PRESIDENTIAL COATTAI LS IN HISTORICAL PERSPECTIVE

R. Lee Calvert
Washington University
and California Institute of Technology

and

J. Arthur Ferejohn
California Institute of Technology
ABSTRACT

It is agreed that the degree of association between the presidential and congressional election results is an important "Constitutional" variable. But the significance of this association depends on whether it is due to extraneous forces or to the personal attractiveness of the president. In this paper we give a statistical basis for determining the dependence of the vote for members of the House on the attractiveness of the presidential candidate. Further, it is shown that their dependence has decreased rather sharply and is currently at a historical low point.
I. INTRODUCTION

Because of their fear that tyrannical majorities would act impetuously (and in spite of Hamilton's counsel in Federalist #22, to avoid giving a minority a check on the majority), the founding fathers imposed constitutional requirements for extraordinary majorities in order to enact legislation. And if these constitutional requirements were not sufficient to prevent the enactment of ill-considered laws, successive congresses have in effect imposed even more stringent requirements on the formation majorities through the development of the committee systems and various other aspects of the legislative process. Indeed the American system of government has gone very far in putting "ambition against ambition" for the purpose of enforcing a gradual and deliberate legislative process.

In fact, most observers would probably agree that the only ways that durable positive legislative majorities (i.e. ones that can enact rather than merely block legislation) can be formed is through the actions of the leaders of majority party together with the president. To be sure, the president if often of the majority party and, when he is, is usually its effective leader; much of the time, then, the cohesive forces in American politics are in a single pair of hands. For the most part the present discussion shall be concerned with the president as the one constitutional figure who is most interested in building and maintaining legislative majorities. But whether these cohesive forces are unified or not, there is strong evidence that their strength is decreasing at a measureable rate and that the fundamentally immobile character of the American constitution is becoming more and more dominant.

To the extent that leaders of the majority party have ever been able to develop and maintain the extraordinary majorities required for legislation in the American system, they have done so by shaping the incentives of a large number of members of Congress in such a way that each found it in his or her own interest to act in the way that party leaders found desirable. This has never been a simple task in our system and we reserve a special place in our mythology (and our text books) for those leaders who have succeeded in this activity — even for a short time. The honor roll of presidents is short but familiar: Wilson in his first year, Roosevelt's hundred days, Johnson during the pre-Vietnam period. Less well known but perhaps more impressive were such party leaders as Speaker Reed who was able to make use of much more limited resources in building and maintaining legislative majorities.

Of course, one reason we honor those of our leaders who have been able to overcome the constitutional reluctance to act is that it is very difficult under most circumstances to convince any substantial body of legislators that they have a common interest in accomplishing a particular legislative program. But if there is one way to produce the appropriate incentives, it is by exploiting the fact that most
congressmen wish to be re-elected. And so those leaders who have succeeded in maintaining programmatic coalitions in the Congress have usually done so by convincing their colleagues on Capitol Hill that the success of a legislative program would improve their chances to obtain their goals.

The ability of a president (or a party leader) to convince his congressional peers that their electoral fates turn on his success in office depends crucially on the anticipated behavior of the electorate. In this sense, a very real part of the "effective constitution" (as apart from the written document) of American politics resides in the heads of the voters. To the extent that voters base their voting decisions for members of Congress on similar criteria to those they use in making their vote decision for president, or, base their congressional vote directly on their presidential vote, they tie the interests of the member of Congress to that of the president and thereby enable him to assemble relatively durable legislative coalitions. Here we shall show that the tendency of the electorate to associate the presidential and congressional vote is an important constitutional variable. It can exercise a major effect not only on the incentives facing members of Congress but also helps to determine who is sitting in Congress and who will therefore decide the fate of the president's legislative program.

In this paper we examine a part of what we have called the effective constitution. We utilize aggregate election returns for the post-Civil War period to determine the degree to which voters have been willing to associate their presidential and congressional votes. In part II we introduce a simple model of vote determination that enables us to measure the strength of what we may call presidential coattails and to disaggregate it into two components: the behavioral propensity to associate the congressional and presidential vote; and, the way in which the aggregate vote for a major party for the House of Representatives is translated into seats in that House. We separate the aggregate data into periods corresponding roughly to what have been called party systems and show that there has been a dramatic change in the extent to which voters have connected their votes for Congress and the president.

