are provided in the following two subsequent sections.14 In Section
5.2.1, it is shown in Theorem 22 that a random bipartite graph satisfying reasonable size
and degree constraints, has a perfect n-gram matching (condition 2), whp. Then, a lower
bound on the Kruskal rank of a random matrix A under size and degree constraints is
provided in Theorem 24 in Section 5.2.2, which implies the krank condition 3. Intuitions
on why such size and degree conditions are required, are mentioned in Section 3.2 where
these conditions are proposed.

5.2.1 Existence of Perfect n-gram Matching for Random Bipartite Graphs

We show in the following theorem that a random bipartite graph satisfying reasonable
size and degree constraints, proposed earlier in conditions 4 and 5, has a perfect n-gram
matching whp.

13. V
(n)
o denotes all ordered n-tuples generated from set Vo := {1, . . . , p} which indexes the rows of A�n.

14. Since these auxiliary results can also have independent interests as combinatorial results, we put them
as theorems in the main part of the paper.
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Theorem 22 (Existence of perfect n-gram matching for random bipartite graphs)
Consider a random bipartite graph G(Y,X;E) with |Y | = q nodes on the left side and |X| =
p nodes on the right side, and each node i ∈ Y is randomly connected to di different nodes in
X. Let dmin := mini∈Y di. Assume that it satisfies the size condition q ≤

(
c pn
)n

(condition
4) for some constant 0 < c < 1 and the degree condition dmin ≥ max{1+β log p, α log p} for
some constants β > n−1

log 1/c , α > max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5).

Then, there exists a perfect (Y -saturating) n-gram matching in the random bipartite graph
G(Y,X;E), with probability at least 1− γ1p−β′ for constants β′ > 0 and γ1 > 0, specified in
(5) and (6).

See Appendix B.1 for the proof.
Note that the sufficient size bound q = O(pn) in the above theorem is also necessary

(see Remark 7), and is therefore tight.

Remark 23 (Insufficiency of the union bound argument) It is easier to exploit the
union bound arguments to propose random bipartite graphs which have a perfect n-gram
matching whp. It is proved in Appendix B.1 that if d ≥ n and the size constraint |Y | =
O(|X|n2−δ) for some δ > 0 is satisfied, then whp, the random bipartite graph has a perfect
n-gram matching. Comparing this result with ours in Theorem 22, our approach has a
better size scaling while the union bound approach has a better degree scaling. The size
scaling limitation in the union bound argument makes it unattractive. In order to identify
the population structure A in the overcomplete regime where |Y | = O(|X|n), we need access
to at least (4n)-th order moment under the union bound argument, while only the (2n)-th
order moment is required under our argument.

5.2.2 Lower Bound on the Kruskal Rank of Random Matrices

In the following theorem, a lower bound on the Kruskal rank of a random matrix A under
dimension and degree constraints is provided.

Theorem 24 (Lower bound on the Kruskal rank of random matrices) Consider a
random matrix A ∈ Rp×q, where for any i ∈ [q], there are di number of random non-
zero entries in column i. Let dmin := mini∈[q] di. Assume that it satisfies the size con-

dition q ≤
(
c pn
)n

(condition 4) for some constant 0 < c < 1 and the degree condition
dmin ≥ 1 + β log p for some constant β > n−1

log 1/c (lower bound in condition 5) and in addi-

tion A is generic. Then, krank(A) ≥ cp, with probability at least 1 − γ2p−β′ for constants
β′ > 0 and γ2 > 0, specified in (5) and (7).

See Appendix B.1 for the proof.
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Appendix A. Proof of Deterministic Identifiability Result (Theorem 9)

First, we show the identifiability result under an alternative set of conditions on the n-gram
matrix, A�n, and then, we show that the conditions of Theorem 9 are sufficient for these
conditions to hold.

A.1 Deterministic Analysis Based on A�n

In this section, the deterministic identifiability result based on conditions on the n-gram
matrix, A�n, is provided.

In the n-gram matrix, A�n ∈ Rpn×q, redundant rows exist. If some row of A�n is
indexed by n-tuple (i1, . . . , in) ∈ [p]n, then another row indexed by any permutation of the
tuple (i1, . . . , in) has the same entries. Therefore, the number of distinct rows of A�n is
at most

(
p+n−1
n

)
. In the following definition, we define a non-redundant version of n-gram

matrix which is restricted to the (potentially) distinct rows.

Definition 25 (Restricted n-gram matrix) For any matrix A ∈ Rp×q, restricted n-
gram matrix A�nRest. ∈ Rs×q, s =

(
p+n−1
n

)
, is defined as the restricted version of n-gram

matrix A�n ∈ Rpn×q, where the redundant rows of A�n are removed, as explained above.

Condition 6 (Rank condition) The n-gram matrix A�n is full column rank.

Condition 7 (Graph expansion) Let G(Vh, V
(n)
o ;A�n) denote the bipartite graph with

vertex sets Vh corresponding to the hidden variables (indexing the columns of A�n) and

V
(n)
o corresponding to the n-th order observed variables (indexing the rows of A�n) and

edge matrix A�n ∈ R|V
(n)
o |×|Vh|. The bipartite graph G(Vh, V

(n)
o ;A�n) satisfies the following

expansion property 15 on the restricted version specified by A�nRest.,

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A�n

)
, ∀S ⊆ Vh, |S| > krank(A), (25)

where dmax

(
A�n

)
is the maximum node degree in set Vh.

Remark 26 The expansion condition for the bag-of-words admixture model is provided in
(4), introduced in Anandkumar et al. (2012). The proposed expansion condition in (25)
is inherited from (4), with two major modifications. First, the condition is appropriately
generalized for our model which involves a graph with edges specified by the n-gram matrix,

15. Note that this notion of generalized expansion is different from unbalanced expander graphs proposed
in the compressed sensing literature (Khajehnejad et al., 2011; Indyk and Razenshteyn, 2013). For a
left regular bipartite graph G(Y,X;A) with regular degree d for the vertices on Y side, we say that it
is a (k, ε)-expander if for any set S ⊆ Y with |S| ≤ k, we have NA(S) ≥ |S|d(1− ε). This is completely
different with the expansion condition we define here in some aspects: first our expansion condition is
additive while this one is multiplicative, and second our expansion condition is imposed on large sets
while this one is imposed on small sets.
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A�n, as stated in (23). Second, the expansion property (4), proposed in Anandkumar et al.
(2012), needs to be satisfied for all subsets S with size |S| ≥ 2, which is a stricter condition
than the one proposed here in (25), since we can have krank(A)� 2.

The deterministic identifiability result based on the conditions on A�n, is stated in
the following theorem for n ≥ 2, while n = 1 case is addressed in Remarks 10 and 26.
The identifiability result relies on access to the (2n)-th order moment of observed variables
xl, l ∈ [2n], defined in equation (2) as

M2n(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xn)(xn+1 ⊗ xn+2 ⊗ · · · ⊗ x2n)>

]
∈ Rp

n×pn .

