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Abstract 

What if you could affect both neuroplasticity and human cognitive performance by 

parametrically modulating neural oscillations?  Ongoing neuronal activity is susceptible to the 

modulation of synaptic activity and membrane potentials.  This susceptibility leverages 

transcranial alternating current stimulation (tACS) for neuroplastic interventions.  Through 

neuromodulation of phasic, neural activity, tACS presents a powerful tool for investigations of 

the neural correlates of cognition alongside other forms of transcranial electric stimulation (tES) 

and noninvasive brain stimulation (NIBS).  The rapid pace of development in this area requires 

clarification of best practices.  Here, we briefly introduce tACS dogma and review the most 

compelling findings from the tACS literature to provide a starting point for the use of tACS 

under research conditions.    
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1.  Introduction 

Technological and ethical constraints have forced investigations of human cognition to rely upon 

usually non-invasive electrophysiology and neuroimaging techniques to reveal the neural 

correlates of perceptual, cognitive and behavioral functions.  Investigating the causal 

neurophysiology subtending function requires recent methodological innovations to advance 

neuroscience.  Transcranial alternating current stimulation (tACS) has emerged as a unique tool, 

given its particular advantages.  An evolution on clinical transcranial electric current stimulation 

(tES), tACS is a non-invasive technology that helps engender neuroscientific results with greater 

inferential force. 

 Consensus on tACS methods have been slow to emerge.  While the absence of a 

methodological gold-standard risks unreliable results and hinders systematic improvement of the 

field, rigorous tACS methods have emerged.  This review’s criterion for inclusion of scholarship 

considered a growing agreement on the importance of controls: principally, subject-blinding and 

either sham or active sham conditions.  More detailed reviews of tACS methods have been 

compiled elsewhere (Neuling et al., 2016; Schutter & Wischnewski, 2016; Veniero et al., 

2015).  This mini-review is intended to highlight: 1. key advantages; 2. assumptions; and 3. 

protocols.    

 

2.  The advantages of tACS: The tACS current, physiological control, and causality  

2.1  The recent expansion of neuromodulation research 
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Recent interest in neuromodulation traces partly to the desire to investigate cognitive function in 

a parametrically rigorous manner.  Unlike other forms of neuromodulation, tACS enables the 

manipulation and entrainment of intrinsic oscillations through sinusoidal currents (Antal & 

Paulus, 2013; Paulus, 2011; Thut et al., 2011).  The phasic profile of a tACS current alternates 

regularly between a positive and negative voltage.  Alternatively, in transcranial direct current 

stimulation (tDCS), the current describes a monophasic, distinctly non-oscillating baseline 

voltage.  Endogenous activity is either modulated by depolarization (anodal) or hyperpolarization 

(cathodal), in a global flow of current that supplies electrons to the anodal electrode (promoting 

endogenous oscillations) and retracts electrons from the cathodal electrode (suppressing 

endogenous oscillations) (Song et al., 2014).  

In tACS, an oscillating current rhythmically reverses electron flow.  Averaged over an 

extended temporal-window, unlike tDCS, the tACS current omits any directional voltage 

component.  In oscillating tDCS (otDCS), oscillations ride a directional component 

(Guleyupoglu et al., 2014).  Transcranial random noise stimulation (tRNS) is used to inject an 

alternating current of bounded stochasticity (Saiote et al., 2013). While different stimulation 

protocols have not fully clarified the neurophysiological mechanism of each method, it is now 

settled that oscillatory states anticipate cognitive phenomena (Schutter & Wischnewski, 2016; 

Donner & Siegel, 2011; Wang, 2010).   

 

2.2  Physiological advantages (parametric modulation of neural oscillations): 

The most prominent mode of neuroplasticity, long-term potentiation (LTP) (Lee and Silva, 

2009), is informed by spike-time dependent neurophysiology.  One fundamental advantage of 

tACS is the physiological entrainment of large populations of cells.  During entrainment, an 
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endogenous oscillation synchronizes with exogenous, rhythmic stimulation.  Investigators have 

effectively used rhythmic photic stimulation to assay visual cortices for susceptibility to 

entrainment (Adcock et al., 2012; Poleon & Szaflarski, 2017; Adrian & Matthews, 1937).  This 

suggests that frequency and phase information are fundamental variables in neural function 

