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ABS1RACT 

This paper presents a static game theoretic model of a firm's 

decision to adopt a technological innovation of uncertain profitabilty 

which will reduce the production cost associated with the firm's 

output. Given the levels of adoption costs, discount rates and 

expectations regarding the prof itabilty of the innovation, we 

determine the (Nash equilibrium) range of initial production costs for 

which each firm prefers to adopt the innovation. In addition, we ask 

whether a high-cost or a low-cost firm will be more likely to 

innovate, and whether a firm will be more likely to innovate if its 

rival is a high-cost or a low-cost firm. 



TECHNOLOGY ADOPI'ION UNDER IMPERFECT AND INCOMPLETE INFORMATION 

Jennifer F. Reinganum 

I. INTRODUCTION 

This paper presents a static game theoretic model of a firm's 

decision to adopt a technological innovation which is expected to 

reduce the production cost associated with the firm's output. The 

firm is assumed to share the market for the homogeneous output with 

one rival firm which faces the same decision problem regarding the 

innovation. There may be firm-specific or innovation-specific 

uncertainty regarding the profitability of the innovation (i.e., the 

extent of cost reduction) , and uncertainty regarding the cost of 

adoption for the rival firm. Moreover, the decision problem is 

modeled as a simultaneous-move game so each firm must act in ignorance 

of its rival's intentions. 

Basic notation is developed in Section II. Section Ill 

discusses the following questions in the context of a Nash 

equilibrium. Given the levels of adoption costs, discount rates and 

expectations regarding the profitability of the innovation, for what 

range of initial production costs will each firm prefer to adopt the 

innovation rather than forego adoption? Given the rival's initial 

production cost, will a high-cost firm or a low-cost firm be more 

likely to adopt the innovation? Given its own production cost, will a 

firm be more likely to innovate if its rival is a high-cost or a low-
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cost firm? What are the comparative static effects of a change in the 

level of adoption costs, discount rates or expectations about the 

profitability of the innovation? Section IV examines Bayesian 

equilibrium in a game of incomplete information where the rival's 

adoption costs are unknown. The analysis of this model follows that 

of Section III. Section V discusses the possibility of extending th� 

static models to a dynamic one involving a sequence of innovations and 

places this model in the context of related literature. 

II. BASIC NOTATION

Suppose that two firms currently produce a homogeneous good. 

They compete in a market characterized by Cournot-Nash quantity-

setting behavior. Firm i produces at a constant unit cost of mi·

This generates profits for i at the rate ri(m) = ri(n;_.mz>. If Pi is

firm i's rate of discount, then ni(m) = ri(m) /(1-pi) represents the

present value of the firm's profits using its current technology. 

Suppose that an alternative technology becomes available to firm i at 

a cost of ki. Firm i is uncertain about the extent of the cost

reduction the innovation will provide, but believes that the random 

variable ci, representing the unit cost using the new technology, is

drawn from an interval Mi= [£i'ci
] according to the distribution

F.(.) .  If M. = M. and F.(·) = F.(·) , we will say that the uncertainty 1 1 J 1 J 
is innovation-specific. If M. # M. and F.(·) FF.(·) , or if 1 J 1 J 
M. = M. but F.(·) FF.(·) , then the uncertainty will be termed firm-1 J 1 J 
specific. 



Adoption costs may differ across firms due to firm-specific 

characteristics such as implementation and adjustment costs. These 

characteristics may also give rise to firm-specific uncertainty. 

However, it is assumed that both firms share the same beliefs 

regarding Mi and Fi' i = 1 ,2.

Assumption 1.  Suppose that Fi is strictly increasing on Mi.
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Assumption 2 . ri(�,�) (and hence ni(�,�)) is bounded, nonnegative.

and twice continuously differentiable with 

(a) ari/ilmi < O;

(b) ilri/ilmj > O; and

2 
(c ) a ri/ilmiamj < 0 

for all (II]_.�) e � x �· The Appendix discusses circumstances under·

which Assumption 2 can be expected to hold. 

Since the extent of cost reduction is uncertain. the prob,lem 

is characterized by imperfect information. If, in addition, firm i is 

uncertain about the value of firm j' s adoption costs k., we will say 
J 

that the problem is characterized by imperfect and incomplete 

information (Harsanyi, 1 967-8). Although this is a static model, it 

is useful to describe the following timing conventions so as to 

clarify the informational assumptions. For the game with complete but 

imperfect information, both firms know 

m = <11]_.�). P1 • p2• F1 • F2 • k1 and k2 at the beginning of the period.
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'In the middle of the period both firms simultaneously decide whether 

or not to adopt the new technology. At the end of the period if any 

firm has chosen to adopt the new technology, its new unit cost -- the 

random variable c. -- is realized and the payoffs are collected.1 In1 

the game with incomplete information, the same conventions apply 

except that only ki is known initially by firm i; kj is not known by,

and is never revealed to, firm i. In what follows, the current costs 

m will be treated as state variables; dependence of the firms' 

decisions upon the remaining parameters will be suppressed except 

where it is useful in clarifying the underlying informational 

assumptions or when performing comparative static analysis. 

III. lHE GAME WITH COMPLETE INFORMATION 

In this section we present a formal model of the economic 

problem outlined in Section II. 

Definition 1. A strategy for firm i in the game with complete 

information is a function di: � x � -> [0,1] . The expression di(m)

specifies the probability that i adopts the innovation when current 

costs are m = (II]_.�).