Theorem 27 (Generic identifiability under deterministic conditions on A�n) Let

M
(n)
2n (x) (defined in equation (2)) be the (2n)-th order moment of the n-persistent topic

model described in Section 2. If the model satisfies conditions 1, 6 and 7, then, for any

n ≥ 2, all the columns of population structure A are generically identifiable from M
(n)
2n (x).

Proof: Define B := A�n ∈ Rpn×q. Then, the moment characterized in equation (23)

can be written as M
(n)
2n (x) = BE

[
hh>

]
B>. Since both matrices E

[
hh>

]
and B have full

column rank (from conditions 1 and 6), the rank of BE
[
hh>

]
B> is q where q = O(pn),

and furthermore Col(BE
[
hh>

]
B>) = Col(B). Let U := {u1, . . . , uq} ∈ Rpn be any basis

of Col(BE
[
hh>

]
B>) satisfying the following two properties:

1) The maximum of `0 norm of ui’s is minimized (among all basis sets).

2) The tensor rank of ui’s (in the n-th order tensor form) is equal to 1, i.e., Rank(ten(ui)) =
1, i ∈ [q].

Let the columns of matrix B be bi for i ∈ [q]. Since all the bi’s (which belong to
Col(BE

[
hh>

]
B>)) are rank-1 in the n-th order tensor form (since ten(bi) = a◦ni ) and

the number of non-zero entries in each of bi’s is at most dmax(B) = dmax(A)n, we conclude
that

max
i

Rank(ten(ui)) = 1 and max
i
‖ui‖0 ≤ dmax(B). (26)

The above bounds are concluded from the fact that bi ∈ Col(BE
[
hh>

]
B>), i ∈ [q], and

therefore the `0 norm and the rank properties of bi’s are upper bounds for the corresponding
properties of basis vectors ui’s (according to the proposed conditions for ui’s).
Now, exploiting these observations and also the genericity of A and the expansion condition
7, we show that the basis vectors ui’s are scaled columns of B. Since ui for i ∈ [q], is a
vector in the column space of B, it can be represented as ui = Bvi for some vector vi ∈ Rq.
Equivalently, for any i ∈ [q], ui =

∑q
j=1 vi(j)bj where bj = a⊗nj is the j-th column of matrix

B and vi(j) is a scalar which is the j-th entry of vector vi. Then, the tensor form of ui can
be written as

ten(ui) =

q∑

j=1

vi(j) ten(bj) =

q∑

j=1

vi(j) ten(a⊗nj ) =

q∑

j=1

vi(j)a
◦n
j = [[Diagn(vi);

n times︷ ︸︸ ︷
A, . . . , A]],

(27)
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where the last equality is based on the notation defined in Definition 21, and Diagn(vi)
is defined as the n-th order diagonal tensor with vector vi on its diagonal. We define
ṽi := [vi(j)]j:vi(j)6=0 as the vector which contains only the non-zero entries of vi, i.e., ṽi is the
restriction of vector vi to its support. Therefore, ṽi ∈ Rr, where r := ‖vi‖0. Furthermore,
the matrix Ãi := {aj : vi(j) 6= 0} ∈ Rp×r is defined as the restriction of A to its columns

corresponding to the support of vi. Let (ãi)j denote the j-th column of Ãi. According to
these definitions, equation (27) reduces to

ten(ui) = [[Diagn(ṽi);

n times︷ ︸︸ ︷
Ãi, . . . , Ãi]] =

r∑

j=1

ṽi(j)[(ãi)j ]
◦n, (28)

which is derived by removing columns of A corresponding to the zero entries in vi.
Next, we rule out that ‖vi‖0 ≥ 2 under two cases (2 ≤ ‖vi‖0 ≤ krank(A) and krank(A) <
‖vi‖0 ≤ q), to conclude that ui’s vectors are scaled columns of B.

Case 1: 2 ≤ ‖vi‖0 ≤ krank(A). Here, the number of columns of Ãi ∈ Rp×‖vi‖0 is less
than or equal to krank(A) and therefore it is full column rank. Since, all the components
of CP representation in equation (28) are full column rank 16, for any 17 n ≥ 2, we have
Rank(ten(ui)) = r = ‖vi‖0 > 1, which contradicts the fact that maxi Rank(ten(ui)) = 1 in
(26).

Note that for the full column rank topic-word matrix A ∈ Rp×q (where Rank(A) =
krank(A) = q) as in Corollary 13, it is sufficient to argue this case and there is no need to
argue next case. This is why the expansion condition is not required in Corollary 13.

Case 2: krank(A) < ‖vi‖0 ≤ q. Here, we first restrict the n-gram matrix B to distinct
rows, denoted by BRest., as defined in Definition 25. Let u′i = BRest.vi. Since u′i is the
restricted version of ui, we have

‖ui‖0 ≥ ‖u′i‖0 = ‖BRest.vi‖0
>
∣∣NBRest.

(Supp(vi))
∣∣− | Supp(vi)|

≥ dmax(B),

where the second inequality is from Lemma 4 (which is stated and proved right after this
theorem), and the third inequality follows from the graph expansion property (condition
7). This result contradicts the fact that maxi‖ui‖0 ≤ dmax(B) in (26).

From above contradictions, ‖vi‖0 = 1 and hence, columns of B := A�n are the scaled
versions of ui’s.

The following lemma is useful in the proof of Theorem 27. The result proposed in this
lemma is similar to the parameter genericity condition in Anandkumar et al. (2012), but
generalized for the n-gram matrix, A�n. The lemma is proved along the lines of the proof
of Remark 2.2 in Anandkumar et al. (2012).

16. Note that for n ≥ 3, this full rank condition can be relaxed by Kruskal’s condition for uniqueness of
CP decomposition (Kruskal, 1977) and its generalization to higher order tensors (Sidiropoulos and Bro,

2000). Precisely, instead of saying Rank
(
Ãi

)
= krank

(
Ãi

)
= r, it is only required to have krank

(
Ãi

)
≥

(2r+n−1)/n to argue the result of case 1. This only improves the constants involved in the final result.
17. Note that for n = 1, since the (tensor) rank of any vector is 1, this analysis does not work.
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Lemma 4 If A ∈ Rp×q is generic (see Definition 2), then the n-gram matrix A�n ∈ Rpn×q
satisfies the following property with Lebesgue measure one. For any vector v ∈ Rq with
‖v‖0 ≥ 2, we have

∥∥A�nRest.v
∥∥
0
>
∣∣∣NA�n

Rest.
(Supp(v))

∣∣∣− | Supp(v)|,

where for a set S ⊆ [q], NA�n(S) := {i ∈ [p]n : A�n(i, j) 6= 0 for some j ∈ S}.

Here, we prove the result for the case of n = 2. The proof can be easily generalized to
larger n.

Let A := P + Z be generic, where P is an arbitrary matrix perturbed by random
continuous independent 18 perturbations Z. Consider the 2-gram matrix B := A � A ∈
Rp2×q. We show that the restricted version of B, denoted by B̃ := BRest. ∈ R

p(p+1)
2
×q,

satisfies the above genericity condition. Before that, we first establish some definitions and
one claim.

Definition 28 We call a vector fully dense if all of its entries are non-zero.