In section III we introduce a more sophisticated model of vote determination — one closely related to the model developed by Kramer in his seminal article on the effect of short run economic fluctuations on the vote for Congress [1971]. While there are rather severe limitations in the number of observations available for this analysis we are able to produce results that are similar to those in section II under quite different specifications. Furthermore these results are shown to be fairly insensitive to various aspects of model specification. Section IV contains a discussion of the results.
II. A SIMPLE MODEL THAT PERMITS THE ESTIMATION OF PRESIDENTIAL COATTAILS

In this paper we shall distinguish two ways in which citizens might determine their congressional vote during presidential elections. A citizen might make a determination of how to cast his or her vote for president by utilizing information about the candidates as well as his or her own partisan preferences and then make the congressional vote decision depend directly on that prior decision.

In this model -- the pure coattail vote model -- the i^{th} citizen's voting decision for the House candidate could be written as follows

$$H^i = \alpha + \beta P^i + \xi^i$$

where H^i is the vote for House candidate P^i is the vote for Presidential candidate and ξ^i are the unmeasured influences that affect the citizen's decision.

For convenience we might think of H^i and P^i as coded either 1 (for Democratic) or 0 (for Republican) with nonvoters eliminated from the analysis. We shall interpret β as the estimated (behavioral) propensity for the citizen to associate his or her vote for representative to the vote for president.

A second model -- which we shall entitle the simultaneous determination model (SDM) -- has the characteristic that there is a list of measured variables, labeled $x^i = (x_{1i}^i, x_{2i}^i, \ldots, x_{mi}^i)$ which may enter into the determination of either the vote for the president or the vote for the House. It could be written as follows

$$H^i = \alpha_H + \sum_{j=1}^{m} \beta_{Hj} x_{ji}^i + \xi_{H}^i + \gamma \eta^i$$

$$P^i = \alpha_P + \sum_{j=1}^{m} \beta_{Pj} x_{ji}^i + \xi_{P}^i + \eta^i$$

where η^i is an unmeasured variable standing for the president's personal attractiveness as distinct from the relative attractiveness of his record, his issue stands, or whatever else might go into the x^i vector. γ is the proportion of that presidential attractiveness that carries directly over to the House candidate would constitute the president's coattail vote. Once again ξ_{H}^i and ξ_{P}^i stand for forces that are outside the model.

In this paper we shall remain agnostic as to which of these models constitutes a better representation of voter decision processes. We shall work with both and claim that if they give qualitatively similar results we should be satisfied that the choice of a model of vote determination is immaterial to the basic conclusion of the paper.

A presidential candidate's coattail influence on the distribution of House seats can be written as follows

$$S_H^H = \alpha_H + \beta_y P + \nu$$
where \(s^H_t \): is the proportion of House seats held at times \(t \) by members of the presidential candidate's party of those seats held by one of the two major parties

\[y^P_t : \text{proportion of the two party vote for president received by the presidential candidate} \]

In equation (4) \(\beta_1 \) will constitute a measure of "responsiveness" or the degree to which the vote received by the presidential candidates translates into House seats for his party.

As long as the influence of \(y^P_t \) on \(s^H_t \) is through \(y^H_t \), \(\beta_1 \) in equation (4) is decomposable into \(\beta_2 \times \beta_3 \) where \(\beta_2 \) and \(\beta_3 \) may be written as follows

\[s^H_t = \alpha_2 + \beta_2 y^H_t + \nu^2 \]

and

\[y^H_t = \alpha_3 + \beta_3 y^P_t + \nu^3 \]

where \(y^H_t \) is the proportion of the two party vote for the House received by the party of the presidential candidate.

In this case \(\beta_2 \) is an estimate of the rate at which the vote for the House translates into seats (or, what is sometimes called the swing ratio) and \(\beta_3 \) is an estimate of what we have termed the behavioral propensity of voters to associate their congressional vote with their presidential vote.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Period} & \beta_3 & \beta_2 & \frac{\beta_2 \times \beta_3}{\beta_3} \\
\hline
1868-1896 & \cdot95 & 4.40 & 4.17 \ (4.18) \\
1900-1928 & \cdot57 & 1.95 & 1.13** \ (1.11) \\
1932-1944 & \cdot81 & 3.20 & 2.60 \ (2.51) \\
1948-1964 & \cdot37 & 2.40 & \cdot70 \ (0.89) \\
1968-1976 & \cdot19 & 2.02 & \cdot56 \ (0.38) \\
\hline
\end{array}
\]

* Except for the postwar WWII period all correlations are above \(.9 \).

