Study of Jet Quenching with $Z + jet$ Correlations in Pb-Pb and pp Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 3 February 2017; revised manuscript received 3 July 2017; published 23 August 2017)

The correlated production of vector bosons and jets in hard parton scatterings occurring in ultrarelativistic heavy ion collisions provides an ideal probe of the quark-gluon plasma (QGP), a deconfined state of quarks and gluons [1,2]. Final-state jets are created by the fragmentation of outgoing partons that interact strongly with the produced medium and lose energy [3–11], a phenomenon (“jet quenching”) observed at RHIC [12,13] and the LHC [14–18]. The transverse momentum (p_T) of the jet is highly correlated (through momentum conservation) with that of the associated Z boson, which is not affected by the medium [19–21] and reflects the initial energy of the parton. The lost energy can be related, via theoretical models, to the thermodynamical and transport properties of the medium [9–11,22–24]. At LHC energies, $Z + jet$ production is dominated by quark jets for $p_T^{jet} \gtrsim 30$ GeV/c [21], the primary subprocess being $q(q) + g \rightarrow Z + q(q)$ [19], hence providing information on the parton flavor (quark or gluon) and kinematics, and allowing detailed studies of the energy loss with a well-defined production process. The Z-jet correlations are particularly well suited to perform tomographic studies of the QGP, given the minimal contributions from background channels [20,25–27]. Correlations of jets with isolated photons are accessible at higher rates and carry similar information on parton energy loss [25–29] but suffer from an irreducible background of photons from jet fragmentation [17,30] as well as larger uncertainties arising from the experimental selection of photon candidates.

This Letter describes the identification of $Z + jet$ pairs in pp and Pb-Pb collisions, and the first characterization of parton energy loss through angular and p_T correlations between the jet and the Z, reconstructed in dimuon or dielectron decays. The back-to-back azimuthal alignment of the Z and jets is studied through the difference $\Delta \phi_{Zj} = |\phi^{jet} - \phi^{Z}|$. The $Z + jet$ momentum imbalance is studied using the $x_{Zj} = p_T^{jet} / p_T^{Z}$ ratio and the p_T^{Z} dependence of its mean value, $\langle x_{Zj} \rangle$. The average number of jet partners per Z boson, R_{Zj}, is also reported. The analysis exploits Pb-Pb and pp data samples collected by CMS at a nucleon-nucleon center-of-mass energy of 5.02 TeV, corresponding to integrated luminosities of $404 \mu b^{-1}$ and 27.4 pb^{-1}, respectively.

The central feature of CMS is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end cap sections. Forward hadron calorimeters extend the pseudorapidity (η) coverage and are used for Pb-Pb event selection. Muons are measured in gas-ionization detectors located outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [31].

The event samples are selected on-line with dedicated lepton triggers and cleaned off-line to remove noncollision events, such as beam-gas interactions or cosmic-ray muons [32]. In addition, events are required to have at least one reconstructed primary interaction vertex.

DOI: 10.1103/PhysRevLett.119.082301

*Full author list given at the end of the article.
events are triggered if two ECAL clusters [33] have transverse energy greater than 15 GeV and $|\eta| < 2.5$, while the $Z \rightarrow \mu^+\mu^-$ triggers require one muon of $p_T > 15$ GeV/c or two muons of $p_T > 10$ GeV/c.

For the analysis of Pb-Pb collisions, the “centrality” (overlap of the two colliding nuclei) is determined by the sum of the total energy deposited in both forward hadron calorimeters [15]. The results refer to the 30% most central collisions, to focus on the region of highest physics interest. After all the other analysis selections, 78% of the Z boson events fall in this centrality range.

The PYTHIA 8.212 [34] Monte Carlo (MC) event generator, with tune CUETP8M1 [35], is used to simulate $Z + \text{jets}$ events, with $p_T^Z > 30$ GeV/c and rapidity $|y| < 2.5$. A sample with a Z boson without any kinematic selection was produced using a next-to-leading order (NLO) generator, MADGRAPH5_AMC@NLO [36]. In the Pb-Pb case, a PYTHIA +HYDJET sample is created by embedding PYTHIA signal events in heavy ion events generated with HYDJET 1.9 [37] and tune HydroQJets. The generated events are propagated through the CMS apparatus using the GEANT4 [38] package. No unfolding is performed for the results presented. The recipe for applying a smearing of the jet p_T resolution is provided in Supplemental Material [39].