Definition 29 We say a matrix has the Null Space Property (NSP) if its null space does
not contain any fully dense vector.

Claim 1 Fix any S ⊆ [q] with |S| ≥ 2, and set R := N(P�2)Rest.
(S). Let C̃ be a |S| × |S|

submatrix of B̃R,S. Then Pr(C̃ has the NSP) = 1.

Proof of Claim 1: First, note that B̃ can be expanded as

B̃ := (A�A)Rest. = (P � P )Rest. + (P � Z + Z � P )Rest. + (Z � Z)Rest.︸ ︷︷ ︸
:=U

.

Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]>, where c̃>i is the i-th row of C̃. Also, let C :=
[c1|c2| · · · |cs]> and W := [w1|w2| · · · |ws]> be the corresponding |S| × |S| submatrices of(
P�2

)
Rest.

and U , respectively. For each i ∈ [s], denote by Ni the null space of the matrix

C̃i = [c̃1|c̃2| · · · |c̃i]>. Finally let N0 = Rs. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show
that, with probability one, Ns does not contain any fully dense vector.

If one of Ni, i ∈ [s], does not contain any full dense vector, the result is proved. Suppose
that Ni contains some fully dense vector v. Since C is a submatrix of

(
P�2

)
R,S

, every row

c>i+1 of C contains at least one non-zero entry. Therefore,

v>c̃i+1 =
∑

j∈[s]
v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j) 6=0

v(j)(ci+1(j) + wi+1(j)),

18. Note that the distribution of Z does not matter as long as the independence and continuous conditions
hold.
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where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables, and moreover,
they are independent of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the
wi+1(j),

Pr

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= Pr

[ ∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 0.(29)

Consequently,

Pr

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 1 (30)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0.

Now, we are ready to prove Lemma 4.

Proof of Lemma 4: It follows from Claim 1 that, with probability one, the following
event holds: for every S ⊆ [q], |S| ≥ 2, and every |S| × |S| submatrix C̃ of B̃R,S where
R := N(P�2)Rest.

(S), then C̃ has the NSP.

Now fix v ∈ Rq with ‖v‖0 ≥ 2. Let S := Supp(v) and H := B̃R,S . Furthermore, let
u ∈ (R \ {0})|S| be the restriction of vector v to S; observe that u is fully dense. It is clear
that ‖B̃v‖0 = ‖Hu‖0, so we need to show that

‖Hu‖0 > |R| − |S|. (31)

For the sake of contradiction, suppose that Hu has at most |R|− |S| non-zero entries. Since
Hu ∈ R|R|, there is a subset of |S| entries on which Hu is zero. This corresponds to a
|S| × |S| submatrix of H := B̃R,S which contains u in its null space. It means that this
submatrix does not have the NSP, which is a contradiction. Therefore we conclude that Hu
must have more than |R| − |S| non-zero entries, which finishes the proof.

A.2 Proof of Moment Characterization Lemmata

Remark 30 In Lemmata 2 and 3, a specific case of order and persistence (m = rn) was
considered. Here, we provide the moment form for a more general case. Assume that
m = rn+ s for some integers r ≥ 1, 1 ≤ s ≤ n

2 , then

M
(n)
2m (x) =

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n⊗A�s

)

M̃2r(h)

(
A�(n−s) ⊗

r−1 times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n⊗A�(2s)

)>
,

where M̃2r(h) ∈ Rqr+1×qr+1
is the hidden moment as

M̃2r(h)(
(i1,...,ir+1),(j1,...,jr+1)

) :=

{
E[hi1 · · ·hirh2ir+1

hj2 · · ·hjr+1 ] if ir+1 = j1,

0 o.w .
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The tensor form is also characterized as

T
(n)
2m (x) =

[[
S̃r;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where S̃r ∈
⊗2mRq is the core tensor in the above Tucker representation with the sparsity

pattern as follows. Let i := (i1, i2, . . . , i2m). If

i1 = i2 = · · · = in, in+1 = in+2 = · · · = i2n, · · · , i(2r−1)n+1 = i(2r−1)n+2 = · · · = i2rn,

i2(m−s)+1 = i2(m−s)+2 = · · · = i2m,

we have
S̃r
(
i
)

= M̃2r(h)(
(in,i2n,...,irn,im),(i(r+1)n,i(r+2)n,...,i2rn,i2m)

).

Otherwise, S̃r
(
i
)

= 0.

Proof of Lemma 2: The proof is basically incorporating the conditional independence
relationships between random variables xl and yj under the n-persistent topic model.

In order to simplify the notation, similar to tensor powers for vectors, the tensor power
for a matrix U ∈ Rp×q is defined as

U⊗r :=

r times︷ ︸︸ ︷
U ⊗ U ⊗ · · · ⊗ U ∈ Rp

r×qr . (32)

First, consider the case m = rn for some integer r ≥ 1. One advantage of encoding
yj , j ∈ [2r], by basis vectors appears in characterizing the conditional moments. The first
order conditional moment of words xl, l ∈ [2m], in the n-persistent topic model can be
written as

E
[
x(j−1)n+k|yj

]
= Ayj , j ∈ [2r], k ∈ [n],

where A = [a1|a2| · · · |aq] ∈ Rp×q. Next, the m-th order conditional moment of different
views xl, l ∈ [m], in the n-persistent topic model can be written as

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1 = ei1 , y2 = ei2 , . . . , yr = eir ] = a⊗ni1 ⊗ a
⊗n
i2
⊗ · · · ⊗ a⊗nir ,

which is derived from the conditional independence relationships among the observations
xl, l ∈ [m], given topics yj , j ∈ [r]. Similar to the first order moments, since vectors
yj , j ∈ [r], are encoded by the basis vectors ei ∈ Rq, the above moment can be written as
the following matrix multiplication

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1, y2, . . . , yr] =
(
A�n

)⊗r
(y1 ⊗ y2 ⊗ · · · ⊗ yr) , (33)

where the (·)⊗r notation is defined in equation (32). Now for the (2m)-th order moment,
we have

M
(n)
2m (x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xm)(xm+1 ⊗ xm+2 ⊗ · · · ⊗ x2m)>

]
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= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)(xm+1 ⊗ · · · ⊗ x2m)>|y1, y2, . . . , y2r

]]

(a)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , y2r

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)>|y1, . . . , y2r

]]

(b)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , yr

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)>|yr+1, . . . , y2r

]]

(c)
= E(y1,y2,...,y2r)

[([
A�n

]⊗r)
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

([
A�n

]⊗r)>
]

=

([
A�n

]⊗r)
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]([
A�n

]⊗r)>

(d)
=

([
A�n

]⊗r)
M2r(y)

([
A�n

]⊗r)>
, (34)

where (a) results from the independence of (x1, . . . , xm) and (xm+1, . . . , x2m) given (y1, y2, . . . , y2r)
and (b) is concluded from the independence of (x1, . . . , xm) and (yr+1, . . . , y2r) given (y1, . . . , yr)
and the independence of (xm+1, . . . , x2m) and (y1, . . . , yr) given (yr+1, . . . , y2r). Equa-
tion (33) is used in (c) and finally, the (2r)-th order moment of (y1, . . . , y2r) is defined

as M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]
in (d).