The payoff to firm 1 when the firms play strategies 

d(m) = Cd1Cm),d2 (m)) is denoted v
1Cm, d(m)). For given d(m),

1 . It should be pointed out that the ' ' adoption' ' decision is 
reversible ; if the firm discovers that the new technology is actually 
inferior, it need not implement the new technology. Thus the 
term ' ' adoption' ' is to be understood in this limited sense; the firm 
may stop short of full implementation. 
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v1cm,d(m)) = d1(m)d2(m)v1Cm,l,1)

+(1 - d1(m))d2(m)v
1Cm,0,1) + d1(m)(l - d2(m)v1Cm,1,0)

+(l - d1(m))(l - d2(m))v1Cm,0,0). (1)

Thus the payoff for any strategy pair (d1(m),d2(m)) is a 
weighted average of the payoffs obtainable from playing the degenerate 
strategies d.(m) = 0 (i.e. , don't adopt) and d-(m) = 1 (i. e., adopt J J 
with certainty). These degenerate strategy payoffs are 

v1(m,1,0) 

v1cm, 0 ,1) 

v1cm,1,1>

V1 (m,O ,0) rl (m) + P1n1 (m)

rl(m) + P1 � n1<c1•Dii)dF1<c1>
£1 

+ P1Cl-F1<mi>>n1(m) - k1 

rl(m) + P1 r n1<mi.c2)dF2<c2>
� 

+ P1Cl-F2(Dii))n1(m) 

rl(m) + P1 � r n1<c1,c2)dF1<c1>dF2<c2>
£1 £i 

+ P1<l-F1<mi» r n1<mi.c2)dF2<c2>
� 

+ P1Cl-F2(Dii)) smi n1<c1•Dii)dF1<c1>
£1 

+ P1Cl-F1<mi>lC1-F2(Dii))n1(m) - t1.

(2) 

(3) 

(4) 

(5) 
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These are easily interpreted. Equation (2) says that the 
payoff to firm 1 if neither firm adopts the new technology is the flow 

profit r1(m) plus the present value of future profits under the 
current technology P1n1(m). Equation (3) gives firm l's payoff net of
adoption costs given that firm 2 retains the current technology and 

firm 1 adopts the innovation. The term P1<1-F1<mi>>n1(m) allows for
the possibility that the new production process is more costly than 
the current one. In this event, firm 1 reverts to the less costly 
technology. Note that this event may have probability zero. Equation 
(4) gives firm l's payoff when firm 2 adopts the new technology and 
firm 1 retains its current production process. Finally, if both adopt 

the new technology firm l's expected profits net of adoption costs are 
given by equation (5). Firm 2's payoffs are defined in the obvious

way. 

Definition 2. Given�. k2, p1, p2, F1 and F2, a strategy pair
(d�(·},d;(·}) is a Nash equilibrium if for all m e M1 x Mi•

_..1 * * __ 1 * (a) V-(m,dl(m),d2(m)) 2. v-(m,dl(m),d2(m)) 

for all strategies d1(·); and 

_2 * * _2 * (b) V-(m,d1(m),d2(m)) 2. V-(m,d1(m),d2(m)) 
for all strategies d2(·). 

A standard approach at this point is to attempt to determine 
firm l's best response to an arbitrary strategy for firm 2. 

Unfortunately, with no information regarding the form of the 
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opponent's strategy, this direct approach is not particularly useful. 

Instead we will go about characterizing the Nash equilibrium in a 
rather roundabout way. 

Define 

�1Cm) - k1 = v1cm,l,O) - v1cm,0,0)

= P1smi ln1<c1.mz> - n1<m:i..mz>JdF1<c1> - k1.
.£.1 

( 6) 

The expression �1( m) represents the gain to firm 1 due to

adoption of the innovation if firm 2 were to use the decision rule 

d2( m) = O; i.e. , don't adopt. Note that �1( m) > 0 for all 111:1. > £1 and

�1(£1,mz> = 0 for all mz· In addition

a�1/a� = -p1F1C�>an1( m)/a� > o (7) 

and 

a�1!amz = p� [an1Cc1,mz>lamz - a n1C�.mzllamz1dF1Cc1) > 0 (8)

.£.1 

by assumptions 2( a) and 2( c), respectively. 1hat is, if firm 2 were 

to eschew adoption, then the net value of adoption to firm 1 is 
greater the greater are initial costs ( 11)_,mz>. 

Define 

o1Cm> - k1 = v1cm,l ,ll - v1cm,O,ll

P1 smi [n1<c1• mz> - n1<m:i..mz>JdF1<c1>
£1 

+pl smi J°2 [n1<c1,c2> - n1<c1,mz> - n1<m:i.,c2> £1 £2 

+ n1( lll:l.•°2)]dF1dF2 - kl. 

