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CHANCE CONSTRAINED DYNAMIC PROGRAMMING
MODEL OF WATER RESERVOIR WITH JOINT PRODUCTS

Historically, rivers have been the focus of many international
conflicts, especially in the arid and semi-arid areas of the world.
However, within a particular river basin, water was relatively abundant
and there was generally enough to meet the various needs of the basin's
population. Water usage was limited mainly to human consumption and
irrigation.

The growth in population and rising level of industrialization
in many arid and semi-arid parts of the world are increasing the demands
for water. However, no corresponding change in the world supply of
river water occurred. It has become a scarce resource, and active
planning for water utilization is under way.

An important aspect of this planning is the distribution of the
benefits of the rivers over time and among uses and users. Increasingly
the construction of large reservoirs is becoming the vehicle to achieve
and integrate these diverse objectives. Very few reservoirs are
normally dedicated to achieve a single objective. Invariably, irriga-
tion, power generation, flood control and recreation are among the
objectives listed for any dam project. That does not mean there is no
hierarchy imposed on these objectives by the planner. In fact, there
may exist one or two prime objectives. The absence of explicit state-
ments on this hierarchy has become a political expedient to appease

the various groups affected by the construction of the dam. Model

builders have reflected this hierarchy by directly includin

U

variables in the objective function and others are formulated

constraints.
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Some of these constraints are "soft," in the sense that they

could be violated at a cost. This cost is dictated by the detiand of the

planner for these constraints to hold. The following analy;

ig will

focus on irrigation and power generation with soft constraintsg on the

stock of water in the reservoir. These soft constraints reflect a

trade-off between flood control and recreation purposes on [th¢ one hand

and salinity control in the downstream on the other.

There are two design considerations. in the process |of
construction: 1) the optimal reservoir size, and 2) the optiTal

operating rule of the reservoir. Although many scholars {12,

previously pointed out that the two considerations cannot be

many attempt to separate the dual decisions of optimal size-a

operating policy. The model in this paper will recognize the

reservoir

15] have

peparated,

hd optimal

S

"jointness" of the decisions and treat them in a unified mann

within the framework of dynamic programming.

An often neglected aspect in the design of impounding

reservoirs

in arid and semi-arid regions where evaporation losses are |8i

is the trade-off between two opposing considerations:

1. There are benefits from assuring a more regular f

of water and hence a '"better' distribution of the

benefit over time and among users and uses.
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2. There are also costs imposed by the evaporaéion of
the impounded water in the reservoir. These costs are
significant. As Quirk and Burness point out [22] for a
minor river such as the Colorado with an annual mean runoff
of 13.5 million acre-feet per year, evaporation losses from
existing resexrvoirs have already reached as high as 1.5
million acre-feet per year.

To produce an outflow pattern satisfying a given economic
objective, the preceding trade-off is taken into consideration in
ascertaining the relationship between the hydrology of a stream and the
optimal decision rule. The optimal size of the reservoir which is
consistent with the chosen operating rule will be derived. Moreover,
the) long-run distribution of the water stock in the reservoir when
the profit function from the reservoir operation has a special form
will be derived,

Uncertainty will be revealed as the single most important
factor affecting the optimal design and operation of a reservoir.
Formally, this uncertainty may be reflected in the objective function,
the constraints, or both. In the case where the uncertainty is reflec-
ted in the constraints, there is a possibility that optimal decisions
will lead to violation of the constraints because of very high or very
low values of inflow. This is the basic problem posed by the nature
of the random constraints.

At least two different types of characterizations are
available in the optimization literature to cope with the random

nature of the constraints. First, there is the penalty function

. fractile Ei such that

approach [27] which introduces penalties for violating the
constraints. This is accomplished by adding the expected p
to the objective function.

Secondly, there is the chance constrained character:
(6] which puts a reliability interpretation on the constrai
0 5~Ai <1l,i=1,...,m

> a!
prob (bi'-‘ aiyi) > }‘i’

Where yiis the decision variable, Ai is the reliability fa

rafjdom

endlty costs

ization‘[g],

pty such as

(6)

>tgr and bi

is a function of a random variable. The Ai can be varied panametrically

to account for the different reliability levels {(alternatively, a

reliability term can be added to the objective function and gan be

solved for optimally).

In this characterization, the chance constraint is |reduced

to an equivalent deterministic constraint [6] by the use of the

marginal distribution function of bi: ¢(bi). The existence|of a

1 = - 1
P(b; > ajy) 2 A, <=> b, (1 -24)) > ajy

(10)

makes this reduction possible. To facilitate this transfcrmEtion in

the reservior models, the optimal decision rule is restric

ted to the

class of linear functions [16, 17, 19]. Additionally, it |is| sometimes

assumed that the random variable is distributed normally or [truncated

normal at zero [7, 28]. This technique suffers from a numbﬁr of

shortcommings:

1. The continuity equation, used to develop the |[deferministic

equivalent for the chance constraints and the steady statie ¢ilstribution




of the stocks, ignores the overspill. The overspill occurs because the
constraints may be violated in these models.

2. The net return function in these models does not reflect the
probability that the constraints could be vielated. Violation could
occur as a result of the optimizing program, yet the net return is not
affected. This condition raises a question regarding the incentive
structure in these kinds of models.

3. The ad hoc specification of the reliability levels(},'s)
raises objections from many planners and politicians. No decision-maker
would risk making an explicit statement on reliability. The problem of
the choice of the weight Wy given to the reliability term in the
composite objective function persists, even if the choice of Ai's is
included within the optimizing framework, as in the model shown in (7-9).

The model in this paper uses a dynamic programming approach
in conjunction with a penalty function. The penalty is a convex
increasing function of the magnitude of the violations. These penalty
costs differ from the fixed accounting costs employed by Askew [2, 3].
Accounting costs are never actually intended to be paid, but are merely
devices to ensure optimal behavior by the management. Penalty costs
in this model, however, are actually economic costs imposed on the
manager to correct for stock deficiency or surplus which results from

his decisions and the random flow of the river.

A Dynamic Programming Model with Penalty Function

In this model the penalty fumnction approach is utilized to

account for the possibility of violating the constraints within a

dynamic programming framework. These penalty costs are moxre fhan
"accounting" costs used to insure that the dam manager takes fhe imposed
"soft" constraints into consideration in arriving at his decipion rule

[2), [3]. They are costs actually paid by the dam manager |fof importing

or exporting water to compensate for violating the constraintt.
Although no a priori form for the optimal decision rulle is

imposed, it will become evident that this formulation implies| a simple

“one part" decision rule with "prediccéble" characteristics. | Further,
the linear decision rule, which implies constant optimal stock policy,
will be shown as a consequence of certain restrictions on thel form of
the profit function.
It will also be shown that the long-run distribution [for the
stock of water in the reservoir exists and can be derived when the
linear decision rule applies. This formulation will not suffler from the
shortcomings of the chance constraints-deterministic equivaientapproach.
Morepver, the analysis will be expanded to include profits |frpm the
generation of electricity directly in the profit function and|will

be shown to affect the optimal policy and the optimal reservolir size.

The Objective Function

The manager of the reservoir is maximizing at every period, a

concave objective function of the form T(y,x- p) where ﬁlZ-i(' y is the

‘release at the start of the period and x is the stock at the Ftart of

the period. The first argument of the objective function, |y,l reflects
the payoff to agricultural downstream users from releases and [the second

argument reflects the payoff from power generated by the electrostatic




head provided by the stock of water after releasing y.

