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Historically, rivers have been the focus of many international 

conflicts, especially in the arid and semi-arid areas of the world. 

However, within a particular river basin, water was relatively abundant 

and there was generally enough to meet the various needs of the basin's 

population. Water usage was limited mainly to human consumption and 

irrigation. 

The growth in population and rising level of industrialization 

in many arid and semi-arid parts of the world are increasing the demands 

for water. However, no corresponding change in the world supply of 

river water occurred. It has become a scarce resource, and active 

planning for water utilization is under way. 

An important aspect of this planning is the dtstribution of the 

benefits of the rivers over time and among uses and users. Increasingly 

the construction of large reservoirs is becoming the vehicle to achieve 

and integrate these diverse objectives. Very few reservoirs are 

normally dedicated to achieve a single objective. Invariably, irriga-

tion, power generation, flood control and recreation are among the 

objectives listed for any dam project. That does not mean there is no 

hierarchy imposed on these objectives by the planner. In fact, there 

may exist one or two prime objectives. The absence of explicit state-

ments on this hierarchy has become a political expedient to appease 

the various groups affected by the construction of the dam. Model 

builders have reflected this hierarchy by directly including some 

variables in the objective function and others are formulatkd1as 

constraints. 

Some of these constraints are "soft," in the sense thij.t they 
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focus on irrigation and power generation with soft constraints on the 

stock of water in the reservoir. These soft constraints rJflect a 

the 

trade-off between flood control and recreation purposes on lthe one hand 

and salinity control in the downstream on the other. 

There are two design considerations. in the process lofl reservoir 

construction: 1) the optimal reservoir size, and 2) the o�timal 

ope<ating <ule of the <e•e�i<. Although �ny eehola<e [J2,l l5] have 

pmiouely pointed ou< that the two eonsid=ati�• ••=ot + r=•ted, 

many attempt to separate the dual decisions of optimal siz, ·a d optimal 

operating policy. The model in this paper will recognize �he 

"jointness" of the decisions and treat them in a unified lner 

within the framework of dynamic programming. 

An often neglected aspect in the design of impound�ngl reservoirs 

in arid and semi-arid regions where evaporation losses 

is the trade-off between two opposing considerations: 

1. There are benefits from assuring a more regular fi 

of water and hence a "better" distribution of bh 

benefit over time and among users and uses. 

ificant 

river 
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2. There are also costs imposed by the evaporation of 

the impounded water in the reservoir. These costs are 

significant. As Quirk and Burness point out [22] for a 

minor river such as the·Colorado with an annual mean runoff 

of 13 . 5  million acre-feet per year, evaporation losses from 

existing reservoirs have already reached as high as 1 . 5  

million acre-feet per year. 

To produce an outflow pattern satisfying a given economic 

objective, the preceding trade�off is taken into consideration in 

ascertaining the relationship between the hydrology of a stream and the 

optimal decis�on rule. The optimal size of the reservoir which is 

consistent with the chosen operating rule will be derived. Moreover, 

th� long-run distribution of the water stock in the reservoir when 

the profit function from the reservoir operation has a special form 

will be derived. 

Uncertainty will be revealed as the single most important 

factor affecting the optimal design and operation of a reservoir. 

Formally, this uncertainty may be reflected in the objective function, 

the constraints, or both. · In the case where the uncertainty is reflec-

ted in the constraints, there is a possibility that optimal decisions 

will lead to violation of the constraints because of very high or very 

low values of inflow. This is the basic problem posed by the nature 

of the random constraints. 

At least two different types of characterizations are 

available in the optimization literature to cope with the random 

nature of the constraints. First, there is the penalty function 
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approach [27] which introduces penalties for violating the random 

constraints. This is accomplished by adding the expected pin�lty costs 

to the objective function. 

Secondly, there is the chance constrained character�zjtion [ 5 ] , 

[61 which puts a reliability interpretation on the constrairl t such as 

Prob (b >. a'y ) >Ai' 0 <Ai< 1, i = l, ... ,m 1(6)  
i- i i - - -

Where yiis the decision variable, Ai is the reliability fact9r and bi 

is a function of a random variable. The Ai can be varied iaJametrically 

I to account for the different reliability levels (alternatir.e�y, a 

reliability term can be added to the objective function and dan be 

solved for optimally) . 

In this characterization, the chance constraint ls lreduced 

to an equivalent deterministic constraint [ 6 ]  by the use ol the 

marginal distribution function of bi: �(bi) .  The existence l of a 

fractile bi such that 

P(bi 2:_ aiy) 2:_ Ai<=> bi(l - Ai) 2:_ aiy (10) 

makes this reduction possible. To facilitate this transf,rmation in 

the reservior models, the optimal decision rule is restrictetl to the 

class of linear functions [16, 17, 19]. Additionally, it I isl sometimes 

assumed that the random variable is distributed normally or !truncated 

I normal at zero [7, 28]. This technique suffers from a numbelr of 

shortcomrnings: 

1 .  The continuity equation, used to develop the !deterministic 

equivalent for the chance constraints and the steady stat:le distribution 
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of the stocks, ignores the overspill. The overspill occurs because the 

constraints may be violated in these models. 

2. The net return function in these models does not reflect the 

probability that the constraints could be violated. Violation could 

occur as a result of the optimizing program, yet the net return is not 

affected. This condition raises a question regarding the incentive 

structure in these kinds of models. 

3. The ad hoc specification of the reliability levels C\' s) 

raises objections from many planners and politicians. No decision-maker 

would risk making an explicit statement on reliability. The problem of 

the choice of the weight wi given to the reliability term in the 

composite objective function persists, even if the choice of Ai's is 

included within the optimizing framework, as in the model shown in (7-9 ) . 

The model in this paper uses a dynamic programming approach 

in conjunction with a penalty function. The penalty is a convex 

increasing function of the magnitude of the violations. These penalty 

costs differ from the fixed accounting costs employed by Askew [2, 3]. 
Accounting costs are never actually intended to be paid, but are merely 

devices to ensure optimal behavior by the management. Penalty costs 

in this model, however, are actually economic costs imposed on the 

manager to correct for stock deficiency or surplus which results from 

his decisions and the random flow of the river. 

A Dynamic Programming Model with Penalty Function 

In this model the penalty function approach is utilized to 

account for the possibility of violating the constraints within a 
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dynamic programming framework. These penalty costs are mo,e than 

"accounting" costs used to insure that the dam manager takes �he imposed 

"soft" constraints into consideration in arriving at his dJcision rule 

[2], [3]. They are costs actually paid by the dam manager lfo� importing 

or exporting water to compensate for violating the constraintp, 

Although no a priori form for the optimal decision lrulle is 

imposed, it will become evident that this formulation implies! a simple . I "one part" decision rule with "predictable" characteristics. I Further, 

I the linear decision rule, which implies constant optimal stocJk. policy, 

I will be shown as a consequence of certain restrictions on thd form of 

the profit function. I 
stock of

1:a:::1

i:1::e

b:e:::�i:h:�::: �:g

:::n

b:i:::::::ir:�:0:h:he 

linear decision rule applies. This formulation will not slf�er from the 

I shortcomings of the chance constraints-deterministic equival�nt approach. 