(Herrmann et al., 2016).  tACS can bypass sensory stimulation entirely, by instead inducing 

entrainment through an exogenously applied, nearly imperceptible alternating current. Clarifying 

the causal relationship between cognitive function and oscillatory activity will require the 

combination of behavioral (Kanai et al. 2008; Feurra et al. 2011; Laczo´ et al. 2012) and 

electrophysiological (Zaehle et al. 2010) methods (Thut, 2011; Herrmann et al., 2014).  This 

joint approach requires the testing of clear physiological assumptions.    

 tACS is capable of parametrically modulating neurophysiology.  Endogenous oscillations 

are constituted by interactions with oscillatory inputs from near and eccentric neural sources 

(Herrmann et al., 2016; Romei et al., 2016; Vosskuhl et al., 2016).  These aggregate neural 

oscillations dynamically stabilize to form a set of functional bands of activity that are recordable 

with EEG and susceptible to entrainment (Herrmann et al., 2016; Romei et al., 2016; Thut et al., 

2011).  It remains an open question whether our neurology is predisposed to replicate natural 

frequencies in the environment, or if exogenous frequencies alter connectivity through classical 

mechanisms of spike time dependent plasticity (STDP), or both (Kasten et al., 2016; Vossen et 

al., 2015; Zaehle et al., 2010).   

 

 

 

 

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/138834doi: bioRxiv preprint first posted online May. 17, 2017; 

http://dx.doi.org/10.1101/138834
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/138834doi: bioRxiv preprint first posted online May. 17, 2017; 

http://dx.doi.org/10.1101/138834
http://creativecommons.org/licenses/by/4.0/


2.3  tACS facilitates potentially causal inferences: 

Frequently, (dependent) electrophysiological variables have indexed (independent) cognitive 

processes (Herrmann et al., 2016).  NIBS methods enable investigators to reverse these 

dependencies where observational-correlational methods cannot (Poldrack, 2006).  Furthermore, 

EEG research has covered much terrain in the oscillatory phenomenology of cognition and 

behavior.  Well defined cognitive functions are commonly attributed to a subset of specific 

oscillatory features and frequencies.  Buoyed by such a priori electrophysiological evidence, 

investigators use tACS to extend causal explanations of (independent) electrophysiological 

variables to (dependent) cognitive processes.  Thus, measured behavior becomes a function of 

parameterized electrophysiology. 

 

2.4  Recent focus on determining behavioral causality from neurophysiology 

Causal interpretations of neural systems and functional circuitry demand neuromodulation at 

multiple scales of cortical network activity (Ruffini et al., 2014).  While the imaging of voltage-

related neurophysiology with multi-photon microscopy is still nascent, optogenetics and invasive 

electrophysiology (Fröhlich & Schmidt, 2013; Kuki et al., 2013; Anastassiou & Koch, 2015) 

enable causal investigations of large-scale dynamics in animal models.  Invasive investigation 

through human electrophysiology, however, have determined local entrainment to alternating 

currents (Amengual et al., 2017).  Clinical pursuit of effective connectivity has targeted 

functional circuits by registering intracranial oscillations to tractography (Elias et al., 

2012).  Functionally, deep brain stimulation of the human hippocampus has revealed the effect of 

50 Hz currents on memory performance (Ezzyat et al., 2017).  Noninvasively, neuroplasticity is 

being induced across multiple functional domains (Hameed et al., 2017; Bolognini et al., 
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2009).  Also, tACS appears more effective than tDCS for network entrainment (Ali et al., 2013) 

and, in an animal model of epilepsy, closed-loop tACS appears to mitigate spike-wave effects 

(Berényi et al., 2012).  Thus, investigations of neural systems are active across a range of scales, 

models and contexts.   

 

2.5  EEG-tACS and feedback-controlled studies enable stronger inferences 

Feedback-control enables precise control of exogenous and endogenous oscillations.  Thus tACS 

is now combined with other NIBS, as well as EEG, to sharpen experimental inferences (Boyle & 

Fröhlich, 2013; Lustenberger et al., 2016; Raco et al., 2016; Roh et al., 2014; Kanai et al., 2010).  