Electrons are identified as ECAL superclusters [40] matched in position and energy to tracks reconstructed in the tracker. They must have $p_T > 20$ GeV/c, above the trigger threshold, and each supercluster must be within the acceptance of the tracker, $|\eta| < 2.5$. Electron candidates in the transition region between the barrel and end cap subdetectors ($1.44 < |\eta| < 1.57$) are excluded. In pp collisions, the electrons are selected via standard identification criteria [40]. A narrow transverse shape of showers in the ECAL and a low HCAL over ECAL energy ratio are required to reject misidentified electrons. Additional tracking information is used to distinguish electrons from charged hadrons [40]. For Pb-Pb collisions, the identification criteria have been optimized to compensate for the higher background levels in the calorimeters. With these selections, the pp and Pb-Pb electron reconstruction purities (efficiencies) are identical within 1% (10%).

Muons are selected by requiring segments in at least two muon detector planes and a good-quality fit when connecting them to tracker segments. This suppresses hadronic punchthrough and muons from in-flight decays of hadrons. A minimum number of hits in the pixel and strip layers is required, and the reconstructed muon tracks must point to the primary vertex in the transverse and longitudinal directions [41]. The same selections are applied for both pp and Pb-Pb data. In order to suppress the background continuum under the Z peak, mostly originating from uncorrelated simultaneous decays of heavy flavor mesons, the muons are required to have $p_T > 10$ GeV/c. In addition, the muon tracks must fall in the acceptance of the muon detectors, $|\eta| < 2.4$.

Jet reconstruction uses the anti-k_T algorithm implemented in FASTJET [42], following the procedure of Ref. [16]. A small distance parameter, $R = 0.3$, minimizes the effects of fluctuations in the underlying event (UE), dominantly formed by soft processes in heavy ion collisions. The UE energy subtraction [43] is performed for Pb-Pb as described in Refs. [15–17]. Cuts are done on MC samples without medium-induced jet energy loss, show no over subtraction of the UE in the Pb-Pb sample. No subtraction is applied in the pp sample, where the UE contribution is negligible. The jet energy is calibrated applying η- and p_T-dependent correction factors derived with the PYTHIA signal sample [44]. Then, dijet and photon + jet balance techniques [45] are used to correct for the residual detector response differences between measured and simulated samples. In addition, a centrality-dependent correction obtained from simulation studies is applied to remove the residual effects from the UE in Pb-Pb collisions. The UE from Pb-Pb data and MC samples are compared using the p_T density [44,46,47], defined as the median of the ratio of the jet transverse momentum to the jet area, for all jets in the event. Given the coarse centrality range used in the analysis, the difference between the measured and simulated Pb-Pb events has a negligible effect on jet reconstruction.

Except in Fig. 4, the resolutions of the measured jet energy and azimuthal angle in the pp samples are smeared to match those of the Pb-Pb sample. The jet energy resolution can be quantified using the Gaussian standard deviation σ of the $p_T^{\text{gen}}/p_T^{\text{reco}}$ ratio, where p_T^{reco} is the UE-subtracted, detector-level jet p_T and p_T^{gen} is the generator-level jet p_T without any contributions from the UE in Pb-Pb. It is determined using PYTHIA+HYDJET (for Pb-Pb) and PYTHIA (for pp) samples and parametrized as a function of p_T^{gen} using the expression $\sigma(p_T^{\text{gen}}) = C \oplus (S/\sqrt{p_T^{\text{gen}}}) \oplus (N/p_T^{\text{gen}})$, where \oplus stands for the sum in quadrature and the parameters C, S, N are determined from simulation studies. The same parametrization is used to determine the jet azimuthal angle resolution, quantified by the Gaussian standard deviation σ_ϕ of the $[\phi^{\text{reco}} - \phi^{\text{gen}}]$ difference.

The Z candidates are defined as opposite-charge electron or muon pairs, with a reconstructed invariant mass $(M^{e\mu})$ in the interval 70–110 GeV/c^2 and $p_T > 40$ GeV/c. The invariant mass distributions of all the dileptons used in the Pb-Pb analysis are shown in Fig. 1. Each Z candidate is paired with all jets in the same event that pass the $p_T > 30$ GeV/c and $|\eta| < 1.6$ selection. Simulation studies show that the jet selection efficiency and the energy resolution are well understood for this kinematic range. Additional energy corrections are applied to the jet p_T to account for residual performance degradations observed in simulation studies. Jets reconstructed within $\Delta R < 0.4$ from a lepton are rejected, to eliminate jet energy contamination by leptons from Z decays.
A systematic uncertainty is evaluated by shifting the interactions not related to the primary Z boson from each candidate Z + jet candidate event. The resulting background jet spectrum is subtracted from the raw jet spectrum, eliminating coincidental Z + jet pairs and ensuring that the final Z + jet observables reflect the correlations of Z bosons and associated jets.