For M2r(y), we have by the law of total expectation

M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]

= Eh
[
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)> |h

]]

= Eh
[( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)>]

= M2r(h),

where the third equality is concluded from the conditional independence of variables yj , j ∈
[2r], given h and the model assumption that E

[
yj |h

]
= h, j ∈ [2r]. Substituting this in

equation (34), finishes the proof for the n-persistent topic model. Similarly, the moment of
single topic model (infinite persistence) can be also derived.

Proof of Lemma 3: Defining Λ := M2r(h) ∈ Rqr×qr and B :=
[
A�n

]⊗r ∈ Rprn×qr , the

(2rn)-th order moment M
(n)
2rn(x) ∈ Rprn×prn of the n-persistent topic model proposed in

equation (8) can be written as

M
(n)
2rn(x) = BΛB>.

Let b(i1,...,ir) ∈ Rprn denote the corresponding column ofB indexed by r-tuple (i1, . . . , ir), ik ∈
[q], k ∈ [r]. Then, the above matrix equation can be expanded as

M
(n)
2rn(x) =

∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
b(i1,...,ir)b

>
(j1,...,jr)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
[a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir

][a⊗nj1 ⊗ · · · ⊗ a
⊗n
jr

]>,
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where relation b(i1,...,ir) = a⊗ni1 ⊗ · · · ⊗ a
⊗n
ir
, i1, . . . , ir ∈ [q], is used in the last equality. Let

m
(n)
2rn(x) ∈ Rp2rn denote the vectorized form of (2rn)-th order moment M

(n)
2rn(x) ∈ Rprn×prn .

Therefore, we have

m
(n)
2rn(x) := vec

(
M

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir
⊗ a⊗nj1 ⊗ · · · ⊗ a

⊗n
jr
.

Then, we have the following equivalent tensor form for the original model proposed in
equation (8)

T
(n)
2rn(x) := ten

(
m

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a◦ni1 ◦ · · · ◦ a◦nir ◦ a◦nj1 ◦ · · · ◦ a◦njr .

A.3 Sufficient Matching Properties for Satisfying Rank and Graph Expansion
Conditions

In the following lemma, it is shown that under a perfect n-gram matching and additional
genericity and krank conditions, the rank and graph expansion conditions 6 and 7 on A�n,
are satisfied.

Lemma 5 Assume that the bipartite graph G(Vh, Vo;A) has a perfect n-gram matching
(condition 2 is satisfied). Then, the following results hold for the n-gram matrix A�n:

1) If A is generic, A�n is full column rank (condition 6) with Lebesgue measure one
(almost surely).

2) If krank condition 3 holds, A�n satisfies the proposed expansion property in condition
7.

Proof: Let M denote the perfect n-gram matching of the bipartite graph G(Vh, Vo;A).

From Lemma 1, there exists a perfect matchingM�n for the bipartite graphG(Vh, V
(n)
o ;A�n).

Denote the corresponding bi-adjacency matrix to the edge set M as AM . Similarly, BM de-
notes the corresponding bi-adjacency matrix to the edge set M�n. Note that Supp(AM ) ⊆
Supp(A) and Supp(BM ) ⊆ Supp(A�n).

Since BM is a perfect matching, it consists of q := |Vh| rows, each of which has only one
non-zero entry, and furthermore, the non-zero entries are in q different columns. Therefore,
these rows form q linearly independent vectors. Since the row rank and column rank of a
matrix are equal, and the number of columns of BM is q, the column rank of BM is q or
in other words, BM is full column rank. Since A is generic, from Lemma 6 (with a slight
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modification in the analysis 19), A�n is also full column rank with Lebesgue measure one
(almost surely). This completes the proof of part 1.

Next, we prove the second part. From krank definition, we have

|NA(S′)| ≥ |S′| for S′ ⊆ Vh, |S′| ≤ krank(A),

which is concluded from the fact that the corresponding submatrix of A specified by S′

should be full column rank. From this inequality, we have

|NA(S′)| ≥ krank(A) for S′ ⊆ Vh, |S′| = krank(A). (35)

Then, we have

|NA(S)| ≥ |NA(S′)| for S′ ⊂ S ⊆ Vh, |S| > krank(A), |S′| = krank(A),

≥ krank(A)

≥ dmax(A)n, (36)

where (35) is used in the second inequality and the last inequality is from krank condition
3.

In the restricted n-gram matrix A�nRest., the number of neighbors for a set S ⊆ Vh, |S| >
krank(A), can be bounded as

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |NA(S)|+ |S| (37)

≥ dmax(A)n + |S| for |S| > krank(A),

where the first inequality is due to the fact that the set NA�n
Rest.

consists of rows indexed

by the following two 20 subsets: n-tuples (i, i, . . . , i) where all the indices are equal and
n-tuples (i1, . . . , in) with distinct indices, i.e., i1 6= i2 . . . 6= in. The former subset is exactly
NA(S) while the size of the latter subset is at least |S| due to the existence of a perfect
n-gram matching in A. The bound (36) is used in the second inequality. Since dmax

(
A�n

)
=

dmax(A)n, the proof of part 2 is also completed.

Remark 31 The second result of above lemma is similar to the necessity argument of
(Hall’s) Theorem 32 for the existence of perfect matching in a bipartite graph, but gen-
eralized to the case of perfect n-gram matching and with additional krank condition.

A.4 Auxiliary Lemma

Proof of Lemma 1: We show that if G(Y,X;A) has a perfect n-gram matching, then
G(Y,X(n);A�n) has a perfect matching. The reverse can be also immediately shown by
reversing the discussion and exploiting the additional condition stated in the lemma.

19. The Lemma 6 result is about the column rank of A itself, but here it is about the column rank of A�n

for which the same analysis works. Note that the support of BM (which is full column rank here) is
within the support of A�n and therefore Lemma 6 can still be applied.

20. Note that many terms in this bound are ignored which leads to a loose bound that might be improved.
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Let E�n denote the edge set of the bipartite graph G(Y,X(n);A�n). Assume G(Y,X;A) has
a perfect n-gram matching M ⊆ E. For any j ∈ Y , let NM (j) denote the set of neighbors
of vertex j according to edge set M . Since M is a perfect n-gram matching, |NM (j)| = n
for all j ∈ Y . It can be immediately concluded from Definition 4 that sets NM (j) are all
distinct, i.e., NM (j1) 6= NM (j2) for any j1, j2 ∈ Y, j1 6= j2. For any j ∈ Y , let N ′M (j) denote
an arbitrary ordered n-tuple generated from the elements of set NM (j). From the definition
of n-gram matrix, we have A�n(N ′M (j), j) 6= 0 for all j ∈ Y . Hence, (j,N ′M (j)) ∈ E�n for
all j ∈ Y which together with the fact that all N ′M (j)’s tuples are distinct, it results that
M�n := {(j,N ′M (j))|j ∈ Y } ⊆ E�n is a perfect matching for G(Y,X(n);A�n).