Moreover, the analysis will be expanded to include profits lfrbm the 

generation of electricity directly in the profit function andl will 

I be shown to affect the optimal policy and the optimal rese�volr size. 

The Objective Function 

The manager of the reservoir is maximizing at eJer� period, a 

concave objective function of the form 1T(y,x- p) where 1T12 l.:_t, Y is the 

·release at the start of the period and x is the stock at the tart of 

the period. The first argument of the objective function, ly,I reflects 

the payoff to agricultural downstream users from releases arid lthe second 
I 

argument reflects the payoff from power generated by the eledtrostatic 
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head provided by the stock of water after releasing y .  

The objective function , n ,  may b e  interpreted in various ways: 

1. In a socialist economy , TI might be the criterion function 'provided 

by the central planners . n is , then , the expected net social 

revenue which equals the expected revenue minus expected cost ,  

all inputs and outputs being evaluated at prices set by the 

planners . The manager carries on the maximization procedure 

treating these prices as parameters . Under ideal conditions , the 

prices for inputs and outputs set by the central planners would be 

prices consistent with a Pareto optimum. In this special case , the 

optimality rule derived from the maximization procedure is also 

optimal from the point of view of welfare maximization. Under 

more realistic condi�ions , the criterion function simply reflects 

the central planners' evaluation of all the alternatives in the 

economy . 

2. In a private economy operating under the appropriative doctrine , 

property rights to water are held by users of water. A possible 

situation is one in which the reservoir manager is instructed to 

operate so as to maximize aggregate expected profits , En , of down 

stream users where n =  {}:ni +nE } and ni is the profit of downstream 
i 

user i and TIE is the profit from power generation . Such a scenario 

is approximately the situation for the Colorado river where down-

stream users hold appropriative rights to the water in the reser-

voir and the Bureau of Reclamation operate the reservoir system for 

them under rules that derive from the Supreme Court decision in the 

famous Arizona v .  California case (1963) . Note that maximization of 

3 .  
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aggregate profits of downstream users is generally incons 

Pareto optimality , particularly when there is market pJw 

stent with 

I 
as in the case of the Imperial Valley Irrigation Distric 

' e . g . , 

, a major 

force in the winter fruit farm market of the U . S . , and l t 

user of Colorado River water. The situation gets worse Jf there 

I are externalities in the agricultural and power markets dr if there 

are other imperfections in these markets . 

TI may be interpreted as the payoff in terms of social r· e!fare 

associated with operating the reservoir . In this case n lis the 

total expected surplus which equals expected consumer'i �urplus 

plus expected producers' surplus . The use of total ex.peeted 

surplus involves the usual difficulties of partial eqjilibrium 

welfare economics . Such problems include the need to lust compensated 

demand curves , aggregating areas under demand curves Ive all 

consumers , the interactions with other markets and the like . There 

I are further complications posed by the multi-periods Jature of the 

problem: the lack of contingent claims markets to interhalize 

I uncertainty with respect to prices of future inputs aid putputs 

means that we have the added problem of dealing with exp�ctations 

I ! involving diverse subjective probability distributions . I Finally , 
I 

if there are many reservoirs taking only the output of t:ihis parti-

cular reservoir into consideration in measuring social welfare . I is inappropriate . In this case , we are only considerlnt the output 

of a part of the industry rather than the whole . This 1eads to 

special problems of measuring consumers' surplus . 

4 .  TI may be the utility of the reservoir manager over prbf!ts from 
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the operation of the dam. The concavity of n introduces risk 

aversion directly in the analysis. No social welfare argument may 

be made from this interpretation unless.we consid�r this reservoir 

as part of a competitive market and no imperfections in any input 

and output markets. In this case, the usual classical welfare 

arguments applies to the economy and efficiency and unbiasedness 

are assured. 

We pointed out that interpretations of the properties and results in 

this chapter differ according to how n is being interpreted. However, 

we shall show that from a technical point of view all that is needed 

to derive the formal results are concavity and/or linearity, and 

separability and/or the nonnegatively of the second mixed partials of 

the objective function. 

The Model 

The manager of the reservoir is maximizing at every stagel p, 

1 < p < n, a profit function n(y ,x - y ), concave in both its - - p p p 
arguments such that n12 � O. The maximization is subject to an upper 

constraint xu and a lower constraint xm on the reservoir storage level. 

The optimization is conducted as follows: 

l. The manager observes the reservoir level, xp, at the start 

of the period. 

2. He calculates the optimal release in the period Yt• 

1 
Following dynamic programming tradition, p is counted in reverse order 
from the terminal point. 

3. 

4 .  
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0 < y*(x ) < x , taking into consideration the I f41lowing - p p - p 
factors: 

a. The one period objective function2. 

['IT(Yp'Xp - Yp) - C(x) ] where c(x) is the s�r:l.ctly 

convex annualized cost of construction; 

b. The costs of violating the upper and lowe� constraints . I c1(z) and c2(z). Each cost is related, rjsp�ctively, to 

the cost of disposing or importing water to !compensate 

for excesses or deficiencies in water stota�e; 
The probability distribution of the infloll �l(•); 
The evaporation rate k. 

He implements the optimizing decision Yt by rel�asing water 

c. 

d. 

from the reservoir. 

Toward the end of the period p, the manager has . I information to observe the inflow ep· Then he. 

following decisions: 

enough 

kes the 

If, as a result of his decision, the water le�ei in the 
reservoir falls below xm, he imports water atl t&e cost of 

c2(z) to make up for the deficiency (z). He lthen starts 

period (p + 1) with a water stock equal to xm. 

assumed to be a convex and increasing functior 
c2 (0) = 0 and cl (O) is finite and positive. ii 

holds whether a constant or increasing net priic 

2{z) is 

f z with 

assumption 

for water 

is assumed. The case of rising net price of �a�er is being 

2when the profit function is separable, it will be exoressed as: 
g(y) + h(x) . 
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considered to account for the increasing difficulty of 

importing larger amounts of water from further locations. 

