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Abstract 

A social choice function is said to be implementable if and 

only if there exists a game form such that for all preference profiles 

an equilibrium strategy n-tuple exists and any equilibrium strategy 

n-tuples of the game yield outcomes in the social choice set. A social 

choice function is defined to be minimally democratic if and only if 

whenever there exists an alternative which is ranked first by n-1 

voters and is no lower than second for the last voter, then the social 

choice must be uniquely that alternative. No constraints are placed 

on the social choice function for other preference profiles. 

Using the usual definitions of equilibria for n-person games -

namely Nash and strong equilibria, it is shown here that over unrestricted 

preference domains, no minimally democratic social choice function is 

implementable. The same result holds in certain restricted domains 

of the type assumed by economists over public goods spaces. We then 

show that a different notion of equilibrium -- namely that of 

sophisticated equilibrium -- allows for implementation of democratic 

social choice functions also having further appealing properties, The 

implication is that models of democratic political processes can not be 

based on the standard equilibrium notions of Nash or strong equilibria. 
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I. INTRODUCTION 

Our purpose in this paper is to show that for � democratic 

social choice function and for the kinds of equilibria discussed by 

Maskin and others, mechanisms do not exist which will support 

acceptable" outcomes as equilibria. This result is true even if 

preferences are restricted to allow only preferences of the type 

usually assumed by economists on public goods spaces. We then give 

a concept of equilibrium for which intuitively appealing "implementations" 

of democratic social choice functions do exist. 

In a recent paper, Dasgupta, Hammond, and Maskin [1978) 

show that if the domain of preferences is unrestricted, then no 

single valued nondictatorial social choice function can be implemented. 

More precisely, no mechanism can be constructed which for all 

preference profiles yields the social choice as its unique Nash or 

strong equilibria. This result has not drawn a great deal of attention 

because of its assumption of single valuedness. In fact, more 

recent work has seemed to indicate that even in unrestricted preference 

domains, the impossibility results evaporate if multiple valued 

social choice functions are admitted. For example, Maskin [1977) 

has shown that any monotonic social choice function with no veto players 

* We thank Jeff Richelson for useful comments on an earlier draft of 
this paper, and acknowledge the financial support of NSF grant 
#SOC 79-21588, and #SOC 78-154 13 
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can be implemented, and Hurwicz and Schmeidler [1978) have constructed 

a game form which implements a social choice function whose outcomes 

are always Pareto optimal. 

This paper shows that if the social choice function satisfies 

even the weakest conditions of responsiveness to individual preferences 

-- conditions which one would expect any democratic social choice 

function to satisfy -- then the impossibility result returns. The 

implication is that any attempt to implement "reasonable" social 

choice functions must rely on preference restrictions or on different 

equilibrium notions than the Nash and strong equilibria which 

are usually assumed. 

For economic environments, mechanisms have been constructed 

which "support" as their Nash equilibria, allocations in the 

Core (Wilson [1978) ), and the Walrasian allocations (Schmeidler [1976)). 

Of course, the principal reason that attractive implementations 

sometimes are available for social choice functions restricted to economic 

environments is that the collection of preference configurations 

on which the implementation must work is a small subset of the 

collection of all n-tuples of weak orders. E ven in these environments, 

Maskin has found that the mechanisms which will implement the collection 

of individually rational Pareto optimal allocations in the sense of 

Nash equilibria requires that each agent have an extremely large 

strategy set. He has therefore moved in the direction of utilizing 

a new equilibrium concept that allows for the implementation by a 

more appealing mechanism. While we show that Maskin' s new equilibrium 

concept does not allow the implementation of democratic social choice 
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functions if the domain of admissible preference configuration is 

unrestricted, it might allow such implementations in certain restricted 

domains. 

Unfortunately if one demands that a democratic social choice 

function at the least be able to apply to the choice among three 

alternatives, no natural restriction on the domain of preference 

configuration seems to be available. Perhaps in some applications 

such restrictions may turn out to be interesting and tractable with 

respect to the implementation of democratic procedures. For now, we 

remain agnostic on that issue and focus instead on introducing an 

alternative concept of equilibrium -- sophisticated equilibrium 

which permits the implementation of a wide class of democratic 

choice rules. 