Lemma 6 Consider matrix C ∈ Rm×r which is generic. Let C̃ ∈ Rm×r be such that
Supp(C̃) ⊆ Supp(C) and the non-zero entries of C̃ are the same as the corresponding non-
zero entries of C. If C̃ is full column rank, then C is also full column rank, almost surely.

Proof: Since C̃ is full column rank, there exists a r × r submatrix of C̃, denoted by C̃S ,
with non-zero determinant, i.e., det(C̃S) 6= 0. Let CS denote the corresponding submatrix
of C indexed by the same rows and columns as C̃S .
The determinant of CS is a polynomial in the entries of CS . Since C̃S can be derived from
CS by keeping the corresponding non-zero entries, det(CS) can be decomposed into two
terms as

det(CS) = det(C̃S) + f(CS),

where the first term corresponds to the monomials for which all the variables (entries of
CS) are also in C̃S and the second term corresponds to the monomials for which at least
one variable is not in C̃S . The first term is non-zero as stated earlier. Since C is generic,
the polynomial f(CS) is non-trivial and therefore its roots have Lebesgue measure zero. It
implies that det(CS) 6= 0 with Lebesgue measure one (almost surely), and hence, it is full
(column) rank. Thus, C is also full column rank, almost surely.

Finally, Theorem 9 is proved by combining the results of Theorem 27 and Lemma 5.
Proof of Theorem 9: Since conditions 2 and 3 hold and A is generic, Lemma 5 can be applied
which results that rank condition 6 is satisfied almost surely and expansion condition 7 also
holds. Therefore, all the required conditions for Theorem 27 are satisfied almost surely and
this completes the proof.

Appendix B. Proof of Random Identifiability Result (Theorem 15)

We provide detailed proof of the steps stated in the proof sketch of random result in Section
5.2.

B.1 Proof of Existence of Perfect n-gram Matching and Kruskal Results

Restatement of Theorem 22 Consider a random bipartite graph G(Y,X;E) with |Y | = q
nodes on the left side and |X| = p nodes on the right side, and each node i ∈ Y is
randomly connected to di different nodes in X. Let dmin := mini∈Y di. Assume that it
satisfies the size condition q ≤

(
c pn
)n

(condition 4) for some constant 0 < c < 1 and
the degree condition dmin ≥ max{1 + β log p, α log p} for some constants β > n−1

log 1/c , α >
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Figure 6: Partitioning of sets Y and X , proposed in the proof of Theorem 22. Set X is randomly
(uniform) partitioned into n sets of (almost) equal size, denoted by X ′

l , l ∈ [n]. Set Y is also randomly
partitioned in a recursive manner. In each step, it is partitioned to J = c p

n = O(p) number of sets.
These smaller sets are again partitioned, recursively. This partitioning process is performed until
reaching sets with size O(p). The first two steps are shown in this figure.

max
{
2n2

(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5). Then, there exists a perfect (Y -

saturating) n-gram matching in the random bipartite graph G(Y,X;E), with probability at
least 1 − γ1p

−β′
for constants β′ > 0 and γ1 > 0, specified in (5) and (6).

Proof of Theorem 22: Vertex sets X and Y are partitioned, described as follows (see
Figure 6). Define J := c p

n . Partition set X uniformly at random into n sets of (almost)
equal size 21, denoted by X ′

l , l ∈ [n]. Define sets Xl := ∪l
i=1X

′
i, l ∈ [n]. Furthermore,

partition set Y uniformly at random, hierarchically as follows. First, partition into J sets,
each with size at most

(
c p

n

)n−1
, and denote them by Yi, i ∈ [J ]. Next, partition each of these

new smaller sets Yi further into J sets, each with size at most
(
c p

n

)n−2
. Do it iteratively up

to n − 1 steps, where at the end, set Y is partitioned into sets with size at most c p
n . The

first two steps are shown in Figure 6.

Proof by induction: The existence of perfect n-gram matching from set Y to set X is
proved by an induction argument. Consider one of intermediate sets in the hierarchical
partitioning of Y with size O(pl) and its further partitioning into J := c p

n sets, each with
size O(pl−1), for any l ∈ {2, . . . , n}. In the induction step, it is shown that if there exists
a perfect (l − 1)-gram matching from each of these subsets of Y with size O(pl−1) to Xl−1,
then there exists a perfect l-gram matching from the original set with size O(pl) to set Xl.
Specifically, in the last induction step, it is shown that if there exists a perfect (n−1)-gram
matching from each set Yl, l ∈ [J ], to set Xn−1, then there exists a perfect n-gram matching
from Y to Xn = X.

Base case of induction: The base case of induction argument holds as follows. By
applying Lemma 8 and Lemma 7, there exists a perfect matching from each partition in Y
with size at most c p

n = O(p) to set X1, whp.

21. By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.
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Figure 6: Partitioning of sets Y and X, proposed in the proof of Theorem 22. Set X is randomly
(uniform) partitioned into n sets of (almost) equal size, denoted by X ′l , l ∈ [n]. Set Y
is also randomly partitioned in a recursive manner. In each step, it is partitioned to
J = c pn = O(p) number of sets. These smaller sets are again partitioned, recursively.
This partitioning process is performed until reaching sets with size O(p). The first two
steps are shown in this figure.

max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5). Then, there exists a perfect (Y -

saturating) n-gram matching in the random bipartite graph G(Y,X;E), with probability at
least 1− γ1p−β′ for constants β′ > 0 and γ1 > 0, specified in (5) and (6).

Proof of Theorem 22: Vertex sets X and Y are partitioned, described as follows (see
Figure 6). Define J := c pn . Partition set X uniformly at random into n sets of (almost)
equal size 21, denoted by X ′l , l ∈ [n]. Define sets Xl := ∪li=1X

′
i, l ∈ [n]. Furthermore,

partition set Y uniformly at random, hierarchically as follows. First, partition into J sets,
each with size at most

(
c pn
)n−1

, and denote them by Yi, i ∈ [J ]. Next, partition each of these

new smaller sets Yi further into J sets, each with size at most
(
c pn
)n−2

. Do it iteratively up
to n − 1 steps, where at the end, set Y is partitioned into sets with size at most c pn . The
first two steps are shown in Figure 6.

Proof by induction: The existence of perfect n-gram matching from set Y to set X is
proved by an induction argument. Consider one of intermediate sets in the hierarchical
partitioning of Y with size O(pl) and its further partitioning into J := c pn sets, each with
size O(pl−1), for any l ∈ {2, . . . , n}. In the induction step, it is shown that if there exists
a perfect (l− 1)-gram matching from each of these subsets of Y with size O(pl−1) to Xl−1,
then there exists a perfect l-gram matching from the original set with size O(pl) to set Xl.
Specifically, in the last induction step, it is shown that if there exists a perfect (n−1)-gram
matching from each set Yl, l ∈ [J ], to set Xn−1, then there exists a perfect n-gram matching
from Y to Xn = X.