See Figure 1. If, however, the optimizing decision results 

in water stock exceeding xu, the manager disposes of the 

excess water (z) at the cost of c1(z). He then starts the 

next period (p + 1) witn a water stock equal to xu. c1(z) 
is assumed to be a convex function of z with c1(0) 0 and 

ci(O) finite. This is consistent with a situation where 

the export price of water net of transportation cost is 

constant or�decreasing because of the increasing difficulty 

of marketing larger quantities of water. The net export 

price may eventually be negative. See Figure 2. The 

sequence of events and decisions are illustrated in Figure 3. 

c2(z) 

PI � + 

z z 

P I /""' ,,,»IL_ + 

z z 
Figure 1 

cost/unit 
export 

+ 

z 

net cost of 
violation 

cost/unit 
transportation 

+ 

Figure 2 

13 

cost 

z 

c1(z) 
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The Continuity Equation 

This is the mass balance equation for water in any period p ,  

1 $ p Sn , and is given by : 

x p-1 r (x - y ) + e + i - m p p p p p 

xp ep xp-l ep-l xp_2 

(17) 

I I I � I 
0'V D V o  'f Time I , � p-1 

t yp-1 

y residual p decision i or m p p 

Figure 3 

where: r = 1 - k and k is the constant evaporation rate , i is the p 

amount of imported water , m is the amount of exported water and p 

x is the level of the reservoir at the end of stage (p + 1) and p 
after implementing the importing and exporting decisions . or; 

equivalently x is the water stock at the start of period p .  p 

If (a) i p 

and i p 

> 0 then mp o ,  x p-1 

m = x - rx - e + ry p p p 

m = x 

u 
If (b) m > O then i = 0 , x = x p-1 

and 

p p 

m = rx + e p - ryp - x p p 
u 

(18) 

(19) 

If (c) i = m = 0 then x 1 = rx 
p p p- p + e P - ryp . (20) 

15 

A concave salvage value function of the terminal stock of water 

I v(x) will be added to account for the concern of the planners! for future 

generations . v (x) will also prevent the use of water to tJe noint where 

its marginal profitability is zero . Moreover ,  it will be lsslumed that 

the manager does not import or export water unless he mus t i' I In the 

static case,  this implies that the marginal salvage value at xu must not 

1 u I be less than the marginal benefit from exporting water v' (i
m

) � -ci (O) . 

It also means that the marginal salvage value of water at x must not be 

greater than the marginal cost of importing water v'(xm) �lc�(O) .  

Clearly, i f  these conditions d o  not hold, exporting and i�o 

becomes profitable and should be included in the optimizing 

the problem. Whether to import or export water, in this Jod 

meroly a re•id�l deci•ion taken at the end of �ch perio� . 

The lines of this analysis will follow the traditio 

ting water 

ramework of 

1, is 

1 methods 

employed by dynamic programming formulations [12] .  First , ! the existence 

and uniq�eness of the solution for p = 1 anq p = 2 and thl' ctncavity of 

the expected net discounted revenue functions will b� estl 1 shed. This 

will pave the way for an inductive proof for the existence alid unique­

nes• of th• •oluti� to the n-period problem. Next, it �lll be •h� 

that for an infinite period problem the sequence of  the expected net 

discounted revenue function converges under the assumed rjgu�arity 

condition• . Thi• e•tebli•he• the exi•tenc• �d uniq�nesJ of the 

solution for the infinite period problem. Finally , maxim:llzation of the 
I 

n-period expected discounted net revenue function will defin� the 

optimal s ize of the reservoir • 



16 

The One Period Problem 

Let f1(x1) be the expected revenue from the release of 
an optimal quantity of water including revenue from .the hydroelectric 

operation of the reservoir. Let 

f0 (x0) = v(x0) 
(21) 

where v(x) is the concave salvage value function indicating the worth of 

the terminal stock of water to the future generations. 

Define 
f1(x1,x) Max Gl (yl , xl - yl; x) 

O�y1�x1 

xm < xl � :t1 
m 

where 

G1 <Y1•x1 - Y1•x) I x -rx1 + ry1 
"'hr(y1, x1 - y1) + S v(xm) cjiede 

0 

u "" Jx - rx1 + ry1 
+ (3 v(rxl. + e - ry1)cpede 

m x - rx1 + ry1 

+ Sf 
u
v(x�cfi de 

·x - rx1 + ryl. 

- S i""
c 1 (rx1 + e 

x - rx1 + ry1 

- ry - x·�A. de 1 'fe 

m x - rx1 + ry1 
Si Cz(xm - rx1 - e + ry1) cp ede] 

We have the follo\1ing proposition: 

c(x}. 

(22) 

(23) 

Proposition 1 

If a) n(y,x-y) is concave in the first argument 
strictly concave in the second and n12 

b) · c1(z), c2(z) are convex and c1(0) = 
u c) v'(x ) � ci(O) ;  
m d) v'(x ) < c2(0); 

where the primes denote the derivatives of the functions 

to the arguments then : 
1) there exists a unique interior maximum 

2) 

Moreover if 

e) 

then 3) 

Proof of 1): 

for G1(y1,x1 - y1) ;  

dy* 
o < --1 < 1 

- dx1 -

XU = g(x), Xm = h(X}, 

0 < h' < g ' < r 

dy! 
-1 < --=- < 0 

dx -

From (23) we have: 

and 

dGl 
dyl 

= nl - n2 -

xm - rx1 + ry1 

srf c2<xm - rxl + ryl - e)cjiede 

0 
u x - rx1 + ry1 

srf 
m 

v' (rxl + e - ryl)cjiede + 
x - rx1 + ry1 1"" c'(rx + e Sr 1 1 

xu - rxl + ryl 



The primed functions denote their derivatives and all functions 

- 3 
are parameterized by x. The optimal release policy Yf Cx1) is 
defined by 

dG1 
- = 0 dyl 

(25) 

Second Order Conditions: 

d2G 1 .. - 2-dyl 

4 To show that Yf (x1) is a regular maximum, observe that 

2 U I U n11 - 2n12 + n22 - !3 r  [v'(x ) + c1(0)] $e(x - rx1 + ry1) 

00 
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-!3r
2[cz(O) - v' (xm)]$e (x

m - rx1 + ry1) - !3r2 f c]'.(rx1 + e - ry1 - xu)$ede 
xu-rxl+ryl m u 

2 x -rx1+ry1 � -rx1+ry1 
-!3r f c2(xlli - rx1 + ry1 - e)$ede + !3r

2
j m 

v"(xm - rx1 + ry1 - e)$ede. (26) 
o x -rx1+ry1 

3(24)·illustrates the effect of incorporating the stock of water in 
the profit function. Consider Case 1: 1f = g(y) + h(x - y), g and h are 
concave; Case 2: 1f = g(y). Then the expression of (24) in Case 1 is 
less than that of Case 2 by h' > Q, Since the g functions are identical. 
in the two cases then 

dG1 
dyl 

Case 1 

< 
dG1 
dyl 

Case 2 

everywhere. 