** Note that if 1912 is omitted, the responsiveness estimate drops to \(\cdot77 \), and the swing ratio to \(1.41 \). The behavioral connection remains at \(\cdot57 \).

In Table 1 we report estimates of the parameters of equations (4) to (6) for the periods 1868-1896, 1900-1928, 1932-1944, 1948-1964, and 1968-1976. The first period constitutes a useful benchmark for assessing the coefficients because the use of partisan ballots had the effect of making split ticket voting extremely difficult and therefore quite rare. In a sense the institutions associated with the ballot box in the postbellum period ensured a close connection between the presidential and congressional votes. It is not surprising, therefore, that \(\beta_3 \) for this period is nearly \(1.0 \). What is remarkable is that the New Deal period witnessed a return of this coefficient to \(\cdot81 \) — fairly near its pre-1900 peak—even though in this period the locus of the connection between the presidential and congressional vote was to be found in the discretionary behavior of the electorate.
In fact there is considerable variability in the estimates of β_3 which suggests that voters in different political climates found it useful to relate their congressional and presidential votes in different manners.

On the other hand the swing ratios (β_2) show somewhat less variation than might have been expected. As Tufte [1973] reported, this ratio was quite high before the turn of the century and fell off to approximately its present level of 2.0 during the 1900-1928 period. It returned temporarily to half its postbellum level during the New Deal period but has regressed during the post World War Two period.

Interestingly, the current low level of responsiveness appears to be due more to the abysmal level of the behavioral connection than to the swing ratio. This measure, while it is known to be somewhat sensitive to the number of competitive congressional seats, has not declined substantially during the post war period while responsiveness continues to seek new depths. Perhaps the fact that the swing ratio responds to other things (such as retirements) than the proportion of competitive seats has conspired to keep it at an artificially high level. In this case we might warn future presidential aspirants to expect still further drops in responsiveness so that, if the speculations put forward in the introduction are valid, still less cooperation from Congress may be in prospect for White House residents.

The reader may object to the fact that very small number of observations enter into the regressions reported in Table 1, or to the model which formed the basis for these estimates. If citizens decide how to vote both in House races and presidential contests by making direct use of such variables as party identification or performance evaluations of the incumbent president then the coattail estimates produced by the present model might be exaggerated. The reason for this is that fluctuations in a variable such as aggregate economic performance will in the present formulation only be able to influence the house vote through its impact on presidential voting. Thus if this variable has an impact on both the presidential and congressional vote it will appear as an increased behavioral propensity or as a coattail vote.

On the other hand, our interest here has been in the fluctuations of these estimates from one period to another and not in the absolute magnitudes of the coattail estimates. And it may be that from this standpoint the present model -- which has the virtue of consuming very few degrees of freedom in its estimation -- may give adequate information. In the next section we estimate a more sophisticated model of vote determination -- one which allows for performance evaluations and partisan affiliations to directly enter into the voting decisions for contests at the presidential and congressional level -- and we obtain similar qualitative results to those reported here.

III. ESTIMATION OF THE COATTAILS VOTE USING THE SIMULTANEOUS DETERMINATION MODEL

Kramer estimated several special cases of what we have called
the simultaneous determination model, for the period from 1896-1964.

It is written as follows:

\[(7) \quad y^H_t = \alpha^H + \sum_{j=1}^{m} \beta^H_j x^H_{jt} + u^H_t + \gamma y^P_t \]

\[(8) \quad y^P_t = \alpha^P + \sum_{j=1}^{m} \beta^P_j x^P_{jt} + u^P_t + \nu_t \]

where \(x^H_{jt}, \ldots, x^P_{jt}\) are variables which enter into the evaluation of the candidate of the incumbent party. In recent literature past economic performance, and presidential popularity have been employed as right hand side variables in these equations as have variables like incumbency status or time. \(y^H_t\) and \(y^P_t\) are the incumbent party percentage of the two party vote for the House and the President respectively, \(u^H_t\) and \(u^P_t\) are disturbances, and \(\nu_t\) is an unmeasured variable representing the relative personal attractiveness of the presidential candidate of the incumbent party. The exogenous variables utilized by Kramer include percent change in per capita monetary income, percent change in the price level, and change in unemployment (all changes were measured during the election year). In addition, he employed a trend term and a dummy variable for the incumbency of the president.