The objective function, T, may be interpreted in various ways:
In a socialist economy, T might be the criterion function ‘provided
by the central planners. T is, then, the expected net social
revenue which equals the expected revenue minus expected cost,
all inputs and outputs being evaluated at prices set by the
planners. The manager carries on the maximization procedure
treating these prices as parameters. Under ideal conditions, the
prices for inputs and outputs set by the central planners would be
prices consistent with a Pareto optimum. In this special case, the
optimality rule derived from the maximization procedure is also
optimal from the point of view of welfare maximization. Under
more realistic conditions, the criterion function simply reflects
the central planners' evaluation of all the altermatives in the
economy.
In a private economy operating under the appropriative doctrine,
property rights to water are held by users of water. A possible
situation is one in which the reservoir manager is instructed to
operate so as to maximize aggregate expected profits, Em, of down

stream users where T= {Xﬂii-ﬂE} and m_ is the profit of downstream

i i

user 1 and T_ is the profit from power generation. Such a scenario

E
is approximately the situation for the Colorado river where down-
stream users hold appropriative rights to the water in the reser-
voir and the Bureau of Reclamation operate the reservoir system for
them under rules that derive from the Supreme Court decision in the

famous Arizona v. California case (1963). Note that maximization of

4.

aggregate profits of downstream users is generally incon
Pareto optimality, particularly when there is market pow

as in the case of the Imperial Valley Irrigation Distric

sistent with

s 8.,

ti, a major

force in the winter fruit farm market of the U.S., and|the largest

user of Colorado River water. The situation gets worse

If there

are externalities in the agricultural and power markets gr if there

are other imperfections in these markets.

T may be interpreted as the payoff in terms of social welfare

associated with operating the reservoir. In this case| T
total expected surplus which equals expected consumer's

Plus expected producers' surplus. The use of total expe

ig the
surplus
sted

brium

surplus involves the usual difficulties of partial equil

welfare economics. Such problems include the need to jus

demand curves, aggregating areas under demand curves ave
consumers, the interactions with other markets and th? 1
are further complications posed by the multi-periods nat
problem: the lack of contingent claims markets to inter
uncertainty with respect to prices of future inputs and

means that we have the added problem of dealing with exp|

involving diverse subjective probability distributions.

acomﬁensated
r all

ike. There
pre of the
nalize
putputs
ectations

Finally,

if there are many reservoirs taking only the output of this parti-

cular reservoir into consideration in measuring social wWelfare

is inappropriate. In this case, we are only considering the output

of a part of the industry rather than the whole. This 1
special problems of measuring consumers' surplus.

T may be the utility of the reservoir manager over prpfi

eads to

ts from




10

the operation of the dam. The concavity of T introduces risk

aversion directly in the analysis. No social welfare argument may
be made from this interpretation unless we consider this reservoir

as part of a competitive market and no imperfections in any input

and output markets. In this case, the usual classical welfare

arguments applies to the economy and efficiency and unbiasedness
are assured.
We pointed out that interpretations of the properties and results in
this chapter differ according to how m is being interpreted. However,
we shall show that from a technical point of view all that is needed
to derive the formal results are concavity and/or linearity, and

separability and/or the nonnegatively of the second mixed partials of

the objective function.

The Model

The manager of the reservoir is maximizing at every stage1 P>

1<p<n, aprofit function W(yp,x - yp), concave in both its

P

arguments such that T > 0. The maximization is subject to an upper

u m
constraint x and a lower constraint x on the reservoir storage level.

The optimization is conducted as follows:
1. The manager observes the reservoir level, xp, at the start

of the period.

2. He calculates the optimal release in the period ys,

1
Following dynamic programming tradition, p is counted in reverse order

from the terminal point.

2When the profit function is separable, it will be exore
2(v) + h(x).

Oiys(xp) < xP , taking into consideration the

factors:

a. The one period objective function2
[(w(yps%p - yp) - 2(x)] where c(x) is the s
convex annualized cost of construction;

b. The costs of violating the upper and lower

fqllowing

trictly

11

cpnstraints

cl(z) and cz(z). Each cost is related, resppctively, to

the cost of disposing or importing water to

for excesses or deficiencies in water storage;

c. The probability distribution of the infloT ¢l (*);

d. The evaporation rate k. ]

compensate

He implements the optimizing decision ys by x l%asing water

from the reservoir.

Toward the end of the period p, the manager has [enough

information to observe the inflow ep-

following decisions:

Then he. takes the

1f, as a result of his decision, the water level in the

reservoir falls below xm, he imports water at

the cost of

cz(z) to make up for the deficiency (z). He |then starts

period (p+1) with a water stock equal to <.

uz(z) is

assumed to be a convex and increasing function §f z with

c2(0)==0 and cé(O) is finite and positive. Thi;

holds whether a constant or increasing net pric

is assumed.

The case of rising net price of wa

ssed as:

i assumption
: for water

ter is being



12

considered to account for the increasing difficulty of
importing larger amounts of water from further locatioms.
See Figure 1. If, however, the optimizing decision results
in water stock exceeding xu, the manager disposes of the
excess water (z) at the cost of cl(z). He then starts the

next period (p + 1) witn a water stock equal to x“. cl(z)

is assumed to be a convex function of z with cl(O) = 0 and
ci(O) finite. This is consistent with a situation where

the éxport price of water net of transportation cost is
constént or decreasing because of the increasing difficulty
of ;arketing larger quantities of water. The net export
price may eventually be negative. See Figure 2. The
sequence of events and decisions are illustrated in Figure 3.

cz(z)

CZ(Z)

Figure 1

fixe

13

d' cost

cost/unit cost/unit
export transportation
-+
z
+
net cost of
violation
Figure 2

cl(Z)
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The Continuity Equation
This is the mass balance equation for water in any period p,

15p<n, and is given by:

x =r(x -y)+e +1 -
p-1 = TOG — Y P T ™ 17
x e
r p Fp-1 ®p-1 ¥p-2
| J/ |
v Y V1V Tine
L1 L _ Ld
P p-1
T yp-l
residual
P decision i or m
P P
Figure 3

where: r = 1 - k and k is the constant evaporation rate, ip is the
amount of imported water,Amp is the amount of exported water and

x_ 1s the level of the reservoir at the end of stage (pi‘l) and
after implementing the importing and exporting decisions. Or,’

equivalently xp is the water stock at the start of period p.

m
If (a) ip > 0 then mp =0, xp-l = x
(18)
and i = & - rx_ - e +ry R
P P P P
u
theni =0 X =X
1f (b) mp >0 P H p_l
(19)
and m =rx +e -ry - xu .
P P P P
If (c) ip =m = 0 then X1 = rxp + ep - ryp 1))

15

A concave salvage value function of the terminal stock' of water
v(x) will be added to account for the concern of the planners| for future
generations. v(x) will also prevent the use of water to the jpoint where
its marginal profitability is zero. Moreover, it will be assjumed that
the manager does not import or export water unless he must: |[In the
static case, this implies that the marginal salvage value at x" must not
be less than the marginal benefit from exporting water v'(Tu) > -ci(O).
m

It also means that the marginal salvage value of water at X |must not be

greater than the marginal cost of importing water v'(xm) < cé(O).