First we delimit the class of democratic social choice 

functions. Intuitively, we think of democratic social choice functions 

as possessing a certain minimal property. If the configuration of 

preferences in society is such that there exists a particular 

alternative that is ranked first by n-1 individuals, and no lower 

than second by the nth individual, that alternative and only that

alternative, ought to be chosen. In other words, on those rare 

occasions when a single alternative commands a huge majority over 

every other alternative then any democratic voting mechanism should 

choose that distinguished alternative. No further restrictions are 

required for a social choice function to be democratic. 

It should be noted that this property has a long, and we 

think, honorable history in the literature on balloting systems. 
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Indeed, it is a generalization of a property proposed by Condorcet, 

and is widely held to be a desirable characteristic of a voting 

rule. Indeed, the failure of such rul�s as the Borda rule and other 

scoring or "positionalist" rules to satisy the ordinary Condorcet 

property is usually taken to be a strong criticism of the use of 

these rules. It should be noted, however, that the Borda rule as 

well as the other scoring rules, do satisfy our weakened condition 

stated above. We should also point out that our generalized Condorcet 

axiom has the effect of ruling out the possibility that there are 

oligarchies of individuals each of whom possesses the ability to 

veto the choice of some alternatives. This entailment seems quite 

unobjectionable except, possibly, in the single case of the unanimity 

principle. Indeed, the unanimity social choice function is the only 

one that is arguably democratic and which is implementable in the 

sense that a mechanism exists for which the outcome supported by 

Nash equilibria are Pareto optimal. 

II. NOTATION AND DEFINITIONS 

We let N stand for the set of individuals and X, the

collection of potentially available alternatives. Subsets, C, of 

N are sometimes called coalitions. E ach individual i EN has a 

complete, reflexive, transitive preference relation (or weak 

ordering) on X denoted by Ri. As usual, we let Pi and Ii represent

the assymmetric and symmetric parts of Ri. The collection of all 

weak orders on X is denoted R.

A social choice function (SCF) is a correspondence F which 
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maps �lements of Rn into subsets of X. For each ! £ Rn the subset 

F(!) � X is thought of here, as the set of acceptable alternatives 

associated with the configuration!= (� ,R2, • . .  ,Rn ). The collection 

of subsets of a set A is written as 2A. 

A collection of sets Si' i = 1, • . .  ,n together with a function 

G which maps the elements of 

n 

n 
II 

i=l 
S. into X is called a mechanism. 

1 

We write S = IT Si' and will denote these mechanisms by the pair 
i=l 

�. G> = r. E lements of � are written in the form.!!_= (s1, • • •  ,sn )' and 

* . C N-C for any .!!_, .!!_ £ �. and C � N, we write (.!!_ ,.!!_* ) for the n-tuple 

s' £ S such that si si if i £ C and si = s! if i £ N-C. If 

C N-C N-{i } 
C = {i } for some i £ N, we write (.!!_ ,.!!_* ) = (.!!_i' .!!.* ).

Given a mechanism r and a preference configuration ! £  Rn, 

a k-equilibrium for <I',� is an element.!!_* £ � such that for all 

coalitions, Cc N such that lcl .2_ k, and for all.!!_£ �' G(.!!_* )Ri 
· C ;tiN-C 

G(.!!_ ,.!!_ ) for some i £ C. E vidently, the Nash equilibria are the 

1-equilibria and the strong equilibria are the n-equilibria. The 

collection of k-equilibria associated with <f,! > is conveniently 

written as E�(�) . 

A social choice function is said to be k-implementable 

if there is a mechanism, r, such that for all R £ Rn 

In other words, a SCF is implementable if a mechanism can be found, 

each of whose k-equilibrium supported outcomes are acceptable for 
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every preference configuration. 

Finally, we present a formal statement of the requirement 

that a SCF be democratic. For any C � N, lcl denotes the number of 

elements in C. For any S � X, µ(S ) denotes the measure of the set 

S. If X is finite, µ(S ) is simply the number of elements of S. If 

Xis a subset of Rn, then µ(S ) is simply the Lesbeque measure of S. 

Now, for any x £ X, and i £ N, define Ri(x ) = {yEX-{x} l yRix},

and Bi(X) {x £ XI Ri(x ) �}. Then set Di(x ) = Ri(x ) - Bi(X). 