For purposes of estimation, Kramer assumed that \(\beta^H_j = \beta^P_j\) for all \(j\) and that \(u^H_t = u^P_t\) for all \(t\). While Lepper (1974) has subsequently provided some evidence which suggests that the first of these assumptions may be unwarranted (and certainly contemporary cross-sectional survey evidence supports Lepper's conclusion as well; Fiorina, 1979; Kinder and Kiewiet 1979), his second assumption has not yet been subjected to critical scrutiny.

For our purposes the most interesting of Kramer's results were those relating to what he called the coattails effect, \(\gamma\). He reported coattail voting estimates of 0, .20, and .30 depending on the particular specification employed. The higher estimates are obtained when a trend term is included. Even when a nonzero estimate was obtained, likelihood ratio tests indicated that one could not reject the hypothesis that \(\gamma = 0\).

In the present section we estimate the coattails effect within various subperiods and under various model specifications within the class of simultaneous determination models. We show that, not surprisingly, Kramer's assumption that the disturbances in equations (7) and (8) are perfectly correlated has the effect of minimizing the estimated coattail effect within this class of models. Even so, within some periods the coattail estimates under this specification are significantly nonzero. And, no matter which specification is employed, similar qualitative results emerge.

As did Kramer, we employed a maximum likelihood method to estimate the model parameters. We assume that \(u^P_t\) and \(u^H_t\) are distributed according to a bivariate normal distribution with means equal to zero, and the following variance — covariance matrix:

\[\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix} \]

In this case if we write

\[(9) \quad y^H_t - \gamma y^P_t = (\alpha^H - \gamma \alpha^P) + \sum_{j=1}^{m} (\beta^H_j - \gamma \beta^P_j) x^H_{jt} + u^H_t - \gamma u^P_t \]
we know that $\nu^H_t - \gamma \nu^P_t$ is normally distributed with mean zero and variance equal to $\sigma^2(1+\gamma^2-2\gamma \rho)$. If we assume, as Kramer did, that $\rho = 1$ then this variance is equal to $(1-\gamma)^2 \sigma^2$. And if as Kramer assumed $\beta^H_j = \beta^P_j = \beta_j^*$ for each j then (9) can be written as

$$
\frac{\gamma^H_t - \gamma \nu^P_t}{1-\gamma} = \frac{\alpha^H - \gamma \nu^P_t}{1-\gamma} + \sum_{j=1}^{P} \beta_j^* x_{j,t} + u_t
$$

In this special case Kramer was able to obtain maximum likelihood estimates of all the model parameters.

But the assumption that $u^P_t = u^H_t$ seems to us to be quite strong. It means that the forces which are left out of the vote determination equation for the House races are exactly the same as those left out of the presidential vote equation. We would prefer to leave open the possibility that the forces left out of the two equations may not be identical.

Equations (7) and (8) are an example of Zellner's "seemingly unrelated regressions" model [see Goldberger, 1964, pp. 246-248]; in that model the estimates of β^P_j and β^H_j are identical to the OLS estimates. If we assume that v is uncorrelated with u^H_t and u^P_t, the estimated between-equations covariance matrix for the total disturbances in equations (7) and (8) can be written as follows:

$$
\begin{bmatrix}
\sigma^2 & \gamma \sigma^2_v \\
\gamma \sigma^2_v & \gamma^2 \sigma^2_v
\end{bmatrix}
\begin{bmatrix}
\rho \sigma^2_v + \gamma \sigma^2_v \\
\rho \sigma^2_v + \gamma \sigma^2_v
\end{bmatrix}
= \sigma^2 + \gamma^2 \sigma^2_v
$$

where σ^2_v is the variance of the presidential voting equation's separate disturbance term. Since this model is underidentified we cannot simultaneously obtain estimates of all the model parameters. However, it is possible to determine the sensitivity of the maximum likelihood estimates of $\gamma(\rho)$ to variations in ρ by maximizing the equation's likelihood function for various fixed values of ρ. Thus, even though a point estimate of γ is not obtainable, we can estimate the range of $\gamma(\rho)$ and if this range is sufficiently small we will have learned something about the coattail effect. Our procedure, than, was to find the maximum and minimum values of γ that are obtained by varying ρ between -1 and 1.