Clearly, if these conditions do not hold, exporting and impojting water
becomes profitable and should be included in the optimizing jramework of
the problem. Whether to import or export water, in this mod¢l, is
merely a residual decision taken at the end of each period.
The lines of this analysis will follow the traditiongil methods
employed by dynamic programming formulations [12]. Firgt, the existence
and uniqueness of the solution for p = 1 and p = 2 and the concavity of
the expected net discounted revenue functions will be established. This
will pave the way for an inductive proof for the existence d unique-
ness of the solution to the n-period problem. Next, it willl|be shown
that for an infinite period problem the sequence of the expepted net
discounted revenue function converges under the assﬁmed regullarity

conditions. This establishes the existence and uniquenesg of the

solution for the infinite period problem. Finally, maximizafion of the

n-period expected discounted net revenue function will definp the

optimal size of the reservoir.
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The One Period Problem

Let fl(xl) be the expected revenue from the release of

an optimal quantity of water including revenue from the hydroelectric

operation of the reservoir. Let

21
fo(xo) = v(xo) (21)

where v(x) is the concave salvage value function indicating the worth of

the terminal stock of water to the future generatioms.

Define _ (22)
fGgpx = Max Gy » % 7Y%
0 - yl - 1
m

<
b'q fxl_xu

m
X - rx1+ ryl

where
- m
G, (¥ys%) - yl,x) =[m(y»% Yl) + B 0 v(x ) ¢ de

u
X -rx1+1:yl ©

+ B[v(rxl+e - ryl)¢ede + Bf v(xu)ql de
o = rxl+ ¥y
X = rx1+ ryl

(-]
-B| e (rxy e~ ryl_x-“)q)ede

xu- rx1+ Iy,

m
X -rxl + Ty,

-e + 1y;) ¢ de] - o(x). (23)

- B[ o™ -rx
b ) 1

We have the following proposition:

Proposition 1

If a) m(y,x-y) is concave in the first argument and

strictly concave in the second and m,, > 0;

12
b) 'cl(z), cz(z) are convex and cl(O) = c2(0)

#

o) v > ¢(0);

d v'G < ¢, (0);

17

0;

where the primes denote the derivatives of the functions with gespect

to the arguments then :
1) there exists a unique interior maximum yi
for G, (yy,%x; = ¥);

1
< —=<
2) 0¢< dxl <1
Moreover if
e) x =g(x), x" =h(x), and
0 <h'<g'<r
dyi
then 3) -1<—==<0
dx -

Proof of 1):

From (23) we have:

X" - rx) +ry;

To=T - T, - Br cé(xm-rxl + 1y, —e)¢ de

xu = IX) + ryy

—~ ' - ! -
Br Y v (rxl+e ry1)¢)ede + Brfu cl(rxl+e Ty
x =X 41y X=X +1Y;

- xu) ¢ede

(24)




8
! 19

The primed functions denote their derivatives and all functions
We have c), ¢, > 0 by convexity; - v" <0, M1 50, M, < 0 and

- 3
are parameterized by x. The optimal release policy yi(xl) is 1 <
tefined b ' “12 f 0 by assumption. Also if, as we have reasonably argued |before,
efined by
dG u
S v'(x) > -c1(0) 27
ay, 0 (25) and 2
m.
Second Order Conditionms: v'(x) < cy(0) (28)
To show that yf(xl) is a regular maximum, observe that4 then
2
e I (29)
a’s, 2 Brllv' (%) + C.(0 u +13,) ' ey
1;7? =My~ Mot Ty =Brlv (x) 1 )] ¢e(x - X, +try)
y
1 - Therefore, yf(xl) is a regular maximum.
_Brz[cé(o) - v'(xm)]¢e(xm—rxl+ry1) - Brzf c;(rxl+e- ryl-xu)(bede Assumption (27) implies that the marginal salvage valge of
U—rx. +r
x TEXy "1 the stock of water at xu, at the terminal time, must not be lpsg than
m u
2 X -rx)try; 2 -rxj+ry;
-Br f c;(xm- X, +ry; —_e)¢ede + Br v'" (xm - rx1+ryl—e)¢ede. (26) ' the net marginal benefit from exporting water. This must be [the case
m

X -rx,+ ’
T if the interest of the future generation (represented by the |tefminal

3(24)-illustrates the effect of incorporating the stock of water in stock) is to be safeguarded against profitable water export. | Asumption

the profit function. Consider Case 1l: m = g(y) + h(x-Y), g and h are
concave; Case 2: T = g(y). Then the expression of (24) in Case 1 is
less than that of Case 2 by h' > 0, Since the g functions are identical .
in the two cases then

dG dG

(28) states that the marginal salvage value of the stock of watpr at xm,

at the terminal time, must not be greater than the net marginal| cost of

1 < 1 everywhere importing water. This relationship is reasonable if the plannefr is not
dy dy *
1 1 .
Case 1 Case 2 pushed to import water beyond x = xm. The important assumption| in both
This implies that y# < y* . However, when the profit (27) and (28) is that the manager does mot jmport or export watler unless
Case 1 Case 2

he must. This is because (27) and (28) also imply that
function is separable: T = g(y) + h(x), the optimal release policy will .

not be effected when the g functions are identical.

4Consider the two cases in footnote 2. We have
2 2
d G1 d Gl
7 < T3
dy dy;
Case 1 Case 2

However, when the profit function is separable: g(y) + h(x), the second
partial will be the same provided all the g functions are identical.

: u
c1(0) < v'(x)) < c;(0), VX, < < %, £ X, vhich means that it [is not

profitable to engage in importing or exporting water in the pe

region of X,

Notice that it does not matter whether c;(O) is posifiy

negative provided that (27) holds.

ssible

e or
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m
fficient X
how that y*(x,) is an interior maximum, it is suffic
To show tha yl(l) 5 B 7. (0,x.) - Br c'(xm—rx —e)p de > m (0,x)
1 1 2 1 e 2 1
to show: 0
' u
© X -IX
dG u
E—l(o,xl) >0 (30) - Br c;lrx; +e x Yo de + Br-/; v'(vx, + e)p de.  (33)
yl xu_rx X —rxl
and 1
dGl( 0) <0 (31) The economic interpretation of (33) is that the net marginal profit—
—(x .
dy, "1°
1 lability of releasing water exceeds that of storing it .at any stock of

m u ..
Or from (24): water between X and x , providing.water release is zero. Even aft

xl = xm, this must be true if large scale damage to the downstream users

m
dG X -rx
. l(O,x ) = . (0,x,) - T, (0,%,) - By c! (x-rx -e)¢ o de is to be avoided. To see that this interpretation is correct, W€ have
Yy 1 1 1 2 1 2 1
0 to remember that:
u
X -Tr
! 2 u >0 Vz22>0
-Br v'(rxl+el)¢ de + Br ct(rx,+e-x )p de > 0
e 1 1 e '
c)(z) (34
xm—rxl xU-rx 2
1 =
(32) =0 Vz<0
also
n u >0 Vz>0
v X, x $x <X 2
c;(2) (35
This is trivially satisfied if T(y, x-y) is a neoclassical =0 Vzc<o
function, which implies thatyii?)"l(yl’ xl’yl)*‘”a“dy;igiﬁ(yl: X7y, ) and ,
: m u
Generally, however,the assumption that (30) and (31) are satisfied is >0 V x <z2x
reasonable in terms of an intuitive economic argument. This is v' (2) - (36)
demonstrated by rearranging the terms of (32) as follows: =0 otherwise.
This means that (33) can be rewritten and the limits of integratfion
changed as follows:
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™, (0,x)) - Br : {ej(a} > m,(0,x,) - Br S {ej (2}

+Br E {v'(2)}. S
e

Equation (37) is essentially what the previous economic interpretation
asserts. One might notice the peculiar range of the salvage value
function, but this range facilitates a smooth induction argument. It
can be clarified by reinterpreting the salvage value function as follows:

VoP) - ey Voz 2 <X
V(Z) = V(z)

Y
v(x - c,(2) \

z, xmf_zixu (38)

u
z2, z2>X

where v(z) is defined as before. Thus, (37) can be rewritten as follows:

M (0,%)) > Tr2(0,xl) + E{v(2)}. (39
e

which is a formalization of the preceding argument.