So Di(x ) is the set of elements, other than x itself and the maximal 

element, which are as good as x. Now we make several definitions: 

Definition: An alternative x £ X is a consensus alternative if 

Ri(x ) =�for all i £ N. It is a near consensus alternative if 

3 C � N with lcl _::: n - 1 such that Ri(x ) =�for all i £ C. The

alternative x £ Xis said to be 2+£ bounded if µ(Di(
,
x ) ) �£ for

all i £ N. It is 2 bounded if it is 2+0 bounded. Finally, 

x £ Xis a Condorcet alternative iff l {i £ N l xPiy } I >I for all

y £ X -{x}, 

Definition: A social choice function F : Rn + 2
X 

is mininially efficient 

(ME) iff whenever x £ X is a consensus alternative, F(!) = {x}. 

F is minimally democratic ( MD ) iff, whenever x £ X is a near consensus 

alternative and is 2 bounded, then F(�) = {x}. F is £-minimally 

democratic (EMD) iff whenever x £ X is a near consensus alternative 

and is 2+£ bounded then F(!) = {x}. F is a Condorcet extension (CE ) 

iff whenever x £ X is a condorcet alternative, then F(B:) = {x}. 

A few words of interpretation are in order, especially of 

the notion of 2+£ bounded. An alternative is 2 bounded iff it is 
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no lower than second in any individuals ranking. An alternative x 

is 2+£ bounded iff the measure of the set of alternatives ranked between 

x and the best alternative is no more than E. This definition is 

needed for continuous alternative spaces with continuous preferences 

where the notion of second best may be undefined. Here, if x is 

2+s bounded, it is at most "s away from second place" for everyone. 

Now a minimally efficient social choice function need only 

choose consensus alternatives uniquely when they exist. I. e. , in the 

infrequent cases when one alternative is ranked best by all voters, 

that must be uniquely chosen. Similarly, for the case of a 

minimally democratic social choice function, the social choice 

function need only choose near consensus alternatives which are 

2-bounded when they exist. In other words, in the cases where one 

alternative is ranked first by n - 1 voters and no lower than second 

by the last voter, that alternative should be uniquely the social 

choice. No restrictions are placed on what the social choice should 

be in other configurations -- in particular it need not be single 

valued elsewhere. 

SCF' s satisfying E MD have a similar interpretation, and 

finally, Condorcet extensions must choose Condorcet points uniquely 

when they exist. Again note that no restrictions are made when 

Condorcet points do not exist. It should be noted that other 

definitions of minimal democracy trivially imply the above conditions. 

For example Richelson's [1978) conditions UMP and VUUMP imply both MD 

and E MD for all E and any generalized Condorcet extension principle 

would also imply the above conditions. In addition, virtually any 
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specific social choice functions that have been studied, with the 

exception of the Pareto optimal set, satisy the conditions MD and 

E MD. 

III. AN IMPOSSIBILITY THEOREM 

In this section we establish the following, somewhat 

depressing result: if a SCF satisfies MD, then it is not k-implementable 

for any k. In other words if a SCF is minimally democratic there 

exists no mechanism with the property that all of its k-equilibria are 

acceptable for each R E Rn. To establish this fact we need two

additional definitions and a simple lemma due to Maskin [1977) .  

Definition: For any k E {1,2, . • .  ,n }, R E  Rn, and mechanism r 

Definition: A function H Rn + X is monotone if for any x E X, 
R and R' E Rn such that x EH(�), and xRiy � xRiy Vi EN, 

Vy F x, x EH(!:' ).

Lemma: Hk is monotone for each k.

Proof: k Assume x E X and that !:, and!:' are such that x E H � ), 

xRiy =<> xRiy, Vi EN, y'f x. Then there is s E S  such that

s EE�(! ) and x = F(� ). But then s EE�(!' ).

< �,G > 

Q.E.D. 
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Theorem 1: If F is k-implementable for some k E {1,2, • • •  ,k }, and 

IN I .::_ lxl then F is not minimally democratic. 

Proof: Assume F is k-implementable for some k. Then if F is minimally 

democratic, set Ai = {i} for all i E N, and set Vi = N - Ai for all 

i .::_ i.::. n. Then pick {x1, . . •  ,xn } 5:_ X and construct R E  Rn to satisfy, 

for all 1 < i.::. n, j EN, and y EX - {x1, • • •  ,xn }'

x. 1P.x. (mod n) if j EN - Ai i- J l 

k k Now, since F is k-implementable, x* E H (!) = G 0 E r(!) for some

k-implementation of F, and for some x* E F(!). There are two cases. 

then x* = x2 for some 1 < t < n, and we define !' from ! by moving

xt-l (mod n) up as far as possible in each ordering without changing 

its ordering with respect to xt' Leave all else unchanged. Then

xt-lPjxt for j E Vt' and xt-lPjy for j EN for all other y EX - {x2_1,xt}.