21. By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.
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Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed
in the proof, where set Y is partitioned to J := c p

n partitions Y1, . . . , YJ with (almost) equal size,
for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1 and X ′

n with sizes
|Xn−1| = n−1

n p and |X ′
n| = p

n . The perfect (n − 1)-gram matchings Mi, i ∈ [J ], through bipartite
graphs Gi(Yi, Xn−1; Ei), i ∈ [J ], are also highlighted in the figure. (b) Set Y is partitioned to subsets
Pa(S), S ∈ Pn−1(Xn−1), which is generated through perfect (n − 1)-gram matchings Mi, i ∈ [J ].
S1, S2 and S3 are three different sets in Pn−1(Xn−1) shown as samples. In addition, the perfect
matchings from Pa(S), S ∈ Pn−1(Xn−1), to X ′

n, proposed in the proof, are also highlighted in the
figure.

Induction step: Consider J different bipartite graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi,Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n − 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪J

i=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c p

n . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n − 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S),X ′

n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y
and X ′

n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S),X ′

n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1 − J exp

(
− 2

n2

(dmin − βn log(p/n))2

dmin

)
(38)

22. The power set of any set S is the set of all subsets of S.
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Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed
in the proof, where set Y is partitioned to J := c p

n partitions Y1, . . . , YJ with (almost) equal size,
for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1 and X ′

n with sizes
|Xn−1| = n−1

n p and |X ′
n| = p

n . The perfect (n − 1)-gram matchings Mi, i ∈ [J ], through bipartite
graphs Gi(Yi, Xn−1; Ei), i ∈ [J ], are also highlighted in the figure. (b) Set Y is partitioned to subsets
Pa(S), S ∈ Pn−1(Xn−1), which is generated through perfect (n − 1)-gram matchings Mi, i ∈ [J ].
S1, S2 and S3 are three different sets in Pn−1(Xn−1) shown as samples. In addition, the perfect
matchings from Pa(S), S ∈ Pn−1(Xn−1), to X ′

n, proposed in the proof, are also highlighted in the
figure.

Induction step: Consider J different bipartite graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi,Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n − 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪J

i=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c p

n . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n − 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S),X ′

n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y
and X ′

n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S),X ′

n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1 − J exp

(
− 2

n2

(dmin − βn log(p/n))2

dmin

)
(38)

22. The power set of any set S is the set of all subsets of S.
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(b) Partitioning of set Y through perfect
(n− 1)-gram matchings Mi, i ∈ [J ].

Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed in
the proof, where set Y is partitioned to J := c pn partitions Y1, . . . , YJ with (almost) equal
size, for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1
and X ′n with sizes |Xn−1| = n−1

n p and |X ′n| = p
n . The perfect (n − 1)-gram matchings

Mi, i ∈ [J ], through bipartite graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], are also highlighted in the
figure. (b) Set Y is partitioned to subsets Pa(S), S ∈ Pn−1(Xn−1), which is generated
through perfect (n−1)-gram matchings Mi, i ∈ [J ]. S1, S2 and S3 are three different sets
in Pn−1(Xn−1) shown as samples. In addition, the perfect matchings from Pa(S), S ∈
Pn−1(Xn−1), to X ′n, proposed in the proof, are also highlighted in the figure.

Base case of induction: The base case of induction argument holds as follows. By
applying Lemma 8 and Lemma 7, there exists a perfect matching from each partition in Y
with size at most c pn = O(p) to set X1, whp.

Induction step: Consider J different bipartite graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi, Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n− 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪Ji=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c pn . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n− 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S), X ′n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y

22. The power set of any set S is the set of all subsets of S.
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and X ′n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S), X ′n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1− J exp

(
− 2

n2
(dmin − βn log(p/n))2

dmin

)
(38)

≥ 1− c

n
p−β log 1/c = 1−O(p−β log 1/c),

where β log 1/c > n− 1, and the last inequality is concluded from the degree bound dmin ≥
α log p. Furthermore, we have |Pa(S)| ≤ c pn = c|X ′n|. Now, we can apply Lemma 7
concluding that there exists a perfect matching from Pa(S) to X ′n within the bipartite
graph GS(Pa(S), X ′n;ES), with probability at least 1−O(p−β log 1/c). Refer to Figure 7b for
a schematic picture. The edges of this perfect matching are combined with the corresponding
edges of the existing perfect (n−1)-gram matchings Mi, i ∈ [J ], to provide n incident edges
to each node i ∈ Pa(S). It is easy to see that this provides a perfect n-gram matching from
Pa(S) to X.
We perform the same steps for all sets S ∈ Pn−1(Xn−1) to obtain a perfect n-gram matching
from any Pa(S), S ∈ Pn−1(Xn−1), to X. Finally, according to this construction, the union
of all of these matchings is a perfect n-gram matching from ∪S∈Pn−1(Xn−1) Pa(S) = Y to
X. This finishes the proof of induction step. Note that here we analyzed the last induction
step where the existence of perfect n-gram matching is concluded from the existence of
corresponding perfect (n − 1)-gram matchings. The earlier induction steps, where the
existence of perfect l-gram matching is concluded from the existence of corresponding perfect
(l − 1)-gram matchings for any l ∈ {2, . . . , n}, can be similarly proven.

Probability rate: We now provide the probability rate of the above events. Let N
(hp)
l , l ∈

[n], denote the total number of times that perfect matching result of Lemma 7 is used in
step l in order to ensure that there exists a perfect l-gram matching from corresponding

partitions of Y to set Xl, whp. Let N (hp) =
∑

l∈[n]N
(hp)
l . As earlier, let Pl−1

(
Xl−1

)
denote

the set of all subsets of Xl−1 with cardinality l − 1. We have

∣∣Pl−1
(
Xl−1

)∣∣ =

(∣∣Xl−1
∣∣

l − 1

)
=

( l−1
n p

l − 1

)
, l ∈ {2, . . . , n}.

According to the construction method of l-gram matching from (l − 1)-gram matchings,
proposed in the induction step,

∣∣Pl−1
(
Xl−1

)∣∣ is the number of times Lemma 7 is used in
order to ensure that there exists a perfect l-gram matching for each partition on the Y side.
Since at most Jn−l number of such l-gram matchings are proposed in step l, the number

N
(hp)
l can be bounded as

N
(hp)
l ≤ Jn−l

∣∣Pl−1
(
Xl−1

)∣∣ = Jn−l
( l−1

n p

l − 1

)
, l ∈ {2, . . . , n}. (39)

Since in the first step, N
(hp)
1 = Jn−1 number of perfect matchings needs to exist in the

above discussion, we have

N (hp) = Jn−1 +

n∑

l=2

N
(hp)
l
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≤ Jn−1 +

n∑

l=2

Jn−l
( l−1

n p

l − 1

)

≤
(
c
p

n

)n−1
+

n∑

l=2

(
c
p

n

)n−l(
e
p

n

)l−1

≤ n
(
e
p

n

)n−1
= O(pn−1),

where inequality (39) is used in the first inequality and J := c pn and inequality
(
n
k

)
≤
(
enk
)k

are exploited in the second inequality.
Since the result of Lemma 7 holds with probability at least 1 − O(p−β log 1/c) and it is
assumed that β log 1/c > n− 1, by applying union bound, we have the existence of perfect
n-gram matching with probability at least 1−O(p−β

′
), for β′ = β log 1

c − (n− 1) > 0.
Furthermore, note that the degree concentration bound in (38) is also used O(pn−1) times.
Since the bound in (38) holds with probability at least 1−O(p−β log 1/c) and it is assumed
that β log 1/c > n− 1, this also reduces to the same probability rate.
The coefficient of the above polynomial probability rate is also explicitly computed, saying
that the perfect n-gram matching exists with probability at least 1− γ1p−β′ , with

γ1 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)
,

where δ1 is a constant satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1.