On the other hand, (31) implies that

u
o X
my (x1,0) - Br‘/‘ Ci(e - x4+ Brl; v'(e)¢ de > ﬂl(xl,O)
o xu X
< .
—Brf ci(xm - e)¢p de. (40)
0

This is true if T is a neoclassical objective function. Also, using the

previous argument, this is equivalent to either:

m, (x,,0) - Br ‘2‘ {ci(Z)} + Br ‘:‘ {vt(2)} >ﬂ1(x1,0)

- Br E {cé(z)}
e

or

112(x1,0) + Br 'E V(21 > nl(xl,o) .
e

(41) states that the marginal profitability of storing the

water exceeds that of releasing it, assuming all X is rele

Proof of 2):

In this section, the effect on the optimal release po.
parametric change in the starting stock of water xl or in the

capacity of the reservoir % will be investigated. Differenti

first order conditions (eq. 24) with respect to x; glves:

m

avt |, ay} I
(m, - M) =Br (-1+—) [ c'z'(x. - rx) Ty TS

dxl dxl 0

u
—1:xl+ryl
+ ¢;(0) PG - rx; + ry,) - vi(rx, +e

m
X —rxl+ryl

+ v'(xu)¢(xu - ™ + ryl) - v'(xm)¢>(xm - X + ryl)

8

"
+ cl(l:xl +e

u
X -rxl+ry1

Moo = T
+ 12 22? 1 .
Br

- ry,)9 de

-y, - xu)¢ede + ci(O)d)(xu - X + rylﬁ

4

|
|

(42)

23
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or, equivalently5

del
— - (1, = T,y)
dy* dy}
5 1 . 5 . (43)
x
1 d G1
2
N d2G1 (4
From (31) we have 7= < Ty = Ty <0, 4)
dy1
1 ay
Therefore, (43) implies that 0 < Frihi B (45)
. =
1

Proof of 3):
Let x" = g(x) and ®™ = h(x), such that 0 <h'<g'<r (46)

Differentiating (23) with respect to X and using (26), we have6

dyf d2G1 _
T —d—'z"- = Brh'/c'2'¢ede + Brh'[cé(O) -vh(x))1¢ + Brg'/ci'¢ede
Yy :
* Brg’le) (0) + v'(g(x)) 19 (47)
5Consider the two cases of footnote 3;
*
EZL = 1___31__
dx; d26,
Case 2 -5
dy
1 Case 2
* wepo 9y _dy
| Nl re= LN | I ()
dx - 2 dx 2
Hease 1 d 6 Hease 2 flfig
2
dyi dy,
Case 1 Case 1
d’e d’c dy} dy§
From footnote 3:—— < therefore 3~ I ’
dy1 Case 1 dyl Case 2 Case 2 Case 1
only if éf§§§7 is unambiguously negative otherwise it is ambiguous.

6To keep the expressions simple, we shall drop the arguments
of the functions and the integral limits in such expressions whenever
it is unambiguous to do so.

d2¢
in the expression of

dy1

h!

we conclude that
dy*

-1 <-Tl_<_ 0.
dx

(End of Proof of Proposition 1)

dy*

(47) is positive, which implies that =1 is negative.

dx

each term in the right-hand side of (47), there is a correspon

Ior 373 which, by assumption, are greater than l.

expression on the right-hand side of (47) with the expression

This result has been obtained by placing some restrict

assumptions will be justified on the following basis:

a) the non-negativity restriction on g'(x) is reasonable.

because increasing the physical capacity of the resery
for the same inflow and hydrology of the river basin,
the opportunity to increase x = g(x) and hence, the h{

power potential of the reservoir.

illustrate further, consider the case where g' = o

Moreover,

25

From (27), (28), and the convexity of ¢ and cz, the right-hand sjide of

for

g term

1 with opposite sign and weight equal to

(48

of

either

Thus, comparing the

d G

2
dy1

8 on

the derivatives of h and g; these are 0 < h' <r, and 0 < g' <

ydx

I

oil

of

This increase in x\

not be greater than 1 in order to avoid decreasing the

designed free board capacity x - xu) of fhe reservoir.

(o is a constant), and the inflow in the period before 1

. These

fhis is

Ly

fers

oelectric

must

To

ast
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26
dyi
brings the total storage to x. The storage after results, -1 < = < 0, are reasonable. The meaning of [the
evaporation in this case is rx. Hence, if g' =a > r or result itself follows. Given the same inflow and river

d; > rx which means that &> f;, then there is no need to basin hydrology and starting with the same stock of watelr X,

the increase in the physical capacity of the reservoir x| has

export water under all conditions where x, < X. That is,
1- resulted in:

the natural process of evaporation under these conditions u
1) weakening the upper constraints x ,

provides an automatic excess water disposal. Such a m
2) strengthening the lower constraints x .

situation is imaginar d will not be considered an
u n maginary an y This situation leads to a reduction in risk of having|excess

further. Thus, it seems reasonable to accept the assumption
water and ‘an increase in risk of having to import water,|

that g' is bounded in the range 0 < g' < r.
which can only lead to a reduction in the optimal release

The non-negativity of h'(x) is more straightforward. This is policy Y*(xl)-

because the minimum pool requirement = h(x) is dictated by the

minimum hydrostatic head required for the operation of a Lemma 1

particular turbine on one hand and the salinity control If yf(xl) exists and is unique and ﬂll = ﬂlZ or both identically
on the other. Neither of these requirements is affected vanish, then the optimal release rule is linear of the form yi(ml)
negatively by the increase in the physical capacity of the =x -ap. where a is a constant dictated by the hydrology of the stream,
reservoir. xm can be expected to stay constant or increase slightly | the size of the .reservoir, and the specific form of the profit function.
to account for the increase in salinity brought about by a Proof: ' : dy*

larger stock of water. Moreover, increasing x is expected From (43), if Ty = Tpp =0, then E;i =1 and

to weaken the overall constraints on the system. Hence, the Yf(xl) =x,-a . (49)

control volume x© = x" - «™ is expected to increase. There- a 1s a constant dictated by the hydrology of the river basin, |the size
fore, g' > h'. However, by the previous discussion in (a), * | of the reservoir and the specific form of 7.

g' < r, which implies that 0 < h' f g' <r. 1In the Thus, the celebrated linear decision rule, used so often in

previous sections, it has been argued that the assumptions chance constraint models, emerges as the optimizing decision rule when

responsible for our seemingly counterintuitive < | a specific form of the objective function 7 is used in this mpdel.
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Considering the interpretation given to T earlier:

1.

In the first case, where T 1s the expected net social revenue from

operating the reservoir, may be zero if either the second mixed

T2
partials of expected social revenue and expected social cost
functions are identically equal, as evaluated by the central
planners, or that both second mixed partials vanishes. The latter
case may be argued on the bases that there is no reason for marginal
expected cost to be affected by a change in the water head left in
the reservoir after the release and used for power generation.

“ll = 0 if either the second partials with respect to the

releases of the expected social revenue and expected social cost

Moreover,

functions are identically equal or if both partials vanishes. The
latter is consistent with a situation where both functions are
characterized by fixed proportion and there is a perfectly competi-
tive market for agricultural products.