This implies that Yf I < y* I However, when the profit 
Case 1 Case 2 

function is separable: 1f = g(y) + h(x), the optimal release policy will 
not be effected when the g functions are identical. 

4consider the two cases 
d2G 1 -2-

ip. footnote 2. 
d2G 

< __ l_ 2 

We have 

dyl 'case 1 
dyl 'case 2 

However, when the profit function is separable: g(y) + h(x), the second 
partial will be the same provided all the g functions are identical. 

We have c�, c2 � 0 by convexity ; v" � 0, n11 � O, n22 < 0 and 
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1f 2 >O by assumption. Also if, as we have reasonably arguedlb�fore, 1 -

and 

then 

u v' (x ) > -ci (O) 

m v'(x ) < cz(O) 

2 d Gl < O. -2 dyl 

Therefore, Yf Cx1) is a regular maximum. 

(27) 

(28) 

(29) 

Assumption (27) implies that the marginal salvage v�l�e of 

the stock of water at xu, at the terminal time, must not be llss than 
the net marginal benefit from exporting water. This must be lthe case 

if the interest of the future generation (represented by the ltetminal 

stock) is to be safeguarded against profitable water export. 

(28) states that the marginal salvage value of the stock of wat 

ac che ce""'-nal ci�, muec noc be greacer chan Che nee �rgi�l 

importing water. This relationship is reasonable if the'planne 
m ·l ::::e:n:0 (:::0:: ::::rt::y�:a:e: :o�s �:�::::�:�::�ti: 

he must. This is because (27} and .(28) also imply that 

r at xm, 

cost of 

is not 

in both 

er unless 

c1'(0) < v'(x1) < c21(0), vx , xm < x1 < xu, which means that itts not - - ·1 - - I profitable to engage in importing or exporting water in the re ssible 

region of x1• I Notice that it does not matter whether c'(O) is positive or 1 
negative provided that (27) holds. 
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To show that Yf (x1) is an interior maximum, it is sufficient 

to show: 

dGl 
dyl

(O,xl) > 0 

and 
dGl 
dyl 

(xl,O) < 0 .  

Or from (24): 

dGl 
dyl 

(O, xl) 

m x -rx 
'!fl (O,x1) - 'lf2 (O,x1) - St J cz (xm�rx1-e)<j> ede 

u x -r� 
-Sr J v' (rx1+e1)<j>�de + 

x.111-rx1 

'd m u x1, x � x1 � x 

0 
00 

Sr J c]_ (rx1 + e - xu)<P e de 

xu-rx 1 

(30) 

(31) 

> 0 

(32) 

This is 

function, which 

trivially satisfied if 'lf{y, x - y) is a neoclassical 

implies that y1!i '!fl (yl' xl-yl)->ooandyL,:i:�'lf2(yl' xl-yl)+oo, 
1 1 1 

Generally, however, the assumption that (30) and (31) are satisfied is 

reasonable in terms of an intuitive economic argument. This is 

demonstrated by rearranging the terms of (32) as follows: 

m x -rx 

'lf1(o,x1) - Sr� cz(;m - rx1 - e)<j>ede � 'lf2(o,x1) 

0 

00 

- Sr�
u 

c]_(rx1 + e 
x -rx1 

u x -rx 
xu)<Pede + Sri v'�vx1 + e)<j>ede. (33) 

x -rx1 

[I'he economic interpretation of (33) is that the net margina
l plofit­

bbility of releasing water exceeds that of storing it
 .at any stock of 

b m d u "di 1 · · I 
'Water etween x an x , provi ng.water re ease is zero. Even 
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m I 
x1 = x , this must be true if large scale damage to the down

stream users 

is to be avoided. To see that this interpretation is correct, jwej have 

to remember that: 

cz(z) 

r: 

v z > 0 

v z < 0 

(34) 

also 

r

o 'd z > 0 

= 0 'd z < 0 
Ci (z) (35[ 

and 

{" 

'd xm � z � xu 

= 0 otherwise. 
v' (z) (3�) 

This means that (33) can be rewritten and the limits of integtat�on 

changed as follows: 



n1(o, x1) - Sr E 
e 

+ Sr E {v' (z)}. 
e 
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{c2(z)} � 'lf2(o,x1) - Sr E {ci (z)} 
e 

(37) 

Equation (37) is essentially what the previous economic interpretation 

asserts. One might notice the peculiar range of the salvage value 

function, but this range facilitates a smooth induction argument. It 

can be clarified by reinterpreting the salvage value function as follows: 

Vfa) ·} m v z, z < xm v(x ) - c2 ( z) 

v(z) v z, xm � z � xu (38) 

v(x') - c1 ( z) v z, Z > XU 

where v(z) is defined as before. Thus, (37) can be rewritten as follows: 

'lf1(0, x1) � 'lf2(o, x1) + E{V(zJ}, e 

which is a formalization of the preceding argument. 

On the other hand, (31) implies that 

"" u x 

(39) 

'lf2 (xl ,O) - srj 
u x 

u Cl (e - X ) + Sr[ v1(e)<jiede > n1Cx1,0
) 

x 
m x 

-srj 
0 

cz(xm - e)<fiede. 
(40) 

This is true if 'If is a neoclassical objective function. Also, using the 

previous argument, .this is eqqivalent to either: 

or 

n2(x1,o) - Sr E {cl(z) } + Sr E {v1(z)} >'lf1(x1, 0) 
e e 

- Sr E {cz (z)} 
e 

'lf2(x1, 0) + Sr E {V(z)} > n1(x1,0) 
e 

23 

(4i) 

(41) states that the marginal profitability of storing the 
last unit of 

water exceeds that of releasing it, assuming all x1 is relelsed. 
Proof of 2): 

In this section, the effect on the optimal release po icy of a 
I 

parametric change in the starting stock of water x1 or in t
he physical 

first order conditions (eq. 24) with respect to x1 gives: 

m 
dy* dy* r -rxl +ry 1 

('lfll - 'lf21)-
1 -.. S r2 ( -1 + -1.) [ c:z(xm - rxl + ryl T 4><fiede 

dx1 dx1 0 

+ c2(0) <ji(x
m - rx1 + ry1) 

u £ -rxl+ryl 
- v"(rx + e 

m 
1 

x -rx1+ry1 

- ry1)<fiede 

u u m m ) + v'(x )<ji(x - rx1 + ry1) - v'(x )<ji(x - rx1 + ry1 

f"" u u 
+ 

u 
cl(rx1 + e - ry1 - x )<jiede + cl(O)<ji(x - rx1 + ry1 

x -rx1+ry1 

'lfl2 - 'lf22 ] 
+-- 2 . 

sr 
C4U 



or, 5 equivalently 

dyt 
dx1 

d2G ---i- - (nll - n21) dyl 
iG 1 -2-
dy] 

From (31) we have 
d2G 

__ l <: 2 dyl. 
nll - n21 � o. 

Therefore, (43) implies that 
dyi O<dX�l. 