The expression 61( m) represents the gain to firm 1 from
adopting the innovation if firm 2 where to choose the strategy 

d2( m) = l; that is, adopt with certainty. Note that 

6l( m) = �l( m) + P1 smi j°2 [nl( cl,c2) - n1<c1.mz>
.£.1 £z 

- n1C�,c2l + n1c�.mzl1dF1dF2• 

Assumption 2( c) implies that the second term of ( 10) is 
negative for all (�·mz> > (£1,£2). 1hus �1( m) > 61( m) for all 
<11)_.mzl > (£1,£2). Moreover, 61( �,£2> = �1<�,£2> for all 111:1. and
61<£1.mzl = �1<£1.mzl = 0 for all mz· 1his implies that if firm 1 

chooses to adopt, its gain is greater if firm 2 chooses to forego 
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(9) 

( 10) 

adoption than if firm 2 chooses. to adopt as well. 1hus firm 1 always 
prefers that firm 2 forego adoption of the new technology. For

<11)_.mz> > <.£.1 ·£2>. 

�1Cm) > j°2 �1c�,c2ldF2
£z 

P1smi j°2 [n1<c1.mz> - nl( �·mzl1dFldF2.£z .£.1 



Thus for (II]_,�) > (£1,£2> 

o1(m) > � � Cn1Cc1,c2) - n1(�,c2)]dF1dF2 > 0
£i � 
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by assumption 2(a). The dependence Of o1(m) On m1,mi is summarized
below. 

ao1/a� = - p1F1C�)(l-F2(�))an1Cm)/a� 

-P1F1C�)�[an1c�,c2)/a�]dF2 > o 

� 

by assumption 2(a). In addition, 

ao1/a� = p1c1-F2C�))� Can1Cc1,�l/a�
£1 

- an1C�,�)/a�ldF1 > o 

(11) 

( 12) 

by assumption 2(c). If firm 2 chooses the strategy ''certainly adopt,'' 

then firm l's gain due to adoption is greater the greater are initial 
costs (II]_·�)· 

The value of adoption to firm 1 (net of adoption costs) given 

an arbitrary strategy d2(m) for firm 2 is

v1Cm,l,d2(m)) - v1cm,O,d2Cm))
= d2(m)o1Cm) + (l-d2Cm))�1Cm) - k1
= �1(m) + d2(m)Co1(m) - �1Cm)] - k1• (13) 

Define µ1(m,d2) = �1(m) + d2Co1(m) - �1(m)]. Clearly 

ol(m) i µl(m,d2) i �l(m) for all (m,d2>·
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Given an arbitrary strategy for firm 2, d2(-), a best response
for firm 1 is to adopt the innovation if µ1(m,d2(m)) > k1, to forego

adoption if µ1(m,d2(m)) < k1 and to do either (or, alternatively, to 

randomize) if µ1(m,d2(m)) = k1• Rather than attempting to 
characterize this best response directly, we consider the set 

s� = (m 8 MI ol(m) >kl}. Since ol(m) i µl(m,d2) for all (m,d2), if

m s S�, then µ1Cm,d2(m)) > k1 so regardless of d2, firm 1 should play
the strategy d�(m) = 1. Thus for m 8 s�. firm 1 has the dominant

• strategy d1 = 1, implying that firm 1 should definitely adopt the

innovation if me S� . We can characterize the boundary of
1 1 s1, as1 {m 8 M I ol(m) =kl}' as follows.

Assumption 3. o1c;1,£2) - k1 > O. 

Under Assumption 3, o1c;1,mi> > k1 for all mi e Mi· Since

01(£1·�) = 0 <kl for all � £Mi and aol/a� > 0, for each mi there
exists ml(�) 8 (£1,;1> such that ol(�(�),�) = k1· Moreover since
ao11a� > o,

&;;1 dm1 -ao11ami 
- =-I = < o.dm2 � o1Cm> = k1 ao1/a�

Similarly, define s� = {m £MI �l(m) <kl}. Since

(14) 

µl(m,d2) i �l(m) for all (m,d2)' m £ s� implies µl(m,d2) <kl so that
regardless of d2, firm 1 should play d� = O. Thus for m e S�, firm 1
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has the dominant strategy d� = O. For m a S�, firm 1 doesn't want to

adopt eyen if it knows that firm 2 yill not adopt. The boundary of 

s� . as� = {m 8 M I �l(m) = k1}· can be characterized as follows. 

Since �1<�1,£2) = o1Cc1,£2), it follows fran Assumption 3 that 
- -

�1Cc1,£2> > k1 which implies �1Cc1,�) > k1 for all �· Since
�1<£1,�> = 0 < k1 for all � and a�1/a� > 0, for each � there 

exists ;1(82) a (£1,�1) such that �1(�(82),82) = k1, with 

dm1 dm1 -a�11a� 
- =  - I = < o. dm2 � �1 Cm) = k1 a�1fami (15) 

Moreover, the locus �1(m) = k1 lies everywhere to the left of the 
locus ol(m) = kl except at 82 = £2· where the loci coincide. This can 
be summarized graphically as in Figure 1.

The inner strip remains to be characterized, but we can note 
-1 -1 -that for m i s

0 
U s1 (where S denotes the closure of the set S), a 

best response for firm 1 to d2 = 1 is d1 = 0, and a best response for 

firm 1 to d2 = 0 is d1 = 1. More information can be garnered by
performing the analogous analysis for firm 2. Graphed in (II]_,�)
space, this analysis is summarized in Figure 2.

In the inner strip (that is, for m i � U si), we have

�2Cm) > k2 and o2Cm) < k2• That is, firm 2 prefers to adopt the
innovation if firm 1 foregoes adoption and to forego adoption if firm 
1 adopts. 
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Superimposing Figures 1 and 2 indicates that there are
potentially three types of Nash equilibria: type (1) wherein both 

firms have dominant strategies; type (2) wherein a single firm has a 
dominant strategy and the other plays a best response; and type (3) 

wherein no firm has a dominant strategy. This is illustrated in 

Figure 3 with an underline indicating that the strategy is dominant. 