The systematic uncertainties related to Z boson reconstruction are sizable (negligible) in the dielectron (dimuon) channel. Comparing the measured and simulated dielectron invariant mass peaks shows that the average deviation between electron p_T^{rec} and p_T^{gen} is 0.5%. A systematic uncertainty is evaluated by shifting the electron p_T by ±0.5%, resulting in changes of $\langle x_{jZ} \rangle$ and R_{jZ} for Pb-Pb (pp) by 0.5% (0.3%) and 3% (0.8%), respectively. The simulated Z dielectrons reconstructed in central Pb-Pb collisions have a p_T resolution of 5% for $p_T > 40$ GeV/c. In Pb-Pb simulated events, p_T^{jet} is smeared by 5%, resulting in variations of $\langle x_{jZ} \rangle$ and R_{jZ} by 1.5% and 0.8%, respectively. When combining the two lepton results, a weighting is applied to the electron sample, to compensate for the different centrality dependencies of the Z boson reconstruction in the electron and muon channels. The difference between the corrected and uncorrected $\langle x_{jZ} \rangle$ and R_{jZ} values, 0.3% and 5.8%, respectively, is taken as systematic uncertainty.

Simulation studies show that the jet energy scale $(p_T^{\text{rec}} / p_T^{\text{gen}})$ can deviate from unity by up to 2%. Additional deviations can arise from differences between the fragmentation pattern of jets in measured and simulated events. To evaluate the corresponding systematic uncertainty, the jet energy scale is shifted for Pb-Pb (pp) upward by 6% (2%) and downward by 4% (2%). The higher upward variation reflects the relatively high energy scale of quark jets, which contribute more to the Z + jet events than the gluon jets. The relative change in $\langle x_{jZ} \rangle$ and R_{jZ} for Pb-Pb (pp) is 5.4% (2.4%) and 4.6% (2.4%), respectively. Finally, differences between the measured and simulated samples suggest that the jet energy resolution is up to 15% worse in the data. The related systematic uncertainty is evaluated smearing p_T^{jet} by 15% in the Pb-Pb MC calculations. The pp data are smeared to simulate the poor resolution due to the UE fluctuations in Pb-Pb data. The smearing is performed with the relative resolution $\sigma_{\text{rel}} = \sqrt{\sigma_{\text{Z-Pb,pp}}^2 - \sigma_{\text{pp}}^2}$, where $\sigma_{\text{Z-Pb,pp}}$ and σ_{pp} correspond to the parametrizations described above. A systematic uncertainty is assigned by varying the relative resolution by ±15%. The Pb-Pb (pp) relative change in $\langle x_{jZ} \rangle$ and R_{jZ} due to jet energy resolution is 2.5% and 3.7% (0.5% and 0.7%), respectively. The jet angular resolution correction implies an additional uncertainty on the pp sample, of 0.1% for $\langle x_{jZ} \rangle$ and 0.2% for R_{jZ}.

The total systematic uncertainties for Pb-Pb (pp) amount to 6.2% (2.5%) and 8.9% (2.6%) for the $\langle x_{jZ} \rangle$ and R_{jZ} results, respectively, of which 5.7% and 8.0% are uncorrelated between the pp and Pb-Pb results; the uncorrelated uncertainties do not reflect possible differences between p_T^{rec} and p_T^{gen}.

Figure 2, top, shows the $\Delta \phi_{jZ}$ distribution of Z + jet pairs that pass all the selections; only Z + jet pairs with $p_T^{\text{jet}} > 60$ GeV/c were included to reduce the fraction of events where energy loss effects cause the jet partner to fall below the $p_T^{\text{jet}} > 30$ GeV/c threshold. There are 678 and 232 events that pass the $p_T^{\text{jet}} > 60$ GeV/c selection in pp and in the 30% most central Pb-Pb collisions, respectively. To study if the angular distribution of jets with respect to...
the Z boson is affected by interactions of the parton with the medium, a Kolmogorov-Smirnov (KS) test was performed using pseudodata generated from identical underlying shapes. This test is useful to quantify shape differences, since it is sensitive to adjacent bins fluctuating in the same direction but not to the overall normalization. No significant difference is seen between the \(pp \) and Pb-Pb distributions; the probability to obtain a KS value larger than that observed in the data, the \(p \) value, is greater than 0.40, even if systematic uncertainties are excluded.