1 
Proof of 3): 

(43) 

(44) 

(45) 

u - m -
Let x = g(x) and x = h(x), such that 0 � h' � g' � r 

Differentiating (23) with respect to x and using (26), we have6 

24 

(46) 

dyi 
di 

d2G 1 = -�2 dyl 
13rh'/c"<P de + 13rh'[c2'(0) - v{h(x)) ]<j> + 13rg'/ c"<P de 2 e 1 e 

+ 13rg'[ci(O) + v'(g(x))J<P 

5consider the two cases of footnote 3: 

*
\ 

dyl 
dxl Case 1 

dyi\ � 
dxl 

= 1 - d2G1

1 
Case 2 --2

-
dyl Case 2 

"(l �) d *
I 

� 
1 _ g - d(x-y) = 2 + ;g" d(x-y) 

d2G dxl d2G 1 Case 2 1 
-2- - - 2-

(47) 

d y l dyl 
2 2 Case 1 lease 1 

d G1
1 

d G1
1 

dyf
l 

dyf
\ From footnote 3: -.-2- < -2- the:i;efore dxl 

> dxl ' 
dyl Case 1 dyl Case 2 Case 2 Case 1 

only if d(�:y) is unambiguously negative otherwise it is ambiguous. 

6To keep the expressions simple, we shall drop the arguments 
of the functions and the.integral limits in such expressions whenever 
it is unambiguous to do so. 
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ram (27), (28), and the convexity of c1 and c , the right-hand s[de of 

dy* 
2 I 

(47) is positive, which implies that --1 is negative. Moreover, �or 
di I 

each term in the righ
:�:

and side of (47), there is a correspondlitjg term 
in the expression of ---.}:- with opposite sign and weight equal o leither 

dyl 
�' or;,, which, by assumption, are greater than 1. Thus, com

r

a1

::: 

the 

expression on the right-hand side of (47) with the expression of �-
1 

I dy2 1 

we conclude that 
dyi 

-1 < -=-· < o. 
dx 

(End of Proof of Proposition 1) 

(48) 

This result has been obtained by placing some restrictiiohs on 

the derivatives of h and g; these are 0 ::_ h' ::_ r 1 and 0 ::_ g' J rl. These 

assumptions will be justified on the following basis: 

a) the non-negativity restriction on g'(x) is reasonable. 

because increasing the physical capacity of the rese

l

o 

for the same inflow· and hydrology of the river basin, o 
u -the opportunity to increase x "'g(x) and hence, the hfd 

power potential of the reservoir. This incre.ase in xi 

not be greater than 1 in order to avoid decreasing the 
- u · I designed free board capacity (x - x ) of the reservoir. 

illustrate further, consider the case where g' = a 

his is 

oelectric 

To 

(a is a constant), and the inflow in the period before ]ast 



brings the total storage to x. The storage after 

evaporation in this case is rx. Hence, if g' =a 2: r or 
u -

ax ;:: rx which means that x 2: rx, then there is no need to 

export water llllder all conditions where x1 � x. That is, 

the natural process of evaporation under these conditions 

provides an automatic excess water disposal. Such a 

situation is imaginary and will not be considered any 

further� Thus, it seems reasonable to accept the assumption 

that g' is bounded in the range 0 � g1 < r. 

b) The non-negativity of h'(x) is more straightforward. This is 
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m -because the minimum pool requirement x = h(x) is dictated by the 
minimum hydrostatic head required for the operation of a 

particular turbine on one hand and the salinity control 

on the other. Neither of these requirements is affected 

negatively by the increase in the physical capacity of the 

reservoir. xm can be expected to stay constant or increase slightly 

to account for the increase in salinity brought about by a 

larger stock of water. Moreover, increasing x is expected 
to weaken the overall constraints on the system. Hence, the 

control volume xc = xu - xm is expected to increase. There-

fore, g' � h1• However, by the previous discussion in (a), 

g' � r, which implies that 0 � h' � g' � r. In the 

previous sections, it has been argued that the assumptions 

responsible for our seemingly collllterintuitive 

Lelllllla 1 

dy* 
results -1 < --1 < 0 are reasonable. The meaning Of lthe • 

d;;- - · I result itself follows. Given the same inflow and river 

basin hydrology and starting with the same stock of wJte� x, 
J _ the increase in the physical capacity of the reservoir xi has 

resulted in: 

1) weakening the upper constraints xu, 

2) strengthening the lower constraints xm. 

This situation leads to a reduction in risk of havingle�cess 

water and·an increase in risk of having to import water, 
I which can only lead to a reduction in the optimal release 

policy y*(x1). 
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If y*1Cx1) exists and is llllique and TI = TI or both id�ntically 11 12 l vanish, then the optimal release rule is linear of the form y1C�1) 
I 

= x1 - a1, where a1 is a constant dictated by the hydrology of e stream, 

the size of the-reservoir, and the specific form of the profil 
Proof: dy* 

From (43), if TI11 = TI12. : O ,  then dx� = 1 and 

y*(x ) = x - a 1 1 1 

a is a constant dictated by the hydrology of the river 

of the reservoir and the specific form of TI. 

size 

Thus, the celebrated linear decision rule, used so often in 

chance constraint models, emerges as the optimizing decision ku1e when 
a specific form of the objective function TI is used in this Jodel. 
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Considering the interpretation given to n earlier: 
1. In the first case, where n is the expected net social revenue from 

operating the reservoir, n12 may be zero if either the second mixed 
partials of expected social revenue and expected social cost 

functions are identically equal, as evaluated by the central 

planners, or that both second mixed partials vanishes. The latter 

case may be argued on the bases that there is no reason 'for marginal 

expected cost to be affected by a change in the water head left in 

the reservoir after the release and used for power generation. 

Moreover, n11 = 0 if either the second partials with respect to the 
releases of the expected social revenue and expected social cost 

functions are identically equal or if both partials vanishes. The 

latter is consistent with a situation where both functions are 

characterized by fixed proportion and there is a perfectly competi-

tive market for agricultural products. 

2. In the second case, where n reflect the aggregate expected profit 
of downstream users who own the water in the reservoir, n1i may be 
zero if the marginal profitability in agriculture is unaffected by 

a change in the stock of water which remains after the release. 

Moreover n11 = O, if the production function of the downstream 
farmers is characterized by fixed proportions and that farmers sell 

their product in perfectly competitive market. 

3. In the third case, where n is the total surplus, since we are talking 

about the areas under compensated demand curves.conditions such as 
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n12 : O if the utility is separable and n11 = 0 if the maJginal utility from the payoff which arises from release is linear.I This 

case arises if risk neutrality with respect to uncertaintj i 
agricultural prevails. 