The central region possesses two pure strategy equilibria. In 
addition, it possesses a mixed strategy equilibrium. For each m in 

the central region, �i(.m) 2. ki while 6i(m) i ki' and �i(m) > .Si(m), i

= 1,2. If d; is firm 2's strategy, then firm 1 will be willing to 
1 • -� •) randomize if and only if V (m,1,d2) = v-(m,O,d2 • 

only if 

• �1Cm) + d2Cm)£o1(m) - �1Cm)] - k1 

or equivalently 

That is, if and 

0 

• d2 = [�l(m) - kl]/[�l(m) - 61(m)].

• Notice that 0 i d2(m) i 1 so long as �1(m) - k1 2. 0 and
ol(m) i �; but these are true for all m in the central region.
Analogous analysis of firm 2's willingness to randomize yields 

d�(m) = C�2(m) - k2J/C�2(m) - o2Cm)].

It is easy to show that, in the central region, firm 1 prefers the 

(16) 

(17) 

(18) 
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pure strategy equilibrium ( 1,0) to the randomized strategy 

equilibrium, ·which is preferred by firm 1 to the pure strategy 
equilibrium ( 0,1). Of course, firm l's preferences over these three 

equilibria are precisely opposite to those of firm 1. 

The boundaries as� and asi , which are of measure zero in

� x Mz • may be arbitrarily assigned to the adjacent regions. Thus
the following proposition has been established. 

Proposition 1. The following policy is a Nash equilibrium strategy 

for firm 1. 

·�(m) =�:•2'"' - •2lil•2<•> - •2<mll 

-1 m £ Ri 
1 m £ Rio

-1\-1 -1m £RO R]:nR0

where the regions Ri, �O and R� are as shown in Figure 4. 

The other policy in the Nash equilibrium is 

.;,., =�'.·''"' - •,111,,<•> - •1<mll

-2 
m £ R1 

2 
m £ Rio 

m 2 � \Hin� 
It is clear that Rio = �o· The map of the Nash equilibrium pair

• • ( d1,d2) is shown in Figure S. 

( 19) 

( 20) 
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Consider the effect of a marginal increase in current costs m 
. . . 

upon di(m). Form£ R� or m £Rt it is clear that a marginal increase
. . 

in either� or � leaves di(m) unchanged. Form£ Rto• 

• 2 ad/ami = C<11i - 6i><a11/ami) - <11i - ki>a<11i - 6i)/amiH11i - 6i>

[( ki - 6i>a11/ami + <11i
2 

ki)a6i/ami)J/(11i - 6i> 
. . Since ki > 6i and 1\i > ki for m £ R{o• adi/ami > O.

. . . . . . Similarly, adi/amj > O form 2 R{o· Thus form£ R{ UR� U B{o• di(m)

is locally increasing in m1 and �· However, it is apparent from 

Figure 4 that there are portions of the boundary of �O where a
• marginal increase in either� or � causes d1(m) to decrease. These 

portions consist of the curves from a to b and c to d in Figure 4. 

Thus d�(m) possesses no global monotonicity properties. Consequently, 1 

the questions posed at the beginning of this paper (Given the rival's 
initial production cost, will a high-cost firm or a low-cost firm be 

more likely to adopt the innovation? Given its own production cost, 
will a firm be more likely to innovate if its rival is a high-cost or 
a low-cost firm?) cannot be answered unambigously. However, the 
following qualified statements can be made as corollaries to 

Proposition 1. 

Corollary 1. If initial costs (�,111z> are sufficiently high ( low)
then both ( neither) of the firms will adopt the new technology. 

Corollary 2. If one firm's initial costs are sufficiently high and 
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the other firm's costs are sufficiently low, then the high-cost firm 

will adopt the new technology and the low-cost firm will not. 

Corollary 2 is the most interesting from the point of view of 

industrial organization. It says that if costs are too disparate, the 

high-cost firm will be the one to adopt the new technology. Thus in 

this framework there is a tendency toward more equal-sized firms 
rather than a tendency toward monopolization of the industry. This is 

despite the fact that the low-cost firm has a greater market share on 

which to gain by cost-reduction. Essentially, if the low-cost firm 
(say firm j) has costs which are sufficiently close to £.j' then the

new technology is much less likely to provide a (sufficiently) better 

technology, one which justifies the outlay of kj. 
Although the pattern of the Nash equilibrium strategies seems 

complex enough as it is, an implicit simplifying assumption has been 

made in Figures 1-5. Since the loci �l (m) .:: kl and o1 (m) .:: k1 each.

intersect the loci �2(m) = kl and o2(m) = k2 at least once. they 

divide � x � into at least 9 regions as in Figure 3. However, these · 

loci may have multiple intersections. In this case, the adoption and 
nonadoption sets need not be connected. Nevertheless, the foregoing 

analysis is sufficient to characterize the Nash equilibrium pattern. 
This is illustrated in Figure 6 where the shaded region indicates 
randomization. 

In order to examine comparative static effects, let us 

explicitly denote the dependence of the sets R�, if and llf0 upon k and

-i -i i P by RQ<k1,k2, P1·P2>• RJ:<k1, k2, P1·P2> and R1o<k1•ki• P1.P2>• i
We will rely upon the following trivial lemmas to characterize 
comparative static effects. 