For the \(x_{jZ} \) and \(R_{jZ} \) results, shown in Figs. 2 and 3, only events with \(\Delta \phi_{jZ} > 7\pi/8 \) are used, to select mostly back-to-back \(Z + \) jet pairs; it keeps 63% and 73% of the \(pp \) and Pb-Pb events, respectively. Figure 2, bottom, shows the \(x_{jZ} \) distributions for Pb-Pb and \(pp \) collisions. Jet energy loss is expected to manifest itself both as a shift in the \(x_{jZ} \) distribution and an overall decrease in the number of \(Z + \) jet pairs as jets fall below the \(p_{T}^{\text{jett}} \) threshold. Therefore, the KS test was applied to the \(x_{jZ} \) distribution, and a separate overall normalization \(\chi^2 \) test was applied to the total number of \(Z + \) jet pairs per \(Z \) leading to \(p \) values of \(p_1 = 0.07 \) and \(p_2 = 0.01 \), respectively. The systematic uncertainties and their correlations were included in these calculations. The combined \(p \) value [48] is \(p_1 p_2 [1 - \ln(p_1 p_2)] = 0.0064 \) when including \(Z + \) jet pairs with \(p_{T}^{jZ} > 40 \text{ GeV/c} \), indicating that the two \(x_{jZ} \) distributions are significantly different.

The relative shift between the \(pp \) and Pb-Pb \(x_{jZ} \) distributions is studied using their means, \(\langle x_{jZ} \rangle \), shown in Fig. 3, top, as a function of \(p_{T}^{jZ} \). The minimum \(p_{T} \) of the partner jet imposes a lower limit on the value of \(x_{jZ} \). As \(p_{T}^{jZ} \) increases relative to the \(p_{T}^{\text{cutoff}} \), the kinematic phase space for lower \(x_{jZ} \) opens up, resulting in a shift towards lower \(x_{jZ} \) for higher \(p_{T}^{jZ} \). For all ranges, \(\langle x_{jZ} \rangle \) is found to be lower in Pb-Pb collisions than in \(pp \) collisions, as expected from energy loss models of partons traversing the medium. Also \(R_{jZ} \) is expected to increase as a function of \(p_{T}^{jZ} \), as the \(p_{T}^{\text{cutoff}} > 30 \text{ GeV/c} \) threshold restricts the phase space of jets counted for a given \(p_{T}^{jZ} \) selection. Figure 3, bottom, shows the dependence of \(R_{jZ} \) on \(p_{T}^{jZ} \). The \(R_{jZ} \) values are

![FIG. 2. Distributions of the azimuthal angle difference \(\Delta \phi_{jZ} \) between the Z boson and the jet (top) and of the transverse momentum ratio \(x_{jZ} \) between the jet and the Z boson with \(\Delta \phi_{jZ} > 7\pi/8 \) (bottom). The distributions are normalized by the number of Z events, \(N_{Z} \). Vertical lines (bands) indicate statistical (systematic) uncertainties.](image1)

![FIG. 3. The mean value of the \(x_{jZ} \) distribution (top) and the average number of jet partners per Z boson \(R_{jZ} \) (bottom), as a function of \(p_{T}^{jZ} \). Vertical lines (bands) indicate statistical (systematic) uncertainties.](image2)
found to be smaller in Pb-Pb than in pp. As their difference is approximately constant as a function of p_T^Z, a relatively smaller fraction of jets is lost in Pb-Pb collisions for larger initial (before traversing the medium) parton energies.

Figure 4 compares the x_{jZ} results to several theoretical calculations, using the same kinematic selections as the data. The Pb-Pb results are compared to three models that incorporate the phenomenon of jet quenching: Jet Evolution With Energy Loss (JEWE) [26], Hybrid [25], and GLV [27]. The JEWEL error bars represent statistical uncertainties, while the widths of the hybrid bands represent systematic variations. A MADGRAPH5_AMC@NLO calculation [36] is also shown.