Hence, by MD, {x2_1} = F(!'). But this contradicts the monotonicity 
k of H ,  since ('rJj E N)('rJy EX - {xt })(x2Rjy � x2Rj y) and 

construct !' from B: by moving x1 to the top of every ordering. 

by MD, {x1 } = F(!'), which again contradicts the monotonicity of

Hk. Thus, F cannot be minimally democratic. 

Q.E .D. 

Then 
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The above result assumes an unrestricted domain of 

preferences. It is possible that if the set of possible preferences 

were to be restricted, the previous argument would not work. 

We present here some results addressing this question. The 

preference restrictions considered here are the usual preference 

restrictions assumed by economists over public goods spaces, Namely, 

it is assumed that all preferences are pseudoconcave. So let E 

denote the real numbers and let X !:_ E m be convex, with a nonempty 

interior. Then R c Xx X is said to be pseudoconcave iff it 

is representable by a differentiable function u: E m + E satisfying

'rJx, y EX, 

Vu(x) (y - x) < 0 � u(x) � u(y). ( * )  

(So R is pseudoconcave iff it is quasi concave and has a differentiable 

representation whose gradient is nonzero except possibly at a maximum. ) 

We define 

0 and we let E_ 

{R !:_Xx XI R is pseudoconcave },
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We first prove a lemma 

Lemma 1 0 If R E R , and if x*, y* E X satisfy y* E Int {y .E xlyRx*}, then

there exists a R' E RO satisfying 

Proof: 

a )  {y E Xlx*Ry } .::_ {y E Xlx*R' y }

b )  yR'x* for no y E X-{x*} 

m + For any x EE , and r E E , let B(x,r ) denote the closed ball

of radius r and center x. Let u : E m+ E be a representation of R 

satisfying ( * ). Now, by assumption, for some E > 0, B(y*,E) � {y E EmlyRix*}. 

Also, by differentiability of u, for some o > O,

take 

( ( Vu(x* ) ) ) { ml B x* + o ljVu(x* )li, o � y E E  yRix*}, 

D 
( (.Vu. (x* ) ) ) 

B(y*,E) U B x* + o 
llvu!(x* )li ,o 

and set D* to be the convex hull of D. Now for any y E Em, with

y {= y*, define 

then set 

t y sup {z
t>O 

ty + (1 - t )y*lz E D*} 

g(y ) 

{ 0 if y y* 

= -lif y {= l 
t2 

y 

Now g :  Em+ E is a differentiable function satisfying (*). So 
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defining R' � X x X by xR' y '*="> g(x ) 2:_ g(y ) for any x, y E X, it 

follows that R' E RO satisfies the conditions of the Lemma. 

Q.E.D. 

We proceed to the theorems, and start with a result which is 

weaker than the results of the previous section, but which holds on 

small dimensional spaces, 

Theorem 2: 0 x If F :  E. + 2 is a Condorcet extension, where X �Em, 

and m2:_ 2, it is not k-implementable. 

Proof: Let r <_£_,G> be a k-implementation of F, and let 

as defined above. Then Hk is monotonic. 
0 Now let B: E R be any

profile for which there is not a Condorcet alternative. That 

such profiles exist is easily seen by the following construction. 

Let ai be the ith basis vector, and pick x0 E X, t1,t2, E R
such that � = x0 + t1 a1 and x2 = x0 + t2 a2 are both in 
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the interior of X. Then partition N into c0, c1, and c2 such that

For i E C., let preferences be based on Euclidian 
J. 

distance from x . •  
J 

I.e., 'rlx,y E X, xRiy � !lx- x.ll<!l y - x.11.J - J 
any alternative x E X is majority beaten by another alternative 

Now 

x* E X  as follows: Set z. = (x. -x) for j = 0,1,2, and pick any twoJ J 
zj,zk which are linearly dependent. Then for small enough E, it follows

that x* = [x + E · (zj + zk)] is majority preferred to x. Further, for

all x E X, by convexity of X, it follows that x* E X. 