1,2. 

Lemma A.

(that is, 

me R�(k1, k2, p1, p2> if and only if either (Al) �i(m) i ki
o is a dominant strategy for i); or {A2) o.(m) L k. andJ J 

oi(m) i ki (that is, 1 is a dominant strategy for j and 0 is a best
response for i). 

Lemma B. m e Rt<k1, k2, P1·P2> if and only if either (Bl) oi(m) L ki
(that is, 1 is a dominant strategy for i), or (B2) �. (m) < k. andJ - J 

�i(m) L ki (that is, 0 is a dominant strategy for j and 1 is a best
response for i). 

Lemma C. m e �0Ck1, k2, p1, p2> if and only if both (Cl)

�i(m) > k. > o.(m) and (C2) �.(m) > k. > o.(m).1 1 J J J 

• 
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Proposition 2. di(m) either decreases or remains the same in response

to an increase in ki (or, equivalently, a decrease in Pi).

• Consider the impact of an increase in k1 upon d1(m). The
• claim that d1(m) is nonincreasing in k1 is equivalent to the following. 

two claims. 

Claim 1. m e R�(k1,k2, p1, p2) implies m e R�(k�, k2,p1, p2) for all
0 kl L kl.

Claim 2. m e Rio<k1, k2,p1, p2) implies that there does not exist



0 -1 0 k1 l k1 such that ms R1Ck1.k2,p1.p2). Moreover, if
1 0 • 

m B R10Ck1,k2,p1.p2), then d1(m) is unaffected.
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Proof of Claim 1. m B R�Ck1.�,p1,p2) implies either (a) �1Cm) i k1 or

(b) o2Cm) L k2 and o1Cml i �by Lemma A. If (a) holds at �· then

(a) holds for all � l k1• If (b) holds at �· again (b) holds a

fortiori for all k� l k1• Lemma A then implies that

-1 0 0 ms R0Ck1.k2,p1.p2) for all k1 l k1•

Q.E.D. 

Proof of Claim 2. m s Hio<k1,k2,p1.p2) implies both (a) �2Cm) > k2
and (b) o1(m) < k1• Suppose. contrary to Claim 2, that there exists

0 -1( 0 k ) k1 l k1 such that m s Ri k1• 2•P1.P2 • Then Lemma B states that 

either (c) �2(m) i k2 and �l l k� or (d) o
l(m) l �· Since (c)

contradicts (a) and (d) contradicts (b) whenever k� l k1, we are

forced to conclude that there does not exist k� l k1 such that

ms ii<k�,k2,p1,p2). The last statement of Claim 2 follows trivially

from equation (19). 

O.E.D. 

Proposition 3. 

. . (a) If mi R{0Ck1,k2,p1,p2), then di
(m) either increases or

remains the same in response to an increase in kj (or, equivalently, a

decrease in P.).
J 
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. . (b) If m B R:0Ck1,k2,p1.p2). then di
(m) may either increase or

decrease in response to an increase in k. (or, equivalently, aJ 

decrease in p. ). 
J 

Proposition 3(a) is equivalent to Claim 3 below, for i = 1. 

Claim 4 below is a more precise statement of Proposition 3(b) , for i = 

1. 

Claim 3. -1 -1 0 ms R1Ck1,k2,p1,p2l implies that ms R1Ck1,k2,p1,p2) for all

0 k2 l k2. 

Claim 4. m s Ri0Ck1,k2,p1.p2> implies that there does not exist

0 -1 0 k2 l k2 such that ms R0Ck1,k2.P1,p2>. However, if

m B �0Ck1,k�,p1,p2), then d�(m) decreases with an increase in k2•

Proof of Claim 3. m s ii<k1,k2,p1,p2l implies that either (a)

o
1(m) l k1 or (b) �2Cm) i k2 and �l l �by Lemma A. An increase in

k2 has no effect upon (a) while (b) holds a fortiori for all k� l k2•
-1 0 Thus ms R1Ck1,k2.p1, p2>. 

Q.E.D. 

Proof of Claim 4. m s R�0Ck1,k2,p1,p2) implies both (a) �1(m) > k1
and (b) o2Cm) < k2• Suppose, contrary to Claim 4 ,  that there exists

0 -1( 0 " ) k2 l k2 such that m & R0 k1, k2.�1.p2 • Then either (c) �1(m) 2. k1 or 

(d) o
2(m) 2. k� and o

l(m) i kl. But (c) contradicts (a) and (d)

contradicts (b) for all k� 2. k2. Thus there does not exist k� 2. k2 
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such that me R�(k1,k�.p1,p2). The final statement of Claim 4 follows 
from equation (19). 

• 3d1(m)/3k2 = -l/(�2(m) - o2Cm)) < O. 

Q.E.D. 
We are now equipped to describe the impact of an increase in 

firm l's adoption costs from k1 to k� upon the Nash equilibrium 
• • 1 strategy pair (d1(m),d2(m)). If mi RJ:0Ck1,�.p1.p2) or 

me �0Ck1,k2.p1.p2> but mi iG:0<k�,k2,p1.p2). then firm 1 is no more
likely to adopt and firm 2 is no less likely to adopt. However, if 

m e R�0Ck1,k2.p1.p2> and m e �0Ck�.k2,p1.p2Y. then although firm 1

randomizes using the same probability as before, firm 1 now faces 

higher costs of adoption and is willing to randomize only if firm 2 

lowers its probability of adoption. Thus in this case firm 1 is 

precisely as likely to adopt, while firm 2 is less likely to adopt. 