Proposition 2 
a) If assumptions (a) - (d) in proposition 1 hold, th'enl the 

expected return f1(x1 ;x) has the following characteristics: 

dfl -= 
dx1 

1) nl bt• xl - yp; 

2) f1(x1;x) is strictly concave in x1; 
b) If- assumption (e) in proposition 1 holds, and 

c) if xu g(x), g is concave, and 
m -

d) if x = h(x) = constant, then 

3) f1(x1,x) is strictly concave in x. 

Proof of 1): 
The existence and uniqueness of the solution to the tio 

problem depends on the nature of the expected net return functi 
I 

eriod 

in 

the last period f1. Therefore, in the following, the concavity 

with respect to x1 and, under some assumptions, with respect ko 1x, of f 1 

shall be shown. From (25) we have 



f1Cx1;x) = 1T(Yi• x1 - yp + 13 

m r -rx1+ryt 
m -

v(x )cj> de e 
0 

u r x -rx +ry* 1 1 
+ 8 

.1n v(rx1 + e - ryp«jlede 

x -rx1+ryi 
"' °' 

+ f3 L v(xu)cj>ede - f3 fu cl (rxl + e x -rx1+ryi 

- ry* - xu)cp de 1 e 
x -rx1+ryi fm-rxl+ryi 

- f3 c (xm - i:x -2 1 
0 

Therefore, 

e + rypcpede'"' c(i) 

u 

(50) 

dfl 
dx1 

"" 1[1 
dyi- - dyi 
- + (-1 +- ) 
dx1 

dx1 

x -rx1+ryi 
[-f3r f, v' (rx1 + e - ryi)cp de 

m 
e 

x -rx1+ryi 

"' 

+ (3r S
u 

ci(rx1 + e 

x -rx1+ryi 

m +r * 

- ry* - xu)«jl de 1 e 

f -r.xl Y1 
- 8 r cz(xm-rx1-e +ryi)«jle

de - n2l 

0 

(51) 
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However, from (24), the bracketed term in (51) equals ( - 1T 1), then 

df 
_l =n * 
dx l(y l'xl - Y*) 

1 
1 

(52) 

Proof of 2). 
Differentiating (52) with respect to x1, we 

d2fl 
dyi 

-2 = (1Tll - 1[12) - + 1T12" 
dx1 

dx1 

Also, from (43) 

dy* _l = dx1 

d2G 1 
7 - (1Tll - 1T ) 
Y1 

21 

2 d Gl 
-2� dyl 

dy* 
Substituting for _l in eq. (53), we have 

dx1 
2 2 2 

d G1 d fl d G1 
-2-

• -2- = [nll -2-
dy1 dx1 dy1 

2 
- (1Tll - 1T21) ]. 

·However, (23) shows that 

d2G 1 -2- < 1T -
dyl 

11 1Tl2 < 0 ' 

or equivalently, 
d2Gl - I > 
d 2 1[11 

- 1T 
Y1 

12 

Also since n12 � 0, then 

1Tll > 1Tll - 1Tl2 
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Therefore 

d2G 1 > 1Tll -2-dyl 

And, hence, 

d2f 

2 (nll - '!!21) 
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1 < 0 -2- (56) 
dxl 

That is, f1 is strictly concave in x1• 

Proof of 3) : 
u - m -

Also from (24), substituting for x = g(x) and x = h(x) and 

differentiating with respect to x, we have 

dfl "' -c' {�) -
f h(x)-rx1+ryt 

eh'(i) Cz(h(°i°) - rx1 - e + ryt)cpede 
dx 0 

+ eg'(x) � :ci(rxl + e 
g(x)-rx1+ryt 

- ryt - g(x))cpede 

h(x) - rx1 + ryt 00 

+ f3h'(x)J v'(h(x)cpede + eg'(x{ _ 
v'(g(x)cpede. 

o g(x) - rx1 + ryf 

In particular if h 1  

dfl 
dx = -c' <x> + 

0 ,  then 

f3g' (x)J: c •cpede + eg' (x1: v' (g(x)cpede. 
g (;x) - rx1 + ry\ g (x) - rx1 + ryf 

In general, however, 

(57) 

(58) 
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d2f dy* f _; = c" - eh" f Czcpede - f3h'(h'+ r di) c.zcpede 
dx 

dy* 
+ f3h'(h 1 + r df)(v'(h) - Cz(O))cp(h -rx11+ 

+ f3g"f c'cp de 1 e 

33 

t> 

dyf f jdy - eg' (g' + r dx) cj'.cpede - f3g' (g' + r w> (v' (g) 

+ ci.CO)<P(g-rx1 + ryp 

+ f3h"f v'cpede + [h']2f v"(cpede 
+ eg"f v'<j>ede + [g']2 f v"cpede. (59) 

dy* dyt 
It can be shown that g' + r -:::}:- > 0 while h' + r -::- is a1igj.lous, 

dx dx 
d2f 

which makes the sign of --
1- indeterminate. However, it il obvious 

-2 dx 
d2f 

that _2
1 

< 0 ,  under assumption that xm is a constant. Thus!, under 
� l plausible assumptions, f1 is shown to be strictly concave _n � (as 

well as x1). 

7 

7 

d2f --ii- is also negative if h' 
dx 

g' constant. 
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Proposition 3 

Under the assumptions of proposition 2, there exists a 

unique optimal size xt for the reservoir which maximizes fl(xl ,x).  

Proof : 

If it is assumed, as in the firs t model, that 3 y0 such that· 

n1(y0) ""O and that.3x0 3v '(x0) = 0 ,  then x is bounded by 0 and y
0 

+ x
0
• 

This implies that f is defined on a compact set 0 < x < Yo + x0• If l - -
the assumptions of proposition 2 hold, then f1 is a strictly concave 

function in x defined on a compact set •. Therefore , it must have a 

unique maximum x*. l 
This ends the analysis of the one-period problem. It appears 

that the inclusion of the water stock in the profit function , although 

it affected the optimal policy and size of the reservoir ,  did not make 

substantial difference to the technical conditions needed to get the 

usual inventory dynamic programming results . Inspecting (33) and (40) , 

the conditions which insure interior maximum, enhance this observation. 

Certainly , for a neoclassical profit function, the finite terms 1T 2 (O , xi) 

and n2(x1 ,0)  do not make either of the inequalities (33) and (40) more 

stringent or relaxed.  For any other concave function , the inclusion 

of the water s tock makes (33) more stringent while relaxing (40) . Thus , 

the concavity of 1T with respect to the water stock and that 1T > 0 
12 -

are all the additional requirements needed to get the usual inventory 

dynamic programming results. 