It's useful to begin the analysis by showing how the SDM fits over the whole period from 1896 to 1976 for two cases: in Model I the right hand side variables are percent change in real per capita GNP (in the year preceding the election) R_t, and N_t, the "normal" vote of the party which holds the Presidency; the coefficient on N_t is restricted to be equal to 1.0. In Model II the same right hand side variables are used but the coefficient on N_t is unrestricted. The normal vote employed here is simply the average of the two party vote for the House over the previous three congressional elections and R_t is constructed from the NBER-Kendrich GNP Series before 1908 and the BEA GNP Series after that [see Long Term Economic Growth, 1860-1970, U.S. Bureau of Economic Analysis; and Statistical Abstract of the United States: 1975, U. S. Bureau of the Census, 1975]. Table 2 reports the approximate maximum likelihood range estimates of γ for the two models.
TABLE 2

ESTIMATES OF THE COATTAIL VOTE IN TWO SIMULTANEOUS DETERMINATION MODELS

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value of γ</td>
<td>.19</td>
<td>.25</td>
</tr>
<tr>
<td>Maximum value of γ</td>
<td>.53</td>
<td>.55</td>
</tr>
</tbody>
</table>

The minimum values of γ are obtained by employing Kramer's assumption that $\rho = 1.0$. The maximum values of γ (which are significantly different from zero at the .01 level) are achieved when we assume that that $\rho = -1$. While it is not surprising that γ varies inversely with ρ, it is interesting that the range of values that the coattail parameter assumes is fairly small relative to the range of assumptions we entertain about possible values for ρ.

While it is informative that the range of $\gamma(\rho)$ is relatively small, it is also useful to see that $\gamma(\rho)$ is quite insensitive to changes in ρ for ρ less than .5. Above that level $\gamma(\rho)$ drops fairly rapidly as ρ increases. For example, if ρ lies between -1 and .5, the range of $\gamma(\rho)$ is .41 to .53 for Model I and .46 to .55 for Model II, while the range of $\gamma(\rho)$ for ρ between .5 and 1.0 is .19 to .41 for Model I and .25 to .46 for Model II. This suggests that if Kramer's hypothesis that $\rho = 1$ is off by a small amount the true value of γ could be substantially higher than the ones he reports.

We can also examine the estimates of the impact of the percent change in real per capita income on the vote for the incumbent party under the hypothesis that $\beta^R = \beta^P$. In this case estimates of the parameters and their standard errors may be obtained by Kramer's method. We found that, under Kramer's assumption ($\rho = 1.0$), models I and II both yield estimates of the effect of change in real per capita GNP of approximately .315 with standard errors of less than .15. If, on the other hand $\rho = -1$, then both estimates are approximately about .15 with standard errors of .12 and .22.

We are, of course, primarily interested in the statistical analysis within electoral periods or "party systems." For the present we confine ourselves to three such periods: 1896-1928, 1932-1948, and 1952-1976. The small number of available observations restricts the number of exogenous variables that can be employed so that as above we estimate only Models I (with R_t and N_t as exogenous variables and the coefficient on N_t restricted to be equal to 1.0.) and II (which has no restrictions on the parameters associated with R_t and N_t). While these models are quite simple they yield estimates which are mutually consistent and which fit well with other information and with the results of the previous section. Thus, in spite of the small number of observations we feel fairly confident that the estimates of the coattail parameter within electoral regimes are informative and that they provide a useful perspective on changes in the relationship between the vote for Congress and the vote for the president.

In Table 3 we present estimates for both Model I and Model II of the maximum and minimum value of γ within each electoral period.
TABLE 3
THE RANGE OF THE COATTAIL PARAMETER WITHIN ELECTORAL PERIOD
FOR MODELS I AND II*

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896-1928</td>
<td>0.49-0.66</td>
<td>0.39-0.61</td>
</tr>
<tr>
<td>1932-1948</td>
<td>1.30-3.64</td>
<td>0.01-0.67</td>
</tr>
<tr>
<td>1952-1976</td>
<td>0.03-0.11</td>
<td>0.09-0.16</td>
</tr>
</tbody>
</table>

* Entries are the maximum and minimum values of γ which can be obtained by varying the choice of ρ between -1 and 1.