In the second case, where T reflect the aggregate expected profit

of downstream users who own the water in the reservoir, m 2 may be

1
zero if the marginal profitability in agriculture is unaffected by
a change in the stock of water which remains after the release.

Moreover m.,. = 0, if the production function of the downstream

11
farmers is characterized by fixed proportions and that farmers sell
their product in perfectly competitive market.

In the third case, where T is the total surplus, since we are talking

about the areas under compensated demand curves conditions such as

T2

utility from the payoff which arises from release is linear.

case arises if risk neutrality with respect to uncertainty i

agricultural

Proposition 2

a) If assumptions (a) - (d) in proposition 1 hold, then

expected return f

df
by 1. * .
dx| m v} x) - yihs
2) fl(xl;;) 1s strictly concave in X, .

b) 1If- assumption (e) in proposition 1 holds, and

c) 1if x"

d) 1if x°

3) fl(xl,;) is strictly concave in X.

Proof of 1):

The exist

problem depends on the nature of the expected net return functig

the last period £

with respect to x

| shall be shown.

= 0 if the utility is separable and

1

prevails.

1(xl;}—c) has the following characteristics:

= g(x), g 1is concave, and

= h(§) = constant, then

ence and uniqueness of the solution to the two

1 Therefore, in the following, the concavity
1 and, under some assumptions, with respect to

From (25) we have

29

1 = 0 if the margimnal
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Proof of 2).
m-rx1+r:y§E Differentiating (52) with respect to X|s we have
- n. 5
£,(x3%) = Ty, X - ) +B J)( v(x )¢ de
0 2 dy*
df 1 (5
—-—l=(’ﬂ' 'ﬂ)'—'+“12'
+ry 2 11 12 dx
[ x" -TX; r:,l dxl N
+ B .L, v(rx +e - ry’l*)(b de
x orx +ryl Also, from (43)
(=] o
u.
+8 v(xu)¢ede -8 cl(rx:L +e - ryi - x )¢ede dZG
u U_ *
X -rx1+ryi X rx1+ry1 L - (“11 _"21)
dy=]'¢. dyl .
-rx.try¥ — = 5
17791 = .
D ix. - * ~cex) (50) 1 a6,
-8 J)(cz(x -rx - e + ryl)q)ede c(x) .
0 ! dyl
Therefore, . xu_er_H_YI iy " ) h
vy _—dy - ry¥)¢ d tituting for —= in eq. (53), Wwe have
f.f..:.L. =T —y—l + (- 1+ Ly [-Br v'i(zx, te 1‘)'1)¢e e Substituting dx}
1 dx m_ *
dx1 dxl 1 X rxl"'lfy:L ) ) )
a6, d7f) a6y . )2] 9
o i L T B E R S (54)
o dy) dx] dy, .
u
Y(rx, + e - Iy} - x )¢ de
T u C1(. ;L\- ' © "However, (23) shows that
x —rXx,try .
1 1
2
d"G L
1 (55)
m - <0
-Tx Y] ] (51) 2 ST T M2t e
-Br cé(xm-rxl"e +1'Yf_) ¢ede - "2 . Y1
0 or equivalently,
d2G
However, from (24), the bracketed term in (51) equals ( - 1), then | 5 | > = T .
dyl
df (52) Also since “12 > 0, then
1 - y% .
- = ﬂl(y*l’xl Y 1) > My, = T .
! T3> "1 T "2
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Therefore

ae
1@ 2
172 11
dyl

And, hence,

That is, f1 is strictly concave in xl.
Proof of 3):

- m
Also from (24), substituting for x* = g(x) and x

differentiating with respect to X, we have

—Le'@ - ' @[ ey - rx -e +ryplode

X)) - *
df /h (x) rx1+ry1
dx 0

(-}

+ Bg'(;)'[ ci(rxl +e - ry’l‘ - g(x))¢ de
g (;) -rx 1+ryf

(x) - rxy + 1y} w
+ Bh'(;t)f V' (h ()¢ de + Sg'c?c)f v' (g0 de.

X) - *
0 g(x) rx1+ ty
In particular if h' = 0, then

(==} @
c'¢ de + Bg' (%)
X) - *
g(x) rx1+ry 1

df _ _
e -c'(x) + Bg'(x)
g(x) - rx1+ ryi

In general, however,

v'(g(§)¢ede.

32

<0 (56)

= h(x) and

(57)

(58)

a’e, dy¥
5 = " - h"f c_;écpede -Bh'('+r —d_ii_) c:.,:qbede
dx
dyi
+ Bh'(h' + 1 —a-{)(v'(h) - cé(O))‘P(h-rxl

+ Bg"f cquede

3
+1y1)

ot a2 dyls
- r—— ”n
Pel(e’ + = di)fcl‘bede - Bg'(g'+ r ) (v' (@)
+ ci_(O)q)(g- rxl+ ryf)
+ Bl "f v'¢ _de + [h']zf v'(¢ de
e e
+ sg"f v'g de + [g']zfv“tpede. (59)
dy* dy}
It can be shown that g' + r Tl > 0 while h' + r — is ambigpous,
dx dx
a%s
which makes the sign of — 1 jndeterminate. However, it ig opvious
dx
d2f o .
that 5 < 0, under assumption that x is a constant. Thus|, under
dx
in [ (as

plausible assumptiouns, fl is shown to be strictly concave

well as )&) .7

7
2
df1

dx2

is also negative if h' = g' = constant.

33
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Proposition 3
Under the assumptions of proposition 2, there exists a

unique optimal size x{ for the reservoir which maximizes fl(xl,;).

Proof :

If it is assumed, as in the first model, that 3 Yo such that-

Trl(yo) = Oand t:hat3x0 3 v'(xo) = 0, then x is bounded by 0 and yo + x .

0
This implies that f is defined on a compact set 0 3'—'§ y, + x,. If

0 0
the assumptions of proposition 2 hold, then f1 is a strictly concave
function in x defined on a compact set.. Therefore, it must have a
unique maximum ;I.

This ends the analysis of the one-period problem. It appears
that the inclusion of the water stock in the profit function, although
it affected the optimal policy and size of the reservoir, did not make
substantial difference to the technical conditions needed to get the
usual inventory dynamic programming results. Inspecting (33) and (40),
the conditions which insure interior maximum, enhance this observation.
Certainly, for a neoclassical profit function, the finite terms n2(0,xi)
and nz(xl,O) do not make either of the inequalities (33) and (40) more
stringent or relaxed. For any other concave function, the inclusion
of the water stock makes (33) more stringent while relaxing (40). Thus,
the concavity of m with respect to the water stock and that ﬂlZ >0

are all the additional requirements needed to get the usual inventory

dynamic programming results.

Summary of the One-Period Problem

It has been shown that a unique solution yt(xl) for

functional equation (1) exists and is unique if

1) v' &Y > -¢1(0)

2) v’(xm) f_cé(o).