While many EEG-tACS experiments have recorded subjects’ pre- and post-stimulation EEG to 

avoid signal artifacts (Veniero et al., 2015; Zaehle et al., 2010), recent refinements to 

simultaneous EEG-tACS better elucidate endogenous oscillations (Neuling et al., 2017; Roh et 

al., 2014).  While EEG-tACS enables sub-millisecond temporal resolution (tenOever S., 2016; 

Neuling et al., 2015), concerns about signal artifacts persist (Noury et al., 2016).  Closed-loop 

tACS-TMS protocols also enable parametric adjustment of magnetic stimulation to instantaneous 

physiology (Thut et al., 2017).  Raco et al. (2016) developed a closed-loop protocol wherein 

instantaneous tACS-phase triggered TMS pulses.  While some research questions do not demand 

online protocols, future combination of these techniques may enable stronger causal attributions 

to oscillations (Frohlich; Herrmann et al., 2016).   
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3.  Methodological considerations for rigorous tACS experiments 

The methods described in this review represent early forays into neuromodulation using tACS. 

Valid results require that all modes of NIBS be performed while taking precautions to increase 

replicability and validity.   

 Subject-awareness of condition assignment must be avoided through established blinding 

methods.  While tACS emits no sound to cue stimulation, blinding should be enforced by 

subtending subject-specific stimulus detection thresholds for both visual and somatic percepts.  

Rostral electrode montages induce phosphenes more easily and at lower amplitudes (Schutter, 

2016; Neuling, 2012?). With active shamming, broader comparisons are enabled by changing 

montage or frequency while constraining all remaining parameters (Fuerra et al., 2011; Mehta et 

al., 2015; Schutter, 2016).  Both sham and experimental currents should integrate comparable 

ramping periods (Woods et al., 2016).  Future investigations may additionally facilitate 

replicability by implementing double-blinding through fully automated tACS protocols.   

 Given the neuro-oscillatory effects of visual information, context is particularly important 

in tACS experiments, where subjects’ endogenous states are the focus of investigation (Reato et 

al., 2013).  Lighting conditions can influence detection-thresholds for tACS-induced phosphenes 

(Kanai et al., 2008; Paulus, 2010; Neuling, 2013).  While some suggest that tACS electric fields 

fall below published thresholds of retinal sensitivity, challengers suggest that the dark adaptation 

of the retina contributes to the frequency at which retinal excitation occurs (Herrmann, 2013; 

Kanai et al., 2008; Neuling, 2013; Paulus, 2010;).  tACS can also modulate individual alpha 

frequency (IAF).  Eyes-closed EEG states are marked by high baseline alpha-band power 

(Herrmann et al., 2016).  Thus, predictably, Neuling et al. (2013) used within-band tACS to 

increase IAF power, specifically for eyes-open conditions.  Replicable tACS results thus require 
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investigators to treat neuromodulation as a function of contextual predictors of ongoing brain 

states. 

 While tACS protocols vary significantly, general refinements, optimal protocols and 

function-specific parameters have emerged (Frohlich).  To avoid visual artifacts while targeting 

rostral cortical regions, investigators can improve the locality of currents with “ring” electrode 

montages.  Here, a single stimulation electrode is encircled by four reference electrodes (Helfrich 

et al., 2014).  Many experiments predetermine stimulation frequency for all subjects (Moisa et 

al., 2016; Riecke, 2016).  Between-subject variability in the bounds of EEG bands, such as 7-12 

Hz alpha, have precipitated subject-specific stimulation frequencies, determined by peak band 

power (Mehta et al., 2015; Herrmann et al., 2016).  Reference electrode montage is also crucial 

to achieve desired current densities and stimulation.  Mehta et al. (2015) compared entrainment 

of peak physiological tremor with contralateral reference electrodes as well as extracephalic 

electrodes placed on either ipsilateral or contralateral shoulders.  They determined that only the 

contralateral extracephalic reference montage entrained peak physiological tremor (Mehta et al., 

2015).  Additionally, multi-electrode montages allow multiple currents to be applied in- or out-

of-phase, enabling investigation of inter-hemispheric coherence (Struber et al., 2014).   

 Another methodological dimension is subject experience.  Before initiating an 

experiment, experimenters should address subjects’ anxieties about the electrical current through 

brief exposure.  Humane precautions may preempt artifacts in both oscillatory and behavioral 

data, arising from experimentally non-salient autonomic arousal (Bonnet & Arrand, 2001).   

 Finally, subjects’ safety and the continued refinement of tACS methods require continued 

vigilance for potential behavioral changes that may persist beyond post-stimulation 

measurements.  Parameter-dependent investigations into these aftereffects continue to emerge 
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(Matsumoto & Ugawa, 2017; Herrmann, 2016; Veniero et al., 2015; Wach et al., 2013; Neuling, 

2013; Antal et al., 2008).  