IV. THE GAME WITH INCOMPLETE INFORMATION

In this section we will make an alternative assumption 
regarding the information the firms possess when making their 
decisions. Suppose that firm i knows its own adoption costs ki but
not kj. firm j's adoption costs. This results in a game of incomplete
information (Harsanyi, 1967-8). Using Harsanyi's reinterpretation of 

incomplete information as complete but imperfect information, we 

assume that the firms are Bayesian players with the same prior beliefs 

regarding the distributions of k1 and k2, now regarded as random 
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variables. That is, both firms believe that the adoption cost 

parameters k1, k2 are drawn (independently, for simplicity) from the 
intervals K1 = [Jo,1.�] and K2 = CJo,2.�1 according to the distributions
G1(·) and G2(. ), respectively. Firm i observes the random variable ki
before it selects its strategy; firm i does not observe k . •  Therefore J 

a strategy for i may be contingent upon k., but not k. . This1 J 
informational assumption is emphasized by the definition of a strategy 
given below. 

Definition 3. A strategy for firm i in the game with incomplete 
information is a function 6i: Hi x� x Ki -> [0,1]. The expression
6i(m,ki) represents the probability that firm i will adopt the
innovation when current costs are m = (�·�) and firm i's adoption

costs are ki.

Since firm 1 cannot observe k2 and knows that firm 2 cannot
observe k1, firm 1 can only make conjectures about what action firm 2

will take. These conjectures cannot depend upon k2 since firm 1 can't 

observe k2; nor can they depend upon k1 since firm 2's actual behavior
cannot depend upon k1 and so l's conjectures about 2's behavior should
not depend upon information which firm 2 itself could not possibly 
possess in making its own decision. Thus firm l's conjectures about 
firm 2's behavior can depend only upon current costs m. Define 

P2(m) Pr1{firm 2 adopts given ml

to be firm l's conjecture regarding firm 2's probability of adoption. 
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Similarly, define P1(m) to be firm 2 's conjectures about l's

probability of adoption when current costs are m. Then the expected 

value of adoption by firm 1 (gross of adoption costs) , given firm l's 

conjectures, is 

µ1(m,p2) = p2(m) o
1Cm) + (1 - p2(m) ) �1(m)

= �1(m) + p2(m) [o
1(m) - �1(m) ] > O (21) 

for�> £1• For given �· firm 1 prefers to adopt if µ1(m,p2) < k1

and is indifferent if µ1(m,p2
) = k1• Thus an optimal decision rule

for firm 1 contingent upon its coniectures p2(m) is 

'
1'" ·"1 ·•2<•>> -��0.1] 

µl(m,p2) >kl

µl(m,p2) =kl (22) 

µl(m,p2) <kl

Before k1 is revealed to firm 1 , this contingent decision rule

for firm 1 would generate an adoption probability for firm 1 of 

Pr{µ1(m,p2) 2. k1
) = 61(µ1(m,p2(m) ) ) .

Def ini ti on 4 .
• • 

The conjectures (p1 (·) ,p2 (.) )  are consistent if, for

all m s � x �·
• 

P1 (m)

and 

• 
P2 (m)

61 (µl (m,p;(m) ) )

6 ( 
• 

2 µ2(m,pl(m) ) ) . 
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That is, conjectures are consistent if they might arise from 

rational expectations on the parts of the firms. 

• • 
Definition 5. A strategy pair (61, 62

) is a Bayesian equilibrium if

for all m s � x � and for all k1 s K1, k2 s K2,

and 

• 
61 (m, k1

)

• 
62(m, k2)

• 
fl (m, k1,p2(m) )

• 
f2(m, k2,p1 (m) ) .

That is, a Bayesian equilibrium is a pair of optimal decision 

rules which are based on consistent conjectures. 

In general, finding a pair of consistent conjectures is 

equivalent to finding a fixed point of the mapping Tp1(m) , where T is

iefined by Tp1 (m) = 61(µ1(m,62(µ2(m,p1(m) ) ) ) ) , in a function space.

This is quite difficult, especially with no information about the 

distribution functions 61,62• However, the following result is easily

'st a bl ished. 

Proposition 4 .  Suppose that 6i(·) is uniform on Ki and suppose that

and 

min oi (m) 2. £i m 

max �i (m) i ki m ' 

i = 1 ,2. That is, if ki = £i' then firm i will adopt the innovation

for all m even if firm j is certain to do so as well ; and if ki = ki
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then fiElll i will never adopt the innovation, even if fiElll j foregoes 

it also. Then there exists a unique pair of consistent conjectures 
• • ( P1 (.). P2 (. )) • 

Proof. Gi(ki) = (ki - ki)/AKi' where AKi = ki - ki· Applying the
definition of consistent conjectures yields the equations 

and 

• pl
• 

[�l - k1 + P2<61 - �l)]/AKl

• • 
P2 = [�2 - kz + P1<62 - �2)]/AK2

• • which can be uniquely solved for (p1,p2):

and 

• 
P1 

• 
P2 

AK2<�1 - ki> - (�1 - 61><�2 - k2) 
AKlAKl - (�1 - 61><�2 - 62>

AK1(�2 - k2) - (�2 - 62><�1 - kl)
AK1AK2 - (�l - 61><�2 - 62> 

where the dependence of �i' 6i and pi on m is implicit.
• To see that 0ip1(m)i1, note that the numerator