Proof of Theorem 24: Let G(Y,X;A) denote the corresponding bipartite graph to matrix
A where node sets Y = [q] and X = [p] index the columns and rows of A respectively.
Therefore, |Y | = q and |X| = p. Fix some S ⊆ Y such that |S| ≤ p. Then

Pr(|N(S)| ≤ |S|) ≤
∑

T⊆X:
|T |=|S|

Pr(N(S) ⊆ T )

=
∑

T⊆X:
|T |=|S|

∏

i∈S

(|S|
di

)/( p
di

)

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

( |S|
p

)di

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

( |S|
p

)dmin

=

(
p

|S|

)( |S|
p

)dmin|S|
, (40)

where the bound
(|S|
di

)/(
p
di

)
≤
(
|S|
p

)di
is used in the second inequality, and the last inequality

is concluded from the fact that |S|p ≤ 1.

2685



Anandkumar, Hsu, Janzamin and Kakade

Let E denote the event that for any subset S ⊆ Y with |S| ≤ r, we have |N(S)| ≥ |S|, i.e.,

E := “∀S ⊆ Y ∧ 1 ≤ |S| ≤ r : |N(S)| ≥ |S|”.

Then, by the union bound and inequality (40), we have

Pr(Ec) = Pr(∃S ⊆ Y s. t. 1 ≤ |S| ≤ r ∧ |N(S)| < |S|) ≤
r∑

s=1

(
q

s

)(
p

s

)(
s

p

)dmins

≤
r∑

s=1

(
e
q

s

)s(
e
p

s

)s(s
p

)dmins

≤
r∑

s=1

(
e2qrdmin−2

pdmin−1

)s
,

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. For r = cp , the above
inequality reduces to

Pr(Ec) ≤
r∑

s=1

(
e2cdmin−2 q

p

)s

≤
r∑

s=1

(
e2c′cdmin−1pn−1

)s

≤
r∑

s=1

(
e2c′cβ log ppn−1

)s

=
r∑

s=1

(
e2c′pn−1−β log 1/c

)s

≤ e2c′

pβ′ − e2c′ = O(p−β
′
), for β′ = β log

1

c
− (n− 1) > 0,

where the size condition assumed in the theorem is used in the second inequality with
c′ := 1

c

(
c
n

)n
, and the degree condition is exploited in the third inequality. The last inequality

is concluded from the geometric series sum formula for large enough p.
Then, Lemma 9 can be applied concluding that krank(A) ≥ r = cp, with probability at
least 1− γ2p−β′ for constants β′ = β log 1

c − (n− 1) > 0 and γ2 > 0 as

γ2 =
cn−1e2

nn(1− δ2)
,

where δ2 is a constant satisfying c′e2p−β
′
< δ2 < 1.

Proof of Remark 23: Consider a random bipartite graph G(Y,X;E) where for each node
i ∈ X:

1. Neighbors N(i) ⊆ X are picked uniformly at random among all size d subsets of X.

2. Matching M(i) ⊆ N(i) is picked uniformly at random among all size n subsets of
N(i).
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Note that as long as n ≤ d, the distribution of M(i) is uniform over all size n subsets of X.
Fix some pair i, i′ ∈ Y . Then

Pr(M(i) = M(i′)) =

(|X|
n

)−1
.

By the union bound,

Pr
(
∃i, i′ ∈ Y, i 6= i′ s. t.M(i) = M(i′)

)
≤
(|Y |

2

)(|X|
n

)−1
,

which is Θ(|Y |2/|X|n) when n is constant. Therefore, if d ≥ n and the size constraint
|Y | = O(|X|s) for some s < n

2 is satisfied, then whp, there is no pair of nodes in set Y with
the same random n-gram matching. This concludes that the random bipartite graph has a
perfect n-gram matching whp, under these size and degree conditions.

B.2 Auxiliary Lemmata

Lemma 7 (Existence of perfect matching for random bipartite graphs) Consider
a random bipartite graph G(W,Z;E) with |W | = w nodes on the left side and |Z| = z on
the right side, and each node i ∈ W is randomly connected to di different nodes in set Z.
Let dw := mini∈W di. Assume that it satisfies the size condition w ≤ cz for some constant
0 < c < 1 and the degree condition dw ≥ 1 + β log z for some constant β > 0. Then, there
exists a perfect matching in the random bipartite graph G(W,Z;E) with probability at least
1−O(z−β log 1/c) where β log 1

c > 0.

Proof: From Hall’s theorem (Theorem 32), the existence of perfect matching for a bipar-
tite graph is equivalent to occurrence of the following event

Ẽ := “∀S ⊆W : |N(S)| ≥ |S|”.
Similar to the analysis in the proof of Theorem 24, applying the union bound we have

Pr
(
Ẽc
)

= Pr(∃S ⊆W s. t. |N(S)| < |S|) ≤
w∑

s=1

(
w

s

)(
z

s

)(
s

z

)dws

≤
w∑

s=1

(
e
w

s

)s(
e
z

s

)s(s
z

)dws

≤
w∑

s=1

(
e2wdw−1

zdw−1

)s

≤
w∑

s=1

(
e2cdw−1

)s
,

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. From the assumed lower
bound on the degree dw and the fact that 0 < c < 1, we have

Pr
(
Ẽc
)
≤

w∑

s=1

(
e2cβ log z

)s
=

w∑

s=1

(
e2zβ log c

)s
≤ e2

zβ log 1
c − e2

≤ e2

1− δ1
z−β log 1/c,
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where the second inequality is concluded from the geometric series sum formula for large
enough z, and δ1 is a constant satisfying e2z−β log 1/c < δ1 < 1.

Lemma 8 (Degree concentration bound) Consider a random bipartite graph G(Y,X;E)
with |Y | = q and |X| = p, where each node i ∈ Y is randomly connected to di different
nodes in set X. Let Y ′ ⊂ Y be any subset 23 of nodes in Y with size |Y ′| = q′ and X ′ ⊂ X
be a random (uniformly chosen) subset of nodes in X with size |X ′| = p′. Create the new
bipartite graph G(Y ′, X ′;E′) where edge set E′ ⊂ E is the subset of edges in E incident to
Y ′ and X ′. Denote the degree of each node i ∈ Y ′ within this new bipartite graph by d′i. Let
dmin := mini∈Y di and d′min := mini∈Y ′ d′i. Then, if dmin > r pp′ for a non-negative integer r,
we have

Pr[d′min ≥ r + 1] ≥ 1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
.