 

 

4.  Target and task-specific tACS  

4.1  Attention 

tACS has been of interest to direct investigations of endogenous and exogenous attention.  

Hopfinger et al., (2016) investigated the effects of alpha and gamma tACS on endogenous and 

exogenous attention by comparing subjects’ performance on two spatial cueing tasks.  In their 

study, 40 Hz gamma tACS had a facilitative effect on endogenous orienting, but no significant 

effect on exogenous orienting, suggesting a critical role of low gamma in attentional 

disengagement and reorientation (Hopfinger et al., 2016).  

 

4.2  Perception research 

Using EEG, investigators have pursued the oscillatory correlates of perceptual phenomena such 

as the ventriloquism effect (Kumagai & Mizuhara, 2016), the double-flash illusion (Cecere et al., 

2015) and mirrored social embodiment (Oberman et al., 2005; Raymaekers, 2009).  Leveraged 

by common electrophysiology, tACS has demonstrated its utility for perceptual investigations. 

 There is growing evidence of the consequences of tACS on audition (Riecke, 2016; 

Baltus & Herrmann, 2016).  By applying a 1000 µA DC current, described by an approximately 

425 µA, 10 Hz component, Neuling et al., (2012) found a causal relationship between oscillatory 

phase and auditory signal-detection.  While this study was not a pure instantiation of tACS, other 

investigations of oscillations and audition have demonstrated a functional role of alpha (Weisz et 
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al., 2011) and delta/theta frequencies (Riecke et al., 2015).  Speech perception has also been 

effected with 40 Hz tACS (Rufener et al., 20161; Rufener et al., 20162) 

 Protocols specifically targeting the visual cortex have faced significant challenges from 

reviewers despite innovations in tACS montage.  While some have suggested posterior 

montages, for example active at Oz and referenced to Vertex (Cz), purely non-retinal stimulation 

of the visual cortex remains somewhat contentious (Paulus, 2013; Schutter, 2016).  Yet, while 

the targets and corresponding montages of multiple, effective tACS experiments have applied 

montages anterior to the occipital cortex, the induction of retinal phosphenes has not emerged as 

a significant confound of experimental results (Pogosyan et al., 2009; Marshall et al., 2006; 

Kirov et al., 2009; Kanai et al., 2010).  Rigorously considered implementation of tACS currents 

is compatible with controlled neuroscientific investigations. 

In the visual domain, investigators have successfully modulated motion perception 

(Helfrich et al., 2016; Helfrich et al., 2014; Strüber et al., 2013), mental rotation (Kasten & 

Herrmann, 2017), visuo-motor coordination (Santarnecchi et al., 2017), and induced phosphenes 

(Kanai et al., 2008) -- the perception of light that is purely neural and non-photic in origin.  The 

tACS literature pays significant attention to controlling for phosphenes and ensuring that subjects 

experience experimentally useful phosphenes in a parameterized manner (Schutter, 2016).  Care 

should be taken to determine subject-specific parameters for phosphene induction thresholds and 

to perform experiments at or below these thresholds (Kanai et al., 2008).  Many investigators 

additionally query subjects for phosphene percepts (Schutter, 2016; Strüber et al., 2014; Antal et 

al., 2008).  Investigators of tACS-induced phosphenes have compared current profiles in light 

and dark conditions (Schutter, 2016).  Kanai et al. (2008) induced qualitative changes in 

phosphene perception, such as differences in position, orientation, diffusivity, and temporal 
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stability (flickering).  In lighted conditions, stimulation in the beta range (20 Hz) induced low 

phosphene-detection thresholds and qualitatively stronger phosphenes, whereas in dark 

conditions, stimulation in the alpha range (10 Hz-12 Hz) induced the strongest 

phosphenes.  Thus, the frequency range between 10 to 40 Hz (Paulus et al., 2011; Moliadze et 

al., 2010a) risks phosphene interference.  Beyond phosphenes, Herrmann et al. (2014) 

demonstrated that the perceived direction of apparent motion can be modulated in an ambiguous 

motion task by applying bilateral, anti-phase tACS in the gamma band. 