So let ! E E_O be any profile for which there is no Condorcet

alternative, and let x E Hk(!). Now, pick x' E X  with l{i E Nlx'Pix}I > I• 

and let C = {i E Nlx'Pix}. Now construct R' E RO so that 'r/i E N  - C,

Rj_ = Ri' and such that 'r/i E N

(*) 

Further, for all i E c, construct !' such that x'Pj_y for all

YE X - {x'}. By Lemma 1, it follows that it is possible to construct 

Rj_ 
E RO sati'sfying this condition as well as (*). But, then x' is a

Condorcet point for the profile !'· Hence F(!') = {x'}, since 

F is a Condorcet extension. So Hk(!') = {x'}. But, by (*),

for all i E N  and all y E X, xRiy => xRj_y. Also x E Hk(!).

So by monotonicity, we should have x E Hk(!'), a contradiction,

so the result follows. 

Q.E.D. 
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The next result shows that in large dimensional spaces, 

results akin to those of Theorem 1 hold. In order to prove this 

result, however, it is necessary to make assumptions about X, 

guaranteeing the smoothness of the boundary of X, if it exists. 

Specifically, X is said to be � if for all x E X, 3 z E E'm

with z F 0 such that for all y E Em with y • z > 0, 3 E > 0 such that

x + E y EX. This leads to the following theorem. 

Theorem 3: Let F : RO + 2X be a SCF, where X 2: Em, m � n, and

X is smooth, then for any E > O, if F is E-Minimally Democratic, 

it is not k-implementable. 

Proof: As in the previous proof, let r = < �,G> be a k-implementation 
k and define H (!) as before. Now let a. be the ith standard basis

1 

vector in Em, and for all i E N, define Ri as follows: 'rf x,y E X

Now since Hk(!) F �.pick x E Hk(!). Now pick z E Em such that if x

is a boundary point of X, then z is the direction vector of the supporting 

hyperplane. If x is not a boundary point then z can be chosen 

arbitrarily, as long as z F O. It follows that x + E z E X for

some E > O. Now pick w E Em to satisfy w • z > 0 and such that
w • a. > 0 for at least n - 1 j E N. To see that this is possible,

J 

write z 
m 
l ai ai, and w

i=l 

m 
l bia.. Then we have

i=l 1 



m 
w • z > 0 � . l aibi > 0 

i=l 

w •
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(*) 

Now, since z f 0, it follows that ai f 0 for at least one i. Then

for all j f 1, we let b. = 1. For j i, pick b. to satisfy (*). 
J J 

Of course we may have either j E N or j t N. Now by the assumption 

that X has a smooth boundary, it follows that for some E, x + E • w E X. 

Set x' = x + E • w. It follows that for all i EC= N-{j}, that 

x'Pix' Now, as in the proof of Theorem 2, using Lemma 1, we can

construct R' E RO so that Vi E C, {y E xlxRiy} .::_ {y E xlxRf.y}, and such

that x'Piy for all y E X. For i E N - C, (if N - C f �) construct

Ri so that xPiy for all y EX and so that µ(Ri (x')) .:::_ E. It follows

that for all y E X and all i 8 N, that xRiy � xRiY· Hence, by

monotonicity of Hk, we must have x E Hk(!'). But by construction,

x' is a near consensus alternative and is 2 + E bounded. Hence 

Hk(�') = {x'}, a contradiction. So F cannot be k-implementable.

Q.E.D. 

Finally, we present a result showing that regardless of 

the dimensionality of the alternative space, if X is open, then not 

even minimally efficient social choice functions are implementable. 

It is easy to see that a similar result would hold if X were closed 

but unbounded, This theorem is rather pathological, depending as 

it does on the noncompactness of the alternative space, and it is 

presented only for completeness. It should be noted that the above 
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two theorems hold whether or not X is compact. 

Theorem 4 :  If F : RO + zX is minimally efficient, and X is open,

then it is not k-implementable. 

Proof As in the previous proof let f = �,G> be a k implementation, 

and define Hk�) as before. Now pick any a E Ifl, and for all

i E N, define Ri as follows: V x,y E X

Now since Hk(�) f �. pick x E Hk(!). Then since X is open, we can

find x' EX with x' · a > x •a, i.e., such that x'Pix for all i EN.

Now construct R' E RO so that V i  E N, {y E xlxRf.y} .::_ {y E xlxRf.y} and

further such that x'Piy for all y E X. By Lemma 1, it follows that it

is possible to construct Rf. E RO satisfying these conditions. But

then x' is a consensus alternative, so we must have F�') = {x'}. 

I.e., Hk(�') = {x'}. But by monotonicity of Hk, we must have

x E Hk�'), a contradiction.