Evidently no matter which model is employed the coattail estimates are quite narrowly constrained in both the 1896-1928 and 1952-1976 periods. On the other hand, the estimated range for the New Deal period is quite wide for Model II and is implausible for Model I. Inspection of the residuals in this period indicates that not only is the correlation between R₉ and the vote for the candidates (congressional or presidential) of the incumbent party so high that relatively little variation remains in νᵦ + uᵦ or in γ νᵦ + uᵦ but the correlation between these two residuals exceeds .95. Thus, the estimate of γ is very sensitive to assumptions about these residuals and in particular to the choice of ρ. It is of some interest to describe in somewhat more detail for Model II the form of the relationship between the assumed value of ρ and the estimate of γ during the 1932-1948 period. We discovered that low values of γ are not at all robust to a departure of ρ from the value of 1.0. Indeed, if ρ takes on value below .5, then the estimate of γ will exceed .5. In other words only if Kramer’s assumption about the true value of ρ is nearly correct, can we conclude that the coattail effect during the New Deal period was small. Otherwise it appears to have been quite substantial.

Even though we suspect that the coattails effect in the New Deal period was large, this suspicion rests on a belief that ρ is not near 1; because this belief cannot be examined with the data at hand, we choose to set the estimates for the New Deal period aside for the present and focus on the periods in which the present technique yields more clearcut results.

Because the range estimates are relatively small in the 1896-1928 and the 1952-1976 periods, we can conclude that the coattail parameter has exhibited a rather sharp decline over time. And this conclusion appears to be robust against the variations in model specification examined in this section. Furthermore, and perhaps even more impressive is the fact that this conclusion — that coattail voting has shown a dramatic decline — agrees with the analysis of the previous section which was based on a totally different sort of model altogether. We should say, however, that the simultaneous determination models yield even lower responsiveness estimates in the present period than those given in the previous section.

It may be of some interest that in both these periods, no matter which specification is employed, the effect of percent change in real per capita income on the vote for the incumbent president’s party at either the presidential or House level is insignificant. However, as noted before, the estimated effect of this variable is
always greater at the presidential level. Perhaps the very small number of observations within each period produces imprecise estimates or perhaps, following Bloom and Price [1975] the form of the relationship should be recast. We cannot say. We content ourselves with the observation that, in spite of the small amount of data, the estimates of the coattails parameter are sufficiently precise to justify an unambiguous conclusion.

IV. DISCUSSION

The results reported here, especially those reported in section III, will be convincing only if the reader is convinced that Kramer's hypothesis that \(p = 1 \) is implausible. And, we must admit, no evidence has been presented in this paper which would bear directly on this proposition. If one wants to believe that \(p \) is very high then one may (continue to) believe that coattail voting was never very widespread and that no perceptible decline in its incidence has occurred. This conclusion, while it is consistent with one way of interpreting these data, seems quite wrong to us and so we have tried to come up with some evidence as to the likely size of \(p \).

The reader may have noticed that Model I in section III is identical to the model of vote determination introduced by Tufte in his book, *Political Control of the Economy* [1978, p. 119-122] except that he employed an explicit measure of the attractiveness of the incumbent presidential candidate. He utilized the open-ended candidate codes found in the ICPSR election studies to construct a variable that indexed the net personal popularity of the presidential candidate of the incumbent party. By employing this variable in place of \(v \), we were able to re-estimate Model I for the 1952-1976 period. Again, the model is an example of Zellner's "seemingly unrelated regression" model, so that we could obtain estimates of \(\beta^H, \beta^P, \) and \(\gamma \) directly by employing OLS on equations (7) and (8) under Tufte's hypothesis that the coefficient on \(N^H \) was equal to 1.0 in both equations. An estimate of \(p \) was found by correlating the residuals of the two equations.