Summary of the One-Period Problem 

It has been shown that a unique solution Yi<x1) for 

functional equation (1) exists and is unique if 

1) 

2 )  

u v '  (x ) � -ci (0) 

m v '  (x ) � cz(O) . 

Moreover, it has been shown that 

a) 
dy* 

0 < d 
1 < 1 

xl 

b )  f1 is strictly concave in x1 . 

Furthermore, it has been shown that if 

then 

u -
3) x "'g{x) , 

m -
4) x = h(x) 

dy* 
c) -1 < ___..!. < 0 .  

dx 
-

O < h ' � g ' �r 

In particular, if 

then 

5 )  h '  "" 0 and g is concave 

d)  

e) 

f is strictly concave in x; and 1 

f1(x) has a unique maximum, xt, provided xis 

above . 
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The Two Period Horizon 
8 In this case, the continuity equation is 

Define 

where 

x1 = r(x2 - y2) + e + i2 - m2 

f2(x2) Max G ( 
O<v < 2 Y 2 ' x2 - Y ) 
-"'2-'"x2 

2 

m 

G2(y2, x2-y2) = Max [n(y2 ' x2 - Yz) 03�x2 

fx -rx2+ry2 
+ 13 f1 (x

m)q>ede 

u 

+ 13 f00 f1 (:ir.u)qi de u e 
x -rx2+ry2 

0 

00 

(60) 

(61) 

f x -rx2+ry2 
+ 13 f1 (rx2 + e - ry2)4>ede - 13 

f
u 

c1(rx2 + e 
x -rx2+ry2 

u - ry2 - x )q>ede m x -rx2+ry2 

m r -rx2+ry2 
- 13 c2(x

m - l'X2 - e +ry2)qiede -c(X), 
0 
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8 Assume that at the start of every period the manager knows the 
actual inflow. However, he only knows the probability distribution of 
the inflow for future periods. Then a redefinition of terms and a 
relabeling of periods leaves the analysis intact. For example, in the 
two period case, x2 is the starting stock of water, after observing e2 and correcting for deficiencies or surplus in the previous period. 
Therefore, x1 = r(x2 - y2) + e1 + i2 - m2• Relabelling ei by ei+l gives 

x1 = r(x2 - y2) + e2 + i2 - m2, which is the original continuity 

equation. However, it must be noted that since e is now known with 
certainty, the decision in the last period is detlrministic, not 
stochastic. 

Proposition 4 

If assumptions (a - d) in proposition 1 are accepttjd, I the 

following results hold: 
1) There exists a unj_que int�rior maximum y�(x2), 

2) 

3) 

4) 

y�(x) � yt(x), 

dy* 
O<-d

2<1, x -2 

Further, if n11 = n12 : O then the optimal releas 

takes the form 

y�(x2) = x2 - a2, 'f/x2' x
m 

� x2 � xu 

rule 
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a2 is a constant dictated by the hydrology of fh9 stream, 
the size of the reservoir and the specific form df the 
profit function n. 

Moreover, if assumption ( 3) in proposition 1 holds then, 

dy* 
5 )  -1 < - 2 < o. 

dx 

Proof of 1): 

When (61) is compared with (22), the two expressirn for 

iod case the optimal return function in the one period and the two re 
are identical except that f1 replaces v1 wherever v1 occurs in 

expression (22). Moreover, since both v1 and f1 are concalel it can be 
verified that under identical assumptions, all the qualitJtive results 
of the one period problem also hold in the two period casJ. I In 
particular: 
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dG2 
dy = ifl(y2, x2 - Y2) - if2(y2,xl - y2) 2 (62) 

+ 

m 

l

x -rx2+ry2 
Sr 

0 
cz(xm - rx2 + ry 2 - e ) <Pe de 

Sr {�l(rx2+e - ry2 - xu)<l>ede �� -rx2+ry2 
u 1 x -rx2+ry2 

Sr 
m 

fl (rx2 + e 
x -rx2+ry2 

- ry2)<l>ede 

The primes denote the derivatives of the functions with respect 
dG2 arguments. Thus, Y!Cx2) is defined by d = O. Similarly, 
Y2 

d
2
G 2 

= -2 
dy2 

ifll - 2;rl2 + if23 - Sr
2 
[fi (x

u + cl (0)] <jie (x
u -rxl +ryl) 

2 m m - Sr [cz(O) - fi(x ) ]<jie(x - rx1 + ry1) 

1"'c"(rx + e - Sr 1 1 u-rxl+ryl 
m 

- ry - xu)<ji de 1 e 

2 rx -rxl:ry 1 
Sr 

Jo 
cz(x - rx1 + ry1 - e ) <jiede 

u 1 x -rxih +ry1 
+ Sr

2 
m 

f]'.(x - rx1 + ry1 - e ) <jiede 
x -rx1+ry1 

(63) 

to their 
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Moreover, at xu, the benefit from releasing the last unit of
l
y
l
(x1) must 

exceed the marginal benefit from exporting water. If this is ot the 

case, then it becomes profitable to export water rather than! release it 

to downstream users. Hence, 

fi(xu) = ;rl(y!(x
u),xu - y!(x

u)) 2:. -cl(O). (6lii) 

m m Similarly at x , once Yf (x ) is released, the marginal 

���':::, of releasing an extra unit of water must be less than the 

violating the lower constraint (the price of water import). I If this is 

not the case, it becomes profitable to import water and relelase it to 

downstream users. Therefore, 

fi(x
m) = ;rl{y!(x

m), xl - Y!(x
m)} � ci(O). 

These conditions motivate the same economic behavior 

(33) ; it is not profitable to engage in importing or 
m u the permissable range of x1, x � x1 � x • However, 

conditions imply 
d
2
G2 

···-2 dy2 
< o. 

1

6� 

as tha� i. (32) and 

exportilgl water in 

from (J3)1 , these 

(6(>) 

Thus, y2(x ) is a regular maximum. Moreover, it can be shoWn that the 

:G2(o,x1) dG2 (x2,o) I 
relations d > 0 and d < 0 hold, and are bas

l

edl on the 
Y2 Y2 

same economic arguments presented in the one period case. �enfe, y�(x2) 

is an interior maximum. 

Proof of 2): 

To prove that y�(x) ::_ y!(x), notice that if v(x) = 0,1 then 



dG dG 
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from (24) and (62), d/ < d
/ everywhere and hence y� (x) < yt (x) . See 

Figure 4 .  

dG 
dy 

dG1 
dy 

����-l-���->.-������� Y 

Figure 4 

dG1 In general, however , if �-is evaluated at y
2
*,  it can be proven that 

dy 

2 dGl d Gi d'Y"I > 0. Since -2- < 

y .. y* dy 

dGi O, i = 1, 2  everywhere and � = O has only one 

2 2 
solution, the following inequality must hold: 

y!(x) > y�(x) . (67) 

See Figure 4 .  This result has already been implied by the previous 

analysis , where it has been shown that 

dy* 
0 < d 

1 
< 1 x -

1 
\.J m u 
v x, x � x1 � x . 