IV, AN ALTERNATIVE EQUILIBRIUM NOTION 

Q.E.D. 

The results of the previous section are counterintuitive. 

They tell us that no democratic system can be implemented; but 

we observe pervasive attempts in the real world to do exactly 

that -- namely to set up institutions which allegedly have at 
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least minimally democratic properties. Are such institutions 

doomed to failure, or is there something defective in the concept of 

implementation that we are employi�g here? 

The main factors which seem to be driving the impossibility 

results of the previous section, as well as those of Maskin, are 

the special properties of the equilibrium definitions being used. 

The definition of k-equilibrium allows us to deal simultaneously 

with Nash equilibria and strong equilibria. However both of these 

notions of equilibria have well known disadvantages. Nash 

equilibria generally tend to exist, but to be nonunique. A common 

problem with Nash equilibria in voting games is that there are frequently, 

in addition to the "reasonable," or "natural" Nash equilibria, a 

plethora of so called "bogus" equilibria, in which strategy n-tuples 

which are patently absurd for each individual player are nevertheless 

Nash equilibria, because no one player has the power to unilaterally 

change the outcome by a change in his own strategy. The definition 

of implementation used here, and elsewhere in the literature, 

requires all such bogus equilibria to support outcomes chosen 

by the social choice function. Of course, strong equilibria 

avoid this problem, because coalitions of players can get together 

and eliminate such strategies. However strong equilibria 

have the problem that there are generally too few of them. It is 

difficult to construct games where such equilibria exist for any 

large domain of preference profiles. Thus, by using the notion 

of k-equilibria, we are stuck on the horns of a dilemma. On the one 

hand if k is small, (so we are close to Nash equilibria), any game 

we design will generally have too many equilibria, and hence will 
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fail to implement our social choice function because it will 

sometimes produce bogus equilibria yielding outcomes outside of the 

SCF. On the other hand, if k is large (s� we are close to strong 

equilibria), any game we design will generally have no equilibria 

for some profile. 

In this section, we investigate an alternative equilibrium 

notion, which has the effect of eliminating bogus equilibria without 

running into existence problems. In particular, we look at 

"sophisticated" equilibria. This approach is not at all new to this 

paper, and has received considerable attention in both the game 

theoretic literature and literature on voting theory. In fact, in a 

recent article, Moulin [1979] proposes exactly the same solution 

notion as a means of implementing efficient social choice functions 

which are anonymous or neutral. In the voting theory literature, 

sophisticated voting was defined by Farquharson [196 9], and has 

been studied by numerous authors, including Miller [1978] and Kramer 

[1972]. For games arising from binary voting procedures, McKelvey 

and Niemi [1978] and Gretlein [1979] show that there are close 

connections between sophisticated equilibria and multistate equilibria, 

which have been studied by Shapley [1953], and others. In the game 

theoretic literature, ideas similar to those underlying sophisticated 

voting have been developed by Selten [1975] under the name "perfect 

equilibrium." 

As in the previous section, let r = <�,G> be a mechanism, 

and let R E  Rn. Then for any i EN, and for any s, s' E Si' we
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say that s dominates s' if 

(a) 'r/!!._,!!._' E S with s. s,si 
1 

N-{i}s' and s 

(b) 3!!._,!!._' E S with s. s,si_ 1 d N-{i} ,N-{i} h thats an .£. = .£_ sue 
1 

G(�)PiG(�').

A strategy s E Si is said to be primarily admissible for i in

<I',B:_> if it is not dominated by any other strategy in Si. For each

i E N, we let sil) be the set of primarily admissible strategies, 

artd let �(l) 
= IT Si 

(l), and I'(l) = <�(l) ,G(l)>, where G(l) is G
iEN 

restricted to s(l). Then, for any m > 1, and i E N, we define 

s(m) to be the set of strategies which are primarily admissible fori 

i in <r(m-l),B:_>. We set �(m)

where G(m) is G restricted to S(m). The sets 

m-arily admissible strategies for i, and r
(m)

reduction of I'. Finally, we set S� 

S(�) are called the
1 

this called the �-

IT S (u), and
iEN 

r(u) 
= <�(u) ,G<u» where Gu is G restricted to �u. Then S� is called

the set of ultimately admissible or sophisticated strategies for i,

and ru is called the ultimate, or final reduction of r. For any

r = <�,G> and R E Rn, we write

to represent the set of n-tuples of sophisticated strategies. 
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Now, the social choice function F: Rn+ X is said to