 

4.3  Motor function 

tACS has been used to investigate motor enhancement, learning and memory.  While appropriate 

montages at C3/C4 in the international 10-20 system target the contralateral limb, motoric 

regions of interest exist outside of the precentral gyrus.  A tACS-fMRI investigation revealed 

that behavioral changes positively correlated with BOLD activity in M1 but negatively correlated 

with activity in dorsomedial prefrontal cortex, a region regarded as a locus of executive motor 

control (Moisa et al., 2016).  Brinkman et al. (2016) compared alpha and beta tACS to 

investigate movement selections.  Enhanced movement acceleration and velocity have been 

achieved with gamma band entrainment over primary motor cortex (M1) (Moisa et al., 2016) and 

sensorimotor integration with beta tACS (Guerra et al., (2016).  It was determined that alpha-

band tACS could cause an almost 40 min decrease in corticomuscular coherence, an established 

measure of functional coupling between M1 and musculature (Wach et al., 2013).  While motor 

learning improved with application of 10 Hz tACS (Antal et al., 2008), with similar results 

obtained at higher amplitudes (Nitsche, Liebetanz, et al., 2003), motor memory was enhanced by 

applying tACS during sleep (Fröhlich et al., 2016).   
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4.4  Memory, learning and higher cognition 

Investigations of memory, learning, and higher cognitive functions have been attempted.  

Notably, investigations of forebrain function should consider visual artifacts while using rostral 

montages.  Performance on visual memory-matching tasks compared in-phase, bilateral, theta-

band stimulation to anti-phase stimulation.  In-phase theta was found to reduce reaction times on 

a visual memory-matching task, whereas anti-phase degrades performance and increased RTs 

(Polania et al., 2012).  Alekseichuk et al., (2016) found that spatial working memory relies upon 

theta-gamma, cross-frequency coupling.  Also, in an experiment applying feedback-controlled 12 

Hz tACS stimulation during sleep, there was no significant increase in declarative memory 

consolidation, despite increased motor memory consolidation and enhanced sleep spindle 

activity (Fröhlich et al., 2016).  In an investigation of reversal-learning, a task during which 

subjects are trained on a discrimination task followed by periods of target-distractor reversals, 

participants receiving theta (6 Hz) stimulation over the frontal cortex experienced faster reversal 

learning (Wischnewski et al., 2016).  They additionally experienced an increase in risk-taking 

behavior compared to sham participants.   

 

4.5  Risk-taking 

Interhemispheric phase-difference appears to affect executive decision-making.  An investigation 

of risk-taking using the Balloon Analog Risk Task found that theta (6.5 Hz) stimulation over the 

left hemisphere is capable of increasing risk-taking behavior (Sela et al., 2012).  A bi-frontal, 

anti-phase protocol used in an investigation of reversal-learning by Wischnewski et al., (2016) 

should also be noted for an unexpected effect on risk-taking.   
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5  Summary and future directions 

Our goal has been to clarify the benefits of tACS to neural investigations.  Despite many 

methodological advances, unraveling the neurophysiological and oscillatory complexity of 

cognitive function demands investigation at multiple scales. 

Investigators studying consciousness through psychophysics suggest the vital role played 

by systems-level information integration, such as audio-visual integration (Bhattacharya et al., 

2002; Shams et al., 2000).  While deep-brain integrators of neuronal information have been 

revealed in animal models (Fetsch et al., 2013), causal determinations have been significantly 

more difficult in humans (Beauchamp et al., 2004).  Yet, the electrophysiological literature 

suggests the emergence of perception, cognition and consciousness from the integration of 

endogenous, oscillatory information. 

Neuromodulation has widespread potential.  Investigators may elucidate functional roles 

of oscillatory, neural information.  The role of phase and frequency information has already been 

documented in neuropathologies such as schizophrenia (Perez et al., 2017), epilepsy (Chu et al., 

2017; Nariai et al., 2017), and Parkinson’s disease (Cozac et al., 2016; Latreille et al., 2016).  

Given oscillatory differences between medically induced coma, sleep and awake states, could 

tACS augment perioperative EEG for anesthesia dosing, confirming unconsciousness, and 

facilitating recovery from anesthesia?  Industry may anticipate applications in online modulation 

of cognitive states for human-operators, as well as brain-computer interfaces.  Attention-

modulation would have wide-spread industrial applications by facilitating participants’ 

integration of environmental cues and information.  

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/138834doi: bioRxiv preprint first posted online May. 17, 2017; 

http://dx.doi.org/10.1101/138834
http://creativecommons.org/licenses/by/4.0/


 Here, we have introduced rigorously controlled tACS protocols, methodological 

precautions and guidelines for future tACS implementation. Recent developments in tACS 

scholarship, only partially presented here, foreshadow the intersection of numerous 

neurocognitive specializations, through the multibeneficial lens of oscillatory activity.  
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