Moreover, it has been shown that

dyf
a) 0<—= <1
dx1 -

b) f1 is strictly concave in x

1°
Furthermore, it has been shown that if

3) x'=g),

) T =n(x) O0<h' <g'<r
then
dyI
c) -l<—<0.
dx

In particular, if

5) h' = 0 and g is concave

then
d) f1 is strictly concave in ;; and
e) fl(§) has a unique maximum, if, provided ¥ is bc¢
above.
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The Two Period Horizon

In this case, the continuity equation is8
= - - . 60)
x r(x2 y2) +e + i2 m, (
Define
f,(x,) = Max G, (y,, x, - y.)
272 0<y,<x 22722 72 2

22
where m
x -rx2+ry2
( ) = Max [m(y., x )+BJ f'(m)¢d
G,y x,=y,) = -y X e
27272 72 2° "2 2 1 e (61)
Ofyzsz 0
o]
+ u
B J. fl(x )¢ede
x-rx +ry
2 772
xu-rx2+ry2 o
u
+ B.[ fl(rx2 +e - ry2)¢ede -8B J; cl(rx2 +te -1y, - X )¢ede
xm-rx2+ry2 . X -rx2+ry2
m
-rx2+;y2
- B cz(x -Tx, - e +ry2)¢ede -c(x),
0

8Assume that at the start of every period the manager knows the
actual inflow. However, he only knows the probability distribution of
the inflow for future periods. Then a redefinition of terms and a
relabeling of periods leaves the analysis intact. For example, in the
two period case, x, is the starting stock of water, after observing e,
and correcting for“deficiencies or surplus in the previous period.
Therefore, X, = r(x2 - y2) + e, + 12 - m,. Relabelling e by e gives

x1 = r(x2 - yz) + e2 + 12 - mz, which is the original continuity
equation. However, it must be noted that since e, is now known with
certainty, the decision in the last period is detzrministic, not
stochastic.

.. Moreover, if assumption (3) in proposition 1 holds then,
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Proposition 4
If assumptions (a - d) in proposition 1 are accepted,| the
following results hold:
1) There exists a umique interior maximum y§(x2),

2) y3() < y§@0,

dyg
3) 0<K£1,
2
4) Further, if “11 =T, = 0 then the optimal releasle rule

takes the form

y§(x2) = x, = a,, sz, xm_i x, < <«

32 is a constant dictated by the hydrology of the| stream,

the size of the reservoir and the specific forT cf the

profit function T.

dy;
5) -l<—=<0.

dx

Proof of 1):

When (61) 1is compared with (22), the two expressibng for

the optimal return function in the one period and the two pejiod case

1 1

expression (22). Moreover, since both v

are identical except that f1 replaces v, wherever v, occurs in
1 and f1 are concave} it can be
verified that under identical assumptions, all the qualitatiye results

of the one period problem also hold in the two period case. |In

particular:




dG

dy, - T Gge %y = ¥9) = T (y%) - ,) (62)

m
X -rxzzry2
- Br cpx” - rx, + 1y, - e) ¢ de
0

x-rx +ry2

f'(rx + e

+ Br[ (rx,te -ryz-x)¢de
- - ryz)¢ede

-TX +ry2
B-r/

X -IX +ry2

38

The primes denote the derivatives of the functions with respect to their

dG

arguments. Thus, yf(xz) is defined by E;Z = 0. Similarly,
2
d2G
*—72'= M. = 21, + W, = Brz[f'(xu + cl(0)1¢ (x"-rx_+ry.)
ay? 1 12 7 M3 1 1 e 1
- Brllel(0) - £16™1p, 6" - rx, + ry,)
2 1 e 17
j=
- 2 " u
Brl;cl(rxl te -1y -x )¢ede
-rxl+ry1
xm-rx1+ryl
2 m
- Bf[ cyx” - rx) + 1y, -e)g.de
o .
xu-rx +ryl
+ Br2 £7( 2
. 1 - X + Iy, - e) ¢ede . (63)
x -rx1+ry1

Moreover, at xu, the benefit from releasing the last unit of y§
exceed the marginal benefit from exporting water. If this is o
case, then it becomes profitable to export water rather than| re
to downstream users. Hence,

£ ) = m 3Eh - v e 2 —e](0). (64

Similarly at x', once yf(xm) is released, the marginal benefit

39

(xl) must
ot the

tlease it

from

. cost of

releasing an extra unit of water must be less than the margipa

violating the lower constraint (the price of water import). | If

not the case, it becomes profitable to import water and release¢

downstream users. Therefore,
m m
£60) = m e, x - vl < (). 65

These conditions motivate the same economic behavior as that ii
(33) ; it is not profitable to engage in importing or exporting

the permissable range of x,, X" < x, < x". However, from (§3)

1

conditions imply
2

d’G
22 < 0. (6
d
Y2
Thus, y;(x ) is a regular maximum. Moreover, it can be shown
dG, (0, X ) dG2 (x2,0)
relationsa;— > Oanda—— < Ohold, and are based

2 2
same economic arguments presented in the one period case. Hen

is an interior maximum.

Proof of 2):

To prove that y§(x) 5_yi(x), notice that if v(x) =0, t

this is

it to

1 (32) and
water in

, these

b)
that the
on the

e, y;(xz)

ien
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) dG2 dG1
from (24) and (62), —% < —= everywhere and hence yg(x) < y*(x). See
dy ~ dy 1
Figure 4.
da
dy
dG dG
_2 _1
dy dy
y
) AN
;:\\\\\ 4
Figure 4
dG1

In general, however, if E;—-is evaluated at y;, it can be proven that

dG1 d Gi dGi
E_-l > 0. Since < 0, 1 =1,2 everywhere and T = 0 has only one
v = yk dy 4
Y2 Y2
solution, the following inequality must hold:

yi(x) > y3(0). 67)

See Figure 4. This result has already been implied by the previous

analysis, where it has been shown that

dyi
0<+— <1
dxl

u
v X, <« S'xl <x.

Hence, it is economical to release some of the unit increase in initial
storage rather than retaining the entire storage increase. Therefore,

the marginal expected return from releasing some of the unit increase

in initial storage and storing the rest must exceed the margi

nal

expected increase in salvage value due to the storage of the whqdle unit

increase,
' ' m u
fl(xl) >v'(x;), Vxl, X <X <X
Hence,
xu-rx+ry xu—rx+ry
fi(rx +e - ry)¢ede > vi(rx + e - ry)¢ede. (68)
xm—rx+ry xm—rx+ry
(68) holds because the arguments of both fi and v' lie in the interval
m u
x to x for the specific range of the random variable e define¢ by the
limits of integration.

Comparing the first order conditions in the one period &nd the
two period cases, the previous argument implies that yg(x) ﬁ_yf(x),
Proof of 3):

From (62), it is found that

d2G dy#* d2G

.02 2 2 d
—s A =% e (. ) (69)
4 2 dx 4 2 11 21
Y2 2 /2
It follows that
dy#
0 <« —&= <1, 70D
dx1
Proof of 4):
Notice that if ), = My, = Q, then
dy%
2 J
— =1 (71)
dx2

41
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V5= x, = ay v X,» L <x, < x . (72)

a, is dictated by the hydrology of the river basin, the size of the

reservoir and the specific form of the profit function.

Proof of 5):
1f 5% =g, x®= h(®, 0<h' <g'<r, chen
dy*
-1<—% <o. (73)
dx
Proposition 5
Under the assumptions (a - e) of proposition 1:

df

2
1) E:T; = m,{v5(x,), x, - yz(xz)}

2) £, is strictly concave in x

2 2°
3) 1f, in addition X = g(x), & = h(;), g is concave and h is
a constant, then f2 is strictly concave in x.

4) £,0 > £ ().