be implementable in sophisticated strategies if there is a mechanism, 

r = <�,G> such that for all R E  Rn,

A few words of interpretation are in order. The sophisticated 

strategies in the mechanism r are simply the strategies which remain 

after successive reductions of the original mechanism, where, at each 

stage of the reduction each player simply eliminates presently dominated 

strategies. It is easily shown that if I E�(B:)i = 1, then the sophisticated

strategy n-tuple is also a Nash equilibrium. In general, however 

there may remain strategy n-tuples .£_ E E�(B:) which are not Nash

Equilibria. Note in fact that E�(B:) f �. since S� must always

contain at least one strategy for all i E N and m > 0. 

We now give two examples showing how sophisticated equilibria 

can be used to implement democratic social choice functions. The 

first example is a special case of the procedures considered by 

Farquharson [1969], namely fixed agendas using binary voting 

processes. The second example requires preference restrictions as 

well as the notion of sophisticated equilibria. 

Example 1: Fixed Agenda, Binary Procedure 

In a recent article, Moulin [1979] has shown that using 

sophisticated equilibria, the ammendment procedure implements a 

Pareto efficient, anonymous social choice function. Here, drawing 

on results from McKelvey and Niemi [1978] and Gretlein [1979], we 
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show further that that procedure, as well as any sequential voting 

process based on binary procedures and a fixed agenda is a 

Condorcet extension. We first need a series of definitions in 

order to define binary voting procedures based on fixed agendas, 

A voting tree over Xis a pair IT = (A,�) where A =  (A,P) is 

a finite topolosical tree*, and � : A'+ X is a function which associates

with each terminal node r in A, an alternative �(r) E A. The voting tree 

is binary if, for each nonterminal node, r E A, there are associated 

exactly two following nodes. In a binary voting tree, at any given 

node, the following branches can be indexed by 0 or 1. We can identify 

a node of IT in terms of the history of branches that are taken to get to 

it (starting from the origin) thus a node is identified by a p-tuple 

r = (r1, . .. ,rp), where r1 is the first branch that is taken, r2 

the second, etc. (note that p is the number of branches that must 

be tranversed to get to node r). For binary procedures it follows 

that for any r E A, r E {O,l }P for some p ..'.: O. (Note that for the

origin, r = �. and p = 0). We let A'� A denote the nonterminal 

nodes of IT and A' c A be the terminal nodes. Further, we set K = IA' I, 

and let$: A'+ {1,2, • . •  , } be any one to one enumeration of these 

nodes. We use the notation rj = $-l (J) to denote the j th node of 

this enumeration. 

Now for any vector d 

follows: Set 

* 

r* 
1 

See McKelvey and Niemi, p. 9 for a formal definition. 
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and for j > 1, 

r* 
j d�( * * ) as long as (r1

*, . . .  ,r
J

�-l) E A' .
'+' 

rl' • . •  ,rj-1
' 

Then set 

* where rd is the terminal node in the above process. 

Next, let v : {O,l }n + {O,l } be the binary majority rule

function, i. e. , for any s = (s1, . • •  ,sn) E {O,l }n 

{ 1

0 

if l Si > % 
v(s) 

if otherwise 

and define V : ({O,l}K)n as follows: For any� = (s1, • . •  ,sn) E ({O,l }K)n, 
k and all 0 � k.� K set s = (s1k,s2k' '"' snk)' and then 

V(s) 1 2 K (v(s ),v(s .), . . .  ,v(s )) 

Then the pair (IT,V) is called a binary voting procedure based on 

majority rule. 

Now we define a mechanism, r = �, G> on the basis of the above 

definition. For each i E N, set Si 

is defined by, for any � E �' 

{O,l }K, Now G : S = IT S + X 
iEN i 
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It now follows from theorem 1 and corollary 1 of McKelvey and Niemi 

[1978) together with theorem 2 of Gretlein [1979) that G(E�(�)) is

single valued for all R E  Rn, and that it is also a Condorcet

extension. Hence 

is a social choice function, which, by construction, is implementable 

in sophisticated strategies by r. 

Example 2: Two Candidate Competition 

In this example, a type of implementation is arrived 

at by introducing two political entrepeneurs (candidates) who's 

sole function is to adopt policy positions in an attempt to win 

an election. Their preferences are thus restricted, and in the 

resulting game they try and provide the voters with "socially 

desirable" outcomes. The mechanism is constructed so that it is 

a dominant strategy for voters to provide correct information 

about their preferences. From the point of view of the voters, 

the resulting mechanism implements a Condorcet extension which is 

neutral, anonymous, and Pareto efficient. 