In summary, correlations of $p_T^Z > 40$ GeV/c Z bosons with $p_T^{jet} > 30$ GeV/c jets have been studied in pp and, for the first time, in Pb-Pb collisions. The data were collected with the CMS experiment during the 2015 data-taking period, at $\sqrt{s_{NN}} = 5.02$ TeV. No significant difference was found between the distributions of the azimuthal angle difference between the Z and the jet in pp and Pb-Pb collisions. The x_{jZ} distributions indicate that the Pb-Pb values tend to be lower than those measured in pp collisions. Correspondingly, the average value of the transverse momentum ratio (x_{jZ}) is smaller in Pb-Pb than in pp collisions, for all p_T^Z intervals. The average number of jet partners per Z, R_{jZ}, is lower in Pb-Pb than in pp collisions, for all p_T^Z intervals, which suggests that in Pb-Pb collisions a larger fraction of partons associated with Z bosons lose energy and fall below the 30 GeV/c p_T^{jet} threshold. These measurements provide new input for the determination of jet quenching parameters using a selection of partons with well-defined flavor and initial kinematics.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES,
FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); NASU and FEDER (Spain); Swiss Funding Agencies (Switzerland); DST, NRF, and TTF (South Africa); MSHE and NSC (Poland); FCT (Portugal); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); SFNS (Shenyang) and LNS, (Shanghai); NCKU, CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); Merton College, Oxford (United Kingdom); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); FCT (Portugal); CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); A. Adare et al. (PHENIX Collaboration), Measurement of isolated photon correlations in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Lett. B 746, 1 (2015).

CMS Collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV, J. High Energy Phys. 01 (2016) 006.

Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, J. High Energy Phys. 05 (2016) 023.
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles University, Prague, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Universidad San Francisco de Quito, Quito, Ecuador</td>
<td></td>
</tr>
<tr>
<td>Academy of Scientific Research and Technology of the Arab Republic of Egypt</td>
<td></td>
</tr>
<tr>
<td>Egyptian Network of High Energy Physics, Cairo, Egypt</td>
<td></td>
</tr>
<tr>
<td>National Institute of Chemical Physics and Biophysics, Tallinn, Estonia</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, University of Helsinki, Helsinki, Finland</td>
<td></td>
</tr>
<tr>
<td>Helsinki Institute of Physics, Helsinki, Finland</td>
<td></td>
</tr>
<tr>
<td>Lappeenranta University of Technology, Lappeenranta, Finland</td>
<td></td>
</tr>
<tr>
<td>IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France</td>
<td></td>
</tr>
<tr>
<td>Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France</td>
<td></td>
</tr>
<tr>
<td>Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France</td>
<td></td>
</tr>
<tr>
<td>Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS-IN2P3, Villeurbanne, France</td>
<td></td>
</tr>
<tr>
<td>Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France</td>
<td></td>
</tr>
<tr>
<td>Georgian Technical University, Tbilisi, Georgia</td>
<td></td>
</tr>
<tr>
<td>Tbilisi State University, Tbilisi, Georgia</td>
<td></td>
</tr>
<tr>
<td>RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany</td>
<td></td>
</tr>
<tr>
<td>RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany</td>
<td></td>
</tr>
<tr>
<td>RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany</td>
<td></td>
</tr>
<tr>
<td>Deutsches Elektronen-Synchrotron, Hamburg, Germany</td>
<td></td>
</tr>
<tr>
<td>University of Hamburg, Hamburg, Germany</td>
<td></td>
</tr>
<tr>
<td>Institut für Experimentelle Kernphysik, Karlsruhe, Germany</td>
<td></td>
</tr>
<tr>
<td>Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece</td>
<td></td>
</tr>
<tr>
<td>National and Kapodistrian University of Athens, Athens, Greece</td>
<td></td>
</tr>
<tr>
<td>University of Ioannina, Ioánnina, Greece</td>
<td></td>
</tr>
<tr>
<td>MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>Wigner Research Centre for Physics, Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>Institute of Nuclear Research ATOMKI, Debrecen, Hungary</td>
<td></td>
</tr>
<tr>
<td>Institute of Physics, University of Debrecen</td>
<td></td>
</tr>
<tr>
<td>National Institute of Science Education and Research, Bhubaneswar, India</td>
<td></td>
</tr>
<tr>
<td>Panjab University, Chandigarh, India</td>
<td></td>
</tr>
<tr>
<td>University of Delhi, Delhi, India</td>
<td></td>
</tr>
<tr>
<td>Saha Institute of Nuclear Physics, Kolkata, India</td>
<td></td>
</tr>
<tr>
<td>Indian Institute of Technology Madras, Madras, India</td>
<td></td>
</tr>
<tr>
<td>Bhabha Atomic Research Centre, Mumbai, India</td>
<td></td>
</tr>
<tr>
<td>Tata Institute of Fundamental Research-A, Mumbai, India</td>
<td></td>
</tr>
<tr>
<td>Tata Institute of Fundamental Research-B, Mumbai, India</td>
<td></td>
</tr>
<tr>
<td>Indian Institute of Science Education and Research (IISER), Pune, India</td>
<td></td>
</tr>
<tr>
<td>Institute for Research in Fundamental Sciences (IPM), Tehran, Iran</td>
<td></td>
</tr>
<tr>
<td>University College Dublin, Dublin, Ireland</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Bari, Bari, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Bari, Bari, Italy</td>
<td></td>
</tr>
<tr>
<td>Politecnico di Bari, Bari, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Bologna, Bologna, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Bologna, Bologna, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Catania, Catania, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Catania, Catania, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Firenze, Firenze, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Firenze, Firenze, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Laboratori Nazionali di Frascati, Frascati, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Genova, Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Genova, Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Milano-Bicocca, Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Milano-Bicocca, Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Napoli, Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>Università dei Studi Roma, Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Napoli, Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>Università della Basilicata, Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>Università G. Marconi, Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Padova, Trento, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Padova, Trento, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Trento, Trento, Italy</td>
<td></td>
</tr>
</tbody>
</table>
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA

The University of Alabama, Tuscaloosa, Alabama, USA

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, Davis, California, USA

University of California, Los Angeles, California, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA

California Institute of Technology, Pasadena, California, USA

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

University of Colorado Boulder, Boulder, Colorado, USA

Cornell University, Ithaca, New York, USA

Fairfield University, Fairfield, Connecticut, USA

Fermi National Accelerator Laboratory, Batavia, Illinois, USA

University of Florida, Gainesville, Florida, USA

Florida International University, Miami, Florida, USA

Florida State University, Tallahassee, Florida, USA

Florida Institute of Technology, Melbourne, Florida, USA

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

The University of Iowa, Iowa City, Iowa, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, Kansas, USA

Lawrence Livermore National Laboratory, Livermore, California, USA

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

University of Minnesota, Minneapolis, Minnesota, USA

University of Mississippi, Oxford, Mississippi, USA

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

State University of New York at Buffalo, Buffalo, New York, USA

Northeastern University, Boston, Massachusetts, USA

Northwestern University, Evanston, Illinois, USA

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA

Purdue University, West Lafayette, Indiana, USA

Purdue University Calumet, Hammond, Indiana, USA

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA

Wayne State University, Detroit, Michigan, USA

University of Wisconsin—Madison, Madison, Wisconsin, USA

PRL 119, 082301 (2017) PHYSICAL REVIEW LETTERS week ending 25 AUGUST 2017

Deceased.

Also at Vienna University of Technology, Vienna, Austria.
Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.

Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3.

Also at Universidade Federal de Pelotas, Pelotas, Brazil.

Also at Université Libre de Bruxelles, Bruxelles, Belgium.

Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Suez University, Suez, Egypt.

Also at British University in Egypt, Cairo, Egypt.

Also at Ain Shams University, Cairo, Egypt.

Also at Helwan University, Cairo, Egypt.

Also at Université de Haute Alsace, Mulhouse, France.

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

Also at Tbilisi State University, Tbilisi, Georgia.

Also at Ilia State University, Tbilisi, Georgia.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.

Also at University of Hamburg, Hamburg, Germany.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.

Also at Institute of Physics, University of Debrecen.

Also at Indian Institute of Science Education and Research, Bhopal, India.

Also at Institute of Physics, Bhubaneswar, India.

Also at University of Visva-Bharati, Santiniketan, India.

Also at University of Ruhuna, Matara, Sri Lanka.

Also at Isfahan University of Technology, Isfahan, Iran.

Also at Yazd University, Yazd, Iran.

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Also at Università degli Studi di Siena, Siena, Italy.

Also at Purdue University, West Lafayette, USA.

Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.

Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.

Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico.

Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.

Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at University of Florida, Gainesville, USA.

Also at P.N. Lebedev Physical Institute, Moscow, Russia.

Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at INFN Sezione di Roma, Università di Roma, Roma, Italy.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Also at National and Kapodistrian University of Athens, Athens, Greece.

Also at Riga Technical University, Riga, Latvia.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

Also at Istanbul Aydin University, Istanbul, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Cag University, Mersin, Turkey.

Also at Piri Reis University, Istanbul, Turkey.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Marmara University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Istanbul Bilgi University, Istanbul, Turkey.