Proof of 1);

Differentiating (61), we have

df2 dyg dyg
—2 2 R O, S
praia LT ol Cll LR Y O T SR £ MR )
2 2 2 :
dfy (x), then by th
_1 . - gk * > gk then e
Since &= 'rrl(yf(xl), X yl(xl) and yl(x) v5(x)s y

e L Y

concavity of , —3 = (75)

Proof of 2):

From (74) and (69),

2
2 e
a‘s 2 _ - 2
2 - Imy T (g T )
) d“G Y2
2
*
dy2

This can be shown to be negative, in ‘a manner similar to

is concave in x,.

in the one period case. 2 2

Thus, f
Proof of 3):

Also, if x! = g(x), and x = h(X), then

h X)~rx, +ry* o
df2 _ 2 772 _ _
— = Bh'(x) fi(h(x))q:ede + Bg' (%) fi(g(x))q)e
dx 0 g (;}rx2+ry§
+ Bg' (x) c]'_ (rx2 +e - ryg - g(§)¢ede

%)~ %
g (%) rx2+ry2

x) - *
h(x) TX,+ry%

tha

[«

]

(76)

t employed

- Bh'(%) cé(h(;) -TX, - e + ryi‘)qbede -c'). an
0
Therefore, it follows that
dzf2 dy% _ —
= - Br'(h' + r —5) [fi(h(x)) - cé(O)]'i'(h(x) -l + ryi)
dx dx
dy% — —
- Beg'(g' +1r—=) [£(g(x) + Ci(O)]dJ(g(x) -rx) + ry})
dx

dyi
-Bh'f cé¢ede - Bh'(h' + r E‘(_) [c;¢ede

43



44

dy#
1
+ Bg"f cig de- Bg'(g'+r ﬁ) fc'l‘¢ede

+'B "[fi¢ede + s[h'lzf f]oede
+ Bg"f £19 de+ B[g‘]zj £ ¢, de. (78)

In particular, if h' = 0 and g is concave, and since fi(g(§D‘+ ci(O) >0

and fi(h(;)) - ¢,(0) < 0, we conclude that

d’s,
—- < 0 (79)
dx

i.e. f2 is strictly concave in X.

Proof of 4):

f1 and f2 can be rewritten as follows:

fl =Max [ T+ E {V}]
Y1
£, = Max [T+ E {fl}]

Y2
where V is defined as in (38). An equivalent expression for f2 is
£, = Max [7 + Max {r} + Max E{V}]
) Y1 Y1

= Max [f1 + Max {w}]
Y2 Y1

hence
> f . (80)

Proposition 6

Under the assumption of proposition 3,

1) Ja unique optimal size';g for ‘the reservoir which maximizes

the total expected return fz(;);
Xk > xF
2) x¥ > x%.
Proof of 1):

In this case, iz is bounded below by 0 and above by

2y0 + Xy Thus, fz(;) is defined on a compact set. However f2(§),

under the assumptions of proposition 4, is strictly concave.| Thus,

fz(x) must posess a unique maximum xf on its convex and compsact domain.

Proof of 2):

. — df2 df,
x2 and x1 are defined by = 0 and & - 0 respectively.

or, equivalently by

-c'(x) + Bg' (x) j c:;_(rx2 +e -ryh- g(;)d)ede

x)- *
g(x) rx2+ry2

+ Bg' (x) /fi(g(;))dhede = 0 . '81)
g(;)-rx2+ry§

and

-c'(x) + Bg' (%) /—c:]'_(rxl +te -ryf- g(;))cpede
g(x)-rxl+ryf
+8g'(x) | ¥(gGgde = 0. (82)
g )-rx +y¥

45



Since yg(x) <y]’f(x) , therefore

' - vk - 1 - ryk -
cl(rx +e ry} gx)) > cl(rx + e ry} g(x))
and

g(x) - rx + ryg <g@) - rx + ryf .

As a result

(=] @

B ci(rx +e - ryi‘ - g(;))tbeide
g(x)—rx+ry§‘

_c]'_(rx +e - ryf-g(;))(pede.
g(X)—rx+ryi

Also, since
£1g() > v' (&)

then

=] . ®

£1(g(x))p de >
g (x) -rx+ry§

v'(g ()¢ de.
g(;)-rx+ryi

From (81) and (82), these results imply that

af (x%) df, (x*) _ _
— > — V¥ o <x* < 2yo +x, (83)
dx dx
and hence
':E; > x¥. (84)

The n Period Problem

For an arbitrary n, the continuity equation is given by

= = + + -m .
xn-l r(xn yn) en j'n mn

46

Define

fn(xn) = Max Gn(yn, x - yn)

where

m
X -rx_+ry
/ n mn
Gy ,x -vy)= mly»x -y)+B [ £ _,()pde
0

u

© X -rx_+ry
u n “n
+ foo(x de +
B a1 X9, B

u m

X -rx_-+try
n °n

fn_l(rxn +e - ryn)gbede

X -rx _+r
n Yn

u
-8 ]u cl(r:xn +e - Ty, - X )¢ede

X -rx_+ry
n °n

xm—rx +ry
B0 -
- B cz(x -rx -—e + ryn)¢ede - c(x).
"0

dG
Then y: (xn) is defined by . = 0 .or equivalently by
2

Lo}

- - - = 1 -
'nl(yn,xn : yn) ﬂz(yn,xn yn) Br [cl(rxn +e

X -rx_+try

n 'n

xm—rxn+ry
- ¢ - B - -
x )¢ede Br fcz(x 23 + ry, - e )¢ede
0

u
rx r:xn+ryn
- ' -
Br fn—l (rxn +e ryn)¢ede.

m
X -rx_+try
n °n

3

b id

.86)
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Using a straightforward induction argument [31], the following propo-

sitions can be proven:

Proposition 7

If assumptiocns (a - d) in proposition 1 hold, then

1)

2)

3)

4)

3 a unique interior maximum y;(xn)

dy*
0<-—=2

dx <1
n

ya() < yx ()

m

11 - M2

the form

Ifw 0, then the optimal release rule is of

]
¥
|
w

y*(x )

where an is a constant dictated by the hydrology of the :
river basin, the size of the reservoir, and the specific

form of the profit function.

Proposition 8

Under the assumptions of proposition 1 (a - e), if g is concave

and h is a constant, then

1Y)

2)

3)

fn is strictly concave in X, and x

df
__n
= * - *
ax_ wz(yn(xn), X yn(xn))
] > 1]
fn fn—l.

Proposition 9

Under the assumptions of proposition 3:

1) J a unique optimal size ;: for the reservoir which maximizes
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the total expected return fn(;)
: X X*
= 2) x:{ > xn_l.
.The Infinite Stage Process
In this section the following functonal equation wiJl be
discusseq.
xm—rx+ry o
f m u
f(x) = Max [m(y,x-y) +BJ) f(x )¢ede + B f f(x )¢ede
<
Ogy<x 0 xu—rx+ry
o xu-rx+ry
- B fci(rx +e -1y - xu)¢ede +8/) fx+e - ry)¢“de
xu-rx+ry xm—rx+ry
xm—rx+ry
o _ .
-B cz(x - rx - e - ry)¢de - c(x]1. En
0
Proposition 10
There is a unique solution to (85) which is boundef jfor x in
any finite real interval. This solution, f£(x), is continuous |and
concave.

The proof of this proposition is well known and follows
closely the development given in Bellman [31]. Define the gefuence
{fn(x)} as follows:

fn+l(x) = Max G (y,x -y, fn). n=0,1,2,...
0<y<x
‘where fo(x) = v(x) and fo(x) is continuous over x > 0. Then it can be
shown that Lim fn(x) = f(x) exists for x > 0 and is thé solution of

n>ow z

f(x) = Max G(y,x,f). Moreover, the convergence of fn(x) is upiform.
O<y<x

49
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Therefore, since each function in the sequence is continuous yg(xn) has an upper bound equal to X and a lower bound equal|to 0. It
and concave, f(x) is continuous. To show the similarity of (87) to has also been shown that the sequence {y:} is a non-decreasinj; sequence
the problem discussed by Bellman [31], the following theorem is stated: such that
Bellman's Theorem ' yi(x) 2 y50) 2 y§(x) 2 ....