We set 

N' {1,2,. • •  ,n } U {n+l,n+2}  N U J 

x' J x x. 
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We can think, then of N as the set of voters, and J as the set of 

candidates. The set X' is the set of final outcomes, which consist of

a policy x E X, together with a candidate j E J to carry out the

policy. Then define 

X x X + J for i E N 

x for i E J 

So candidates choose policy positions, while voters choose candidates, 

based on their policy positions. Set 

For any � 

define 

j*(�) 

and set 

x* (E_) 

IT Si, SJ= ITS., S 
iEN iEJ 1 

N J (s ,s ) 

smallest j* E J such that 

Hj* (�). 

max 
jEJ 

Thus, j*(E_) is the candidate with the largest number of votes, 

with ties broken arbitrarily (i. e. , the first candidate wins 
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in a case of a tie), and x*(�) is the policy adopted by the winning 

candidate, Then set 

G (�) = (j * (�) , x* ( s)) 

Now it is assumed that for each i E N, there is a weak 

order Ri on X, representing i's preferences over the basic alternatives,

and a weak order R. on J representing i's preferences over the1 
candidates. It is assumed that for j,k E J, if j � k, then jP.k.J 
These preferences are extended to preferences Ri over X' as follows:

For any (j,x),(k,y) E X', 

a) If i E N, (j ,x)Rf (k,y) «> xRiy

A 

b) If i E J, (j ,x)Rf (k,y) «> jRik

Thus, voters care only about what policy is adopted, 

having no preference for which candidate is elected, and candidates 

care only about being elected, having no policy preferences.* 

We now consider properties of G(E�
.
(Bc')), We are concerned 

only with the voters i E N, and so since voters have no preferences 

over which candidate is elected, we can equivalently look at 

x*(E�(Bc')), and look at this as a function of the preferences

R = (R1, • . .  ,Rn) of voters in N. Thus let

F(Bc) 

* The same results follow if the following 
made about preferences 

a) If i E N, (j ,x)Ri (k,y) � x�iy or
b) If i E J, (j ,x)R:f. (k,y) � jPik or

lexicographic assumption is 
A 

(xI .y and jR1.k),,1 
(jiik and xRiy)
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Under the above assumptions, it follows that for i E N, si
is an admissible strategy iff Vsi E Si and Vs

J E SJ,

In other words, 

s (sJ)R.s t (aJ)s. 1 s. v 

1 1 

setting J {j ,k}' s. 1 is 

J Vs = (sj'sk) E SJ

{: if s/isk
J si(s )

if skPisj

admissible iff 

note that si(sJ) is unrestricted if sjiisk. However, in general,

�strategy is primarily admissible for i E J, Thus, after the 

first reduction, we have, for all s E §_(l),

x*(�) 

It follows, that if there is a Condorcet point, x* E X, then for 

all y E X 

> .!!. 2 
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(1) Now, for j £ J, sj = x* dominates any other strategy x £ Sj , because, 

picking k £ J -{j }, for any !i•!i* £ S(l) with sj x,s/ x*, and 

N' -{j } *N' -{j } s = s ' 

j*(s*) 

j* (Ii_) 

r j 

or 

f or 

k 

if sk f. x* 

k if sk = x* 

k if sk f. x* 

if sk x* 

Hence, it follows that if there is a Condorcet point x*, then the second 

reduction has s(2) satisfying 

For i £ N, si2) is the set of strategies satisfying (*) 

For i £ J, s�2) 
l. 

{x*}. 

It follows, for all !i £ s(2), that G(fi) = (j,x*) for some j £ J.

Note that the second reduction is also the final reduction. Thus, 

any sophisticated strategy in this mechanism picks out a Condorcet 

point if there is one. 

Further, it follows from results of McKelvey and Ordeshook 

[1976 ) ,  that regardless of whether or not there is a Condorcet 

point, that for all !i £ �(2), and hence for all !i £ �u, that

x*(!i_) is pareto optimal. Finally, it is easily shown that 
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F(�) = x*(E�(�')) is neutral and anonymous. This example shows 

then, how a combination of preference restrictions and a revised 

equilibrium concept can lead to implementability of a democratic 

social choice function. 
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