Our results are similar to those reported by Tufte; differences are primarily due to the fact that we employed a different period (starting in 1952 rather than 1948) and used somewhat different measures of \(R \) and \(N^H \). For present purposes the parameter estimates of \(\gamma \) and \(p \) are of most interest. The estimate of \(\gamma \) turned out to be .167 with a standard error of .12 — not too different from the estimates reported above for the period from 1952 to 1976. The estimate of \(p \) was -.53. Thus there is some evidence that the disturbances in the two equations are actually negatively correlated during the recent period.

It is also of some interest to note that the estimated impact of the percent change in real per capita income on the vote for the presidential candidate of the incumbent party was 1.11 (with standard error of .67) while the corresponding coefficient in House vote equation was .054 (with the standard error, .34).
While we hesitate to draw too broad conclusions from the present analysis, it does seem likely that in the present period, at least, the disturbances in the presidential and congressional vote equations do not exhibit the strong positive correlation that is required if one wants to accept the smaller estimates of γ. If we employ the assumption that ρ is nonpositive in interpreting the estimates obtained in section III, the implied coattail estimate is no greater than .16 for the 1952-1976 period under either Model I or II. And, if we believe that the true value of ρ for the New Deal period (during which our estimates of γ were particularly sensitive to the value of ρ) is actually less than, say, .5, then the implied estimate of γ for this period (using Model II) would be at least .5. And in this case we could reasonably conclude that the decline in coattail voting has only only been substantial but that it has also been or rather recent phenomenon.

For the most part we have concerned ourselves with showing that, for a variety of plausible models of vote determination, the tendency of voters to connect their presidential and congressional votes has undergone a rather recent and substantial decline. We should like to point out, in addition, that the present evidence suggests that the decline in the responsiveness of the party composition of Congress to the presidential vote depends much more directly on this behavioral connection than on the swing ratio. Indeed, comparing the 1896-1928 period with the present one, (in section II) the swing ratio remained at approximately 2.0 while the behavioral connection (or in the terminology of section III, the coattails effect) exhibited a rather sharp decline. This conclusion stands in contrast with that advanced by Jacobson [-----] who recently argued that because of the decline in the number of competitive seats in the House of Representatives,

... relatively substantial changes in the distribution of popular forces - brought about by coattail or by other forces - may not be reflected in changes in party strength in the House. [p. 6]

We think that there is little evidence for this proposition in our data or, indeed, elsewhere. The swing ratio simply hasn't varied as much as the behavioral connection and will not account for the declining responsiveness of the composition of the House to presidential level for electoral forces.

The ability of American government to overcome the immobilist tendencies of the constitutional system has traditionally depended on the anticipated behavior of the electorate. As long as voters collectively exhibited a tendency to connect presidential electoral majorities to those of their congressional co-partisans (and as long as political actors believed that they did so), the winner of the presidential race tended to bring with him to the Congress a substantial majority of his own party, and, further, members of Congress of his party had some incentive to see him succeed with his legislative program. The evidence presented here suggests that this tendency has diminished so substantially that an incoming president cannot routinely expect either to have a majority of his party in both the House and Senate or that members of his own party will believe that their electoral fates depend very much on his success in office.

While our argument is based on aggregate national returns, it
is congruent with results obtained from the analysis of cross-sectional data on congressional districts. Burnham found, for example, that the number of congressional districts which elected a representative of one party while delivering a plurality to the presidential candidate of another party, underwent a tenfold increase in the 1920-1972 period [1975]. Using successive cross sections over the 1952-1976, Edwards [1980] discovered that the plurality of the presidential candidate has had a decreasing effect on the probability with which his congressional running mates are re-elected. Indeed, he reports that in both 1972 and 1976 there was no significant impact at all after controlling for the normal level of party strength in a district.

To be sure Burnham’s results as well as those reported by Edwards relate more to what we have called responsiveness than to the behavioral connection between the House and presidential votes. But they combine with our work to convey a substantially unified impression: House members need have less fear of the national electoral tides associated with a presidential race than they have ever had before.

The Constitutional system has in our view been profoundly altered. The behavioral basis of that system, a basis located in the beliefs and evaluations of the electorate, appears to have shifted so far that the principle cohesive forces in American national politics have been measurably weakened. And with this weakening, the capacity of the political system to act as an instrument to restructure social and economic reality may have been eroded.

REFERENCES

Edwards, George C. III. Presidential Influence in Congress (San Francisco: Freeman, 1980).