AK2<�1 - k1> - <�1 - 61><�2 - k2> l o 

(23) 

(24) 

(25) 

(26) 

because AK2 l �2 - kz and �l - ]!;1 l �l - 61 for all m. In addition,
the denominator 

AK1AK2 - (�1 - 61><�2 - 62> > O 

since AK1 > �l - 61 and AK2 > �2 - 62 for all m; finally, the 
numerator never exceeds the denominator. 
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AK1AK2 - (�l - 61)(�2 - 62> - AK2(�1 - kl) + (�l - 61><�2 - k2)

= AK2(k1 - �1) + < �1 - 61><62 - £2> L 0

under the hypotheses of Proposition 4 .  

Q.E.D. 

We can conclude that the Nash equilibrium value function for fiElll 1 is 

v1*cm,kl) =max {p;(m)v1(m,1,l) + (l-p;(m))v1(m,1,0),
p;(m)v1(m,0,1) + (1 - p;(m))v1(m,0,0).

(27) 

• 1* Unfortunately, the dependence of p1 and V upon � and mz is

comp! ica ted. 

• 2 -
ap1/ami = (1/D) {D[(a�1/ami)(k2 - �2> + Ca61/ami><�2 - £2>

+ <61 - �1>a�2/amil - Ni[dD]J,

• where Ni is the numerator of pi and D is the denominator. All terms
in this expression are positive with the exception of 

C61 - �1>a�2/ami < O. Thus although it seems likely that
• ap1/ami > 0, i = 1,2, this cannot be directly established.

• _ _l • • If we could establish that ap2/a� > 0,  it follows that v-- 1s 
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decreasing in � · 

av1* 1am. 1 (ap;/ami) cv1cm,l,l) - v1cm,l,0)) (28) 

• 

• _..1 • 1 
+ p2av-cm,l,l)/ami + (1 - p2>av (m,1,0)/ami

for µ1(m,p2(m)) > k1, and

av1* 1am. 1 (ap;/ami>cv
1cm,O,l) - v1cm,O,Oll

+ p;av1cm,O,l)/ami + Cl • 1 p2lav (m,0,0)/ami

(29) 

• 
for µ1Cm,p2Cm)) < k1• Each term of these expressions is negative for

i = 1 and the continuity of v1* implies that v1* is decreasing in � ·

A similar analysis for i = 2 does not permit us to conclude

th t Vl• . . . . . a 1s 1ncreas1ng 1n �· since the term 

V1(m,d1,l) - v1Cm,d1,0) < 0 for d1 = 0, 1 while av1Cm,d1,d2)/a� > 0
for d1 = 0,1 and d2 = 0,1. 

V. EXTENSIONS AND RELATED LITERAllJRE

A deterministic model of the adoption of an innovation (the 

telephone) which is assumed to generate positive externalities in 

consumption is developed by Rholfs (1974). Dybvig and Spatt (1980) 

extend and generalize the analysis of innovations which produce 

positive externalities. They discuss the means by which government 

can promote adoption of such innovations. They also address these 

questions in a model with negative externalities. The case of cost-

reducing innovation is such a model if we consider only the 
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preferences of the two firms and not those of consumers. However, the 

Dybvig-Spatt results are inapplicable to our case of cost-reducing 

innovation since their assumptions (b) and (c) (p. 22) both fail to

�old, even when the profitablity of the innovation is known. If we 

consider the preferences of consumers and the two firms, then adoption 

by one firm provides a positive externality to consumers and a 

uegative externality to the rival firm. A model of innovation 

adoption which allows one agent's actions to simultaneously generate 

negative externalities for some agents and positive externalities for 

other agents is that of Allen (1980). Using an alternative

equilibrium concept, and under the hypothesis that each agent strictly 

randomizes, Allen proves the existence of a unique equilibrium 

distribution function describing the likelihood that each possible 

user set will occur. 

A deterministic model involving a sequence of innovations is 

developed in Dasgupta and Stiglitz (1980). In this model the

population grows at an exogenous rate, increasing the demand for the 

product and providing a growing incentive for cost-reducing 

innovation. Technical advance is assumed to take place continuously, 

but innovation -- the adoption of a new technology -- occurs only at 

discrete intervals due to the fixed cost associated with 

implementation. Since Dasgupta and Stiglitz allow their firms to 

innovate only once, there is no externality generated by the 

concurrent adoption decision of a rival firm. Instead, each firm 

simply selects a date at which it innovates and enters the industry, 
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taking the time paths of demand, (feasible) unit production costs and 

adoption costs, as well as the innovation dates of the other firms, as 

given. Dasgupta and Stiglitz suggest that such a framework admits a 

steady state such that innovation occurs at regular intervals and 

involves a constant rate of technical progress, the magnitudes of 

which are generated by the equilibrium play of the innovating firms. 

A stochastic model involving a sequence of innovations can be found in 

Balcer and Lippman (1980) . The innovations are generated in a manner 

which is exogenous to the industry, which consists of a single firm. 