The functional equation Since each yf is bounded below, y:(x) converges to y*(x) [26], where

£(x) = Min [k(y - x) + z [_‘-p(s-y)cb(s)ds + £(0) f¢(8)d3 y*(x) is the solution of
y2x y Y m
X -rx+ry
Yy . m
+f £(y - s)¢(s)ds]] 'nl(y,x - y) = my(y, x-y) - Br cé(x - rx + 1y 7 e)d de
0 0
(88)
has a unique solution which is bounded for x contained in any finite ‘u
© X -rx+ry
interval. The solution f(x) is continuous. Assumptions: + Br ci(rx +e-ry- xu)¢ede -pBr|] f'(rx+e - ry)qeda = 0.
. u m
- -rx+
K(y-x) and P(x-y) are convex. x —rxfry x TExTry
Proposition 11 The proof of the comparative statics results in the infinite gtage
In the case of an infinite planning horizon and under the process is similar to the proof previously outlined for the| tyo period

assumption that yg(x) exists and is unique for any arbitrary ni *i case.

Proposition 12
1) there exists a unique optimal policy y*(x) where

There exists a unique optimal size X* for the reseryoir which
yl’;(x) > yR(x), < x<xt maximizes f(x; x).
Proof:
*
2) 0<% <
dx — Since the assumptions of the model make each member|of| the

3 -1< dy* 0. sequence {fn(;)} concave, £(x) is also concave. The next stef| is to

prove that % is bounded. Assume as before that there exist yo such

Proof: ‘that 'Hl(yo) = 0 and ;0 such that 112 (;0) = 0. The discounted [gross

m u,
Since for any arbitrary n, we have x < x_ < x ; it follows that
- n revenue realised must.be less than the gross revenue when the |[reservoir
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1s always operating at yo, because of the cost of importing and

exporting water. Thus,

(Y, %) -
realized gross revenue < —0 0 vV x.
(1-1)
= T(y,»%,)
= c(x) _ 0’7o’ |
Define X by a-1) o)
then
realized gross revenue < c(x) . vV x.
(1-r)

That is if x > ;, then the realized net revenue must be negative and

hence ¥ bounds x.

The Long Term Distribution and
the Case of the Linear
Decision Rule

The process we are dealing with is represented by the continuity
equation

xp—l = rxp - ry* + eP + iP - mp.
This is a discrete time, continuous state Markov process. Therefore
the usual "ergodic theorem" could not be employed to find the long-run
distribution of the water stock.

In this section it is shown that the long-run distribution

exists and can be derived for a special class of objective functions.

This class of functions corresponds to the case when 'nlland'n12 = 0.

Proposition 13

If the assumptions of proposition 12 hold, and if
then there exists a long run distribution for the water st
reservoir given by

P(x = x) = o(x" + ra)

P(x = x") =1 - ¢&" + ra)
and x ~ ¢(x + ra) for x, x*< x < x°

where a is a constant.

Proof:

We have seen that

i >0 < m =0 or rx - ry*(x) <x®
P P P Y P +eP

e>e <% - rx +rys(x .2
P P P
Moreover, we have seen that separability and linearity of

linear decision rule of the form
10

* =x - a
y (xp) >

Then, from (89) and substituting for y*(xp) from (90), w
ip >0 <> e <x® - ra.
Therefore, it follows that

P(i, > 0) = ¢(x" - ra) .

9This is Iff statement, because importing and expo
are not optimizing decisions, but rather a penalty imposed
stochastic nature of the inflow to correct for deficiencie
after the decisions are taken.

loNotige that a is the same from period to period ¢
long run for the infinite planning horizon case. However,

case y;(xp) = xp - ap.
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In a similar fashion, it is pessible to show that

P(mp >0) =1- &x" - ra) (93)
aud o
- u - - - .
P(ip =0, mp 0) = ¢(x ra) - ¢(x ra) (94)
However, we know that
m _ .u
P(i>0) = P(xp_l =x), P(nb >0 =P(x =x) (95)
and
m u
= = = X
P(ip o, mp 0) = P(x < xp_1 < x)
-Therefore,
P(x . = %) = &(x" - ra) (96)
p-1
P(xp_l =x" =1-¢kx" - ra) (97)
and X1 is distributed as ¢e(xp_1 -ra) x° f_xp <x" . (98)

(96-98) show that the distribution of x

u
1 has two mass Points at x
p-1 "

and x and is continuously distributed with ¢e(xp_l __ ra) in the range

of (x®, x). That is, the distribution of x is given by

and

Q(xm+ra) at x = x"
o (xtra) - (99)
1 - ¢(x"ra) x= x

KU

E(x) = xm<l>(xm - ra) + <~ 1 - @(xu -ra)} + [ x (x - ra)dx.

m
X B

The expression above could only be evaluated if a specific form for the

profit function is postulated.

It is also necessary to simulate the

dynamic program for a large number of periods p until

(ap - ap—l) +0 .

Using the simulated value of a and postulating a specific form for the

2
inflow distribution (e.g. log-normal or X ) after calibrating with
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“actual data, the solution is found by:
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(1) select the optiJal policy,

given a particular physical size of the reservoir x (i.e. y# = x-a(x));

(2) obtain the optimal size of the reservoir x*. The selec
defines a exactly; therefore, the distribution of x is dete

so is E(x).

Conclusion and Summary

tion of x*

rmined and

It has been demonstrated that chance constrained programming can

be incorporated within the usual dynamic programming formulhtion by

transforming the chance constraints into a penalty fumction| that is

added to the criterion function to be maximized. Moreover,

it has been

found that allowing for importing and exporting of water fxom the

reservoir provides an economic rational for the penalty funiction and

provides acceptable economic interpretation to the technical require-

ments for the solution of the maximization problem.
evaporation losses, the managef of the reservoir maximizes
function which reflects benefits from water releases to agyd
from the water stock in the reservoir for power generatipn
the chance constrained dynamic programming, the manager sol

dual problem of optimal operating policy and optimal size ¢

ervoir.

Allowing for

a criterion
iculture and
Within

ves for the

f the res-

The procedure of maximization is similar to thjt of two-step

programming in that water import and export is considered & residual

decision to correct. for the violation of the constraints.

Specifically,

it does not pay to engage in importing or exporting water jnless vio-

lation of the constraints occur as a result of implementing the optimal

|
policy.

These conditions, together with concavity of the kriterion
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function and convexity of the penalty function, are found sufficient to
get all the usual dynamic programming results, such as the existence,
uniqueness, monotonicity, and convergence of the optimal policy. It
has also been demonstrated that the usual dynamic programming results
extend to the optimal size of the reservoir under these and some other
plausible conditions. Assuming the criterion function to be separable
and linear in water releases, the optimal operation policy is found to
be linear. Moreover, under this condition, it has been demonstrated
that the long-run distribution of the water stock in the reservoir
exists and is derived. Finally, another model is presented in the
Appendix which incorporates the chance constrained problem into a
planning model by finding a deterministic equivalent to the chance
constraints. It has been demonstrated, that for an infinite sized
reservoir, the optimal operating policy exists and is unique. Moreover,
a formula for the long-run distribution of the water stock is derived

and some bounds on the expected value are developed.

4.

5.
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