Proof: For any i ∈ Y ′, we have

Pr[d′i ≤ r] =
r∑

j=0

(
p′

j

)(
p− p′
di − j

)/( p
di

)
,

where the inner term of summation is a hypergeometric distribution with parameters p
(population size), p′ (number of success states in the population), di (number of draws) and
j is the hypergeometric random variable denoting number of successes. The following tail
bound for the hypergeometric distribution is provided (Chvátal, 1979; Skala)

Pr[d′i ≤ r] ≤ exp(−2t2i di),

for ti > 0 given by r =
(p′
p − ti

)
di. Note that assumption dmin > p

p′ r in the lemma is

equivalent to having ti > 0, i ∈ Y . Considering the minimum degree, for any i ∈ Y ′, we
have

Pr[d′i ≤ r] ≤ exp(−2t2dmin),

for t > 0 given by r =
(p′
p − t

)
dmin. Substituting t from this equation gives the following

bound

Pr[d′i ≤ r] ≤ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
. (41)

Finally, applying the union bound, we can prove the result as follows

Pr[d′min ≥ r + 1] = Pr[∩q′i=1{d′i ≥ r + 1}]

≥1−
q′∑

i=1

Pr[d′i ≤ r]

≥1−
q′∑

i=1

exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)

23. Note that Y ′ need not to be uniformly chosen and the result is valid for any subset of nodes Y ′ ⊂ Y .
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=1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
,

where the union bound is applied in the first inequality and the second inequality is con-
cluded from (41).

A lower bound on the Kruskal rank of matrix A based on a sufficient relaxed expansion
property on A is provided in the following lemma which might have independent interest.

Lemma 9 If A is generic and the bipartite graph G(Y,X;A) satisfies the relaxed 24 expan-
sion property |N(S)| ≥ |S| for any subset S ⊆ Y with |S| ≤ r, then krank(A) ≥ r, almost
surely.

Before proposing the proof, we state the marriage or Hall’s theorem which gives an
equivalent condition for having a perfect matching in a bipartite graph.

Theorem 32 (Hall’s theorem, (Hall, 1935)) A bipartite graph G(Y,X;E) has Y -saturating
matching if and only if for every subset S ⊆ Y , the size of the neighbors of S is at least as
large as S, i.e., |N(S)| ≥ |S|.
Proof of Lemma 9: Denote the submatrix AN(S),S by ÃS , i.e., ÃS := AN(S),S . Exploiting

marriage or Hall’s theorem, it is concluded that the bipartite graph G(S,N(S); ÃS) has
a perfect matching MS for any subset S ⊆ Y such that |S| ≤ r. Denote by ÃMS

the

corresponding matrix to this perfect matching edge set MS , i.e., ÃMS
keeps the non-zero

entries of ÃS on edge set MS and everywhere else, it is zero. Note that the support of ÃMS

is within the support of ÃS . According to the definition of perfect matching, the matrix
ÃMS

is full column rank. From Lemma 6, it is concluded that ÃS is also full column rank

almost surely. This is true for any ÃS with S ⊆ Y and |S| ≤ r, which directly results that
krank(A) ≥ r, almost surely.

Finally, Theorem 15 is proved by exploiting the random results on the existence of
perfect n-gram matching and Kruskal rank, provided in Theorems 22 and 24.
Proof of Theorem 15: We claim that if random conditions 4 and 5 are satisfied, then
deterministic conditions 2 and 3 hold whp. Then Theorem 9 can be applied and the proof
is done.
From size and degree conditions, Theorem 22 can be applied, which implies that the perfect
n-gram matching condition 2 is satisfied with probability at least 1 − γ1p

−β′ for β′ =
β log 1

c−(n−1) > 0. The conditions required for Theorem 24 also hold and by applying this

theorem we have the bound krank(A) ≥ cp, with probability at least1− γ2p−β′ . Combining
this inequality with the upper bound on degree d in condition 5, we conclude that krank
condition 3 is also satisfied whp. Hence, all the conditions required for Theorem 9 are
satisfied with probability at least 1− γp−β′ , where

γ = γ1 + γ2 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)

+
cn−1e2

nn(1− δ2)
,

and this completes the proof.
Finally, Corollary 19 can be also proved by showing that the size and degree conditions

satisfy the full column rank condition required in Corollary 13. This is proved in Lemma 7.

24. There is no dmax term in contrast to the expansion property proposed in condition 7.
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Appendix C. Relationship to CP Decomposition Uniqueness Results

In this section, we provide a more detailed comparison with some uniqueness results of
overcomplete CP decomposition. Here, the following CP decomposition for the third order
tensor T ∈ Rp×s×q is considered,

T =

r∑

i=1

ai ◦ bi ◦ ci, (42)

where A = [a1| . . . |ar] ∈ Rp×r, B = [b1| . . . |br] ∈ Rs×r and C = [c1| . . . |cr] ∈ Rq×r.
The most important and general uniqueness result of CP, called Kruskal’s condition, is
provided in Kruskal (1977), where it is guaranteed that the above CP decomposition is
unique if

krank(A) + krank(B) + krank(C) ≥ 2r + 2.

Since then, several works have analyzed the uniqueness of CP decomposition. One set of
works assume that one of the components, say C, is full column rank (Lathauwer, 2006;
Jiang and Sidiropoulos, 2004). It is shown in Lathauwer (2006), for generic (fully dense)
components A,B and C, if r ≤ q and r(r−1) ≤ p(p−1)s(s−1)/2, then the CP decomposition
in (42) is generically unique.
Now, we demonstrate how this CP uniqueness result can be adapted to our setting. First,
consider the matrix M ∈ Rps×q which is obtained by stacking the entries of T as

M(i−1)s+j,k = Tijk.

Then, we have

M = (A�B)C>. (43)

On the other hand, for the 2-persistent topic model with 4 words (n = 2,m = 2), the
moment can be written as

M
(2)
4 (x) = (A�A)E

[
hh>

]
(A�A)>,

for A ∈ Rp×q. The following matrix has the same column span of M
(2)
4 (x),

M ′ = (A�A)C ′>,

for some full rank matrix C ′ ∈ Rq×q. Our random identifiability result in Theorem 15
provides the uniqueness of A and C ′, given M ′, under the size condition q ≤

(
cp2
)2

and the
additional degree condition 5. Note that as discussed in the previous section, this identifi-
ability argument is the same as the unique decomposition of the corresponding tensor.
Thus, in equation (43), by setting A = B and a full rank square matrix C, we obtain the
2-persistent topic model, under consideration in this paper. Thus, the identifiability results
of Lathauwer (2006) are applicable to our setting, if we assume generic (i.e. fully dense)
matrix A. However, we incorporate a sparse matrix A, and therefore, require different
techniques to provide identifiability results. We note that the size bound specified in Lath-
auwer (2006) is comparable to the size bound derived in this paper (for random structured
matrices), but we have additional degree considerations for identifiability. Analyzing the
regime where the uniqueness conditions of Lathauwer (2006) are satisfied under sparsity
constraints is an interesting question for future investigation.
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