The firm must decide whether (and when) to adopt the current best 

technology, the profitability of which is known, or to wait and adopt 

a later innovation. The firm is uncertain about both the timing and 

magnitude of future innovations. 

The present paper is most closely related to that of Jensen 

(1980) . In Jensen's model, two firms decide, for each of a finite 

number of decision periods, whether or not to adopt an innovation of 

uncertain profitability. Each is uncertain about the innovation's 

value (''good'' or ''bad'') and about the opponent's prior assessment 

that the innovation is ''good.'' Each period an external source 

provides a signal regarding the value of the innovation and priors are 

updated upon the basis of the information received that period. At 

first glance, this model appears to be dynamic. However, certain 

assumptions regarding the extreme myopia of the firms effectively 

reduces this to finitely many strategically independent static games 

linked together by a Bayesian updating rule. 

2 8 

In Jensen's model, the innovation is either ''good'' or 

''bad. '' Tb.at is, if the innovation were known to be ''good'' then a 

firm would adopt it irrespective of its rival's decision. 

Alternatively, if the innovation were known to be ''bad'' then a firm 

would forego adoption regardless of its rival's decision. In this 

paper, in addition to these extreme possiblities, we admit the case 

wherein, if the profitability of the innovation were known, the value 

of adopting it still depends upon the rival's action. Even if an 

innovation is worth adopting if the rival foregoes adoption, it may 

not be worth adopting if the rival also adopts it, since this reduces 

the extent of the adoption benefits. This is because there is a 

continuum of possible costs associated with the new technology. In 

Jensen, the adoption decision is irreversible; it is reversible in 

this paper. Tb.at is, the firm needn't use the new technology if it 

discovers that it is unprofitable. In Jensen, the imperfect 

information is innovation-specific; this model allows firm-specific 

imperfect information as well. Both models contain elements of 

incomplete information; in Jensen the rival's prior assessment of the 

probability that the innovation is ''good'' is unknown, while in this 

paper the rival's cost of adoption may be unknown. 

Finally, by considering initial costs as state variables, we 

are able to address questions of the sort discussed in the 

Introduction and in Section Ill, which is not done in Jensen (1980) . 

Moreover, this formulation is the natural one to use in an attempt to 

extend the static model to a dynamic model involving a sequence of 
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innovations. This would yield a dynamic, stochastic game theoretic 

model of the evolution of market structure as a result of technical 

advance. If we had been able to conclude from the model of Section IV 

that the Nash equilibrium value functions had inherited the properties 

of the profit functions described in Assumption 2, then we would be 

essentially finished. We could then extend the model recursively to 

an arbitrary finite number of innovations in the manner of dynamic 

programming. However, this goal appears to be out of reach at the 

moment since we cannot guarantee that these properties are inherited. 

One goal of future research in this area should be to determine 

reasonable sufficient conditions which would enable us to make the 

aforementioned extensions. 



APPENDIX 

SUFFICIENT CONDITIONS FOR ASSUMPTIONS 2(a) - (b). 

Claim: Recall that ri(m) = (p(q1 
+ �) - mi)qi

(m), where

(�(m),�(m)) is a Cour110t-Nash equilibrium. Then sufficient 

conditions for Assumptions 2(a)-(b)  to hold is that 

p' < 0 and p" qi 
+ p' < O. 

Proof. The existence of Cournot-Nash equilibrium is treated 
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extensively elsewhere and will not be dealt with here. A Cour110t-Nash 

equilibrium (q1(m),q2(m)) must satisfy

and 

xi= p'qi 
+ P - mi= 0, i = 1 , 2,

x .. 11 p"qi + 2p' < o. i = 1 .2.

Thus ar./am. = (p'aq./am. - l)q. and ar./am. = p'q.(aq./am.l.1 1  J 1 1 1 J 1 J  J 

Assuming that p' < 0, a sufficient condition for ari/ami < 0 is

aq./am. > O; and a sufficient condition for ar./am. > O isJ 1 1 J 

aq./am. < o.J J 

Differentiating x1, x2 totally and solving for the desired

partial derivatives implies that 

aq/ami xjj/(xllx22 - x12x21) 

and 

aqi/amj = -xij/(xllx 22 - x12x 21>
·

where xij = p''qi + p'. Notice that if xij < 0 and p' < 0, then

l x .. I > I x .. I. Thus sufficient conditions for11 1J 
- -

aq./am. < 0 and aq./am. > 0, i = 1 , 2  ( i#j) are that1 1 1 J 

x. . < 0. i = 1,2 ( j#i) • 1J 
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Q.E.D. 

Assumption 2(c)  states that a2r./am.am. < O. Since1 1 J 

2 a r./am.am. = x .. (aq./am.)(aqj/am.)1 1 J lJ 1 1 J 
- - -

+ p' 'q.Caq./am.) Caq./am.l 1 J J J 1 
- 2-+ p' q.(a q./am.am.l.1 J 1 J 

it is clear that sufficient conditions for a2r./am.am. < 0 are more1 1 J 

complex. The first term is negative if x . . < O; the second term islJ 

negative if p'' > O. The third term is of unknown sign. However, 

Assumptions 2(a) - (c)  are easily shown to hold for the demand 

functions P = a - bln(q1 + �) (for ci i b), P = a - b(q1 + q2l

(for ci i a/2) and P = a +  b/Cq1 + q2) ( for £i l a), where the

parameter restrictions are required for non-negativity of profits. 
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