Hence, it is economical to release some of the unit increase in initial 

storage rather than retaining the entire storage increase .  Therefore, 

the marginal expected return from releasing some of the unit increase 

in initial storage and storing the rest must exceed the margina 

expected increase in salvage value due to the storage of the whdle unit 

increase ,  

Hence, 

fl (xl) > v' (xl) , Vxl , 

f xu-rx+ry 

m 
fi(rx + e 

x -rx+ry 

- ry) <ji de > e 

m u x � x1 _:: x 

J xu-rx+ry 

m 
v' (rx + e 

x -rx+ry 

- ry) <ji d1e . e 
(68) 
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(68) �olds because the arguments of both f i and v' lie in the 
m u I 

nterval 

x to x for the specific range of the random variable e define 

������. j 
by the 

d the Comparing the firs t order conditions in the one perio 

two period cases , the previous argument implies that y� (x} � tf x)., 

Proof of 3): 
From (62) , it is found that 

d2
G . 2 dy� 

-2-dy2 dx2 

It follows that 

0 

Proof of 4): 

< 
dy� 

dx1 

d2
G 2 "" � ,.., Grll T" 

'lf211 
dy2 

,$. 1, 

Notice that if 'lfll "" 'lf21 : O, then 

dy� 
.. 1 

dx2 

:(6�) 

(7�) 

(7il) 



and 

y� = x2 - a2 • 
'tJ 

x2, 
m u x <x2�x (72) 

a2 is dictated by the hydrology of the river basin, the size of the 

reservoir and the specific form of the profit function. 

Proof of 5) : 

If XU= g(x), Xm = h(x), 
Q 
� h' � g' � r, theµ 

Proposition 5 

dy* 
-1 < _2 < o. 

dx 

Under the assumptions (a - e) of proposition 1: 
df2 1) dx2 

= n2{y�(x2), x2 - Y2<x2)} 

2) f2 is strictly concave in x2• 

(73) 
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u - m -
3) If, in addition x = g(x), x = h(x), g is concave and h is 

a constant, then f is strictly concave in x. 2 

4) f2(x) > f1(x). 

Proof oJ; l}: 
Differentiating (61), we have 

df2 
dx2 

dy2 TTl dx2 

dy* 2)1T + (1 - dx2 1 1Tl (Yz• x2 - y2) • (74) 

dfl Since- • TT (y*(x ) x - y*(x ) and y*(x) > y*(x), then by the dx1 1 1 1 ' 1 1 1 1 · 2 

. df 
concavity of TT� � dx 

dfl(x) > � (75) 

Proof of 2): 

From 

d
2
f 

__ 2 
dx2 

(74) and (69). 
2 d G2 2 

= -1-- (1Tll -2 - - (1Tll - TT21) ] 
iG dy2 

__ 2 
dy2 

This can be shown to be negative, in ·a manner similar to 

in the one period case. Thus, f2 is concave in x2. 

Proof of 3): 

Also, if xu = g(x), and xm • h(x), then 

df2 --= 
j h(x>-rx2+ry2 l"' 

13h'(x) fi(h(x)}pede + 13g'(x) s(g(x) 
dx O g (x7rx2 +ryz 

+ 13g' (x) f00_ci (rx2 + e Js cx)-rx2+ryz 

- ry* - g(x)$ de 2 e 

f h(x)-rx2+ry2 
- 13h I (X) JQ CZ (h(i.) - rx2 - e + ryz)$ede - c' 

Therefore, it follows that 

if2 dy2 - --=z-= 13h'(h' + r -::::-) [fi(h(x)) - cz(O)]$(h(x) 
dx dx 

dy2 - -
- 13g' (g' + r-::::- ) [fi (g(x)) + ci (O)]$(g(x) -

dx 

-13h" c'$ de - 13h' (h' + r -J.) c"$ de f dy* f 2 e h 2 e 
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(77) 

+ ryp 

+ ryp 



+ Sg" c •qi de - Sg' (g' + r -J.) c"qi de J dy* J l e  dx l e  

+' Sh"f f'qi de + S[h' 12f f" qi de 
1 e 1 e 

+ Sg"f f'qi de + S[g' ]2f f" qi de. 1 e 1 e 
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(78) 

In particular, if h' = 0 and g is concave, and since fi (g(x)) + ci (O) � 0 
and fi(h(°i)) - cz(O) � O, we conclude that 

d2f __ 2 < 0 -2 dx 
i. e. f2 is strictly concave in x. 

Proof of 4): 
f1 and 

f1 = Max 
Y1 

f2 can 
be rewritten as follows: 

[ 1T + E {V} ] 

f2 = Max [ n + E {f1} 1  Y2 

(79) 

where V is defined as in ( 38). An equivalent expression for f2 is 

hence 

f2 = Max 
Y2 

[1T +Max {n} + Max E{V} ] 
Y1 Y1 

= Max [f1 + Max {n} ] 
Y2 Y1 

f2 > f1 (80) 
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Proposition 6 

Under the assumption of proposition 3, 

1) 3 a unique optimal size x� for the reservoir whli.clh maximizes 
tl\e total expected return f2(x); 

2) x* > x*. 2 1 
Proof of 1 ) : 

In this case, i2 is bounded below by 0 and above b 
2y0 + x0. Thus, f2(x) is defined on a compact set. Howelerl f2(x), 
und:r the assumptions of propositio: 4, is strictly concaJe. Thus, 
f2(x) must posess a unique maximum x� on its convex and c�act domain. 
Proof of 2): 

df2 df1 x2 and xi are defined by dx = 0 and dx = 0 resp�ctively. 
or, equivalently by 

and 

CXl 

-c'(x) + Sg'(x) I ci(rx2 + e - ry� - g(x)qiede 
g(x)-rx2+ry� 

00 

+ Sg' (x) J fi (g(x))<f>ede 
g(x)-rx2+ry� 

CXl 

0 

-c' (x) + Sg' (x) f Ci (rxl + e - ryf - g(x))!fiede 
g (x)-rx1 +ryf 

+ Sg' (x) 
f 00 

J � (g(x))lfiede 
g(x)-rx1+ryf 

o. 

81) 

(82) 



Since y� (x) < Yf (x) , therefore 

ci (rx + e - ry� - g (x) ) > ci (rx + e - ryf - g (x) ) 

and 

g (x) - rx + ry� < g (x) - rx + ryt . 

As a result 

f _00 ci (rx + e - ry� - g (x) ) <J>eide 
Jg (x)-rx+ry� 1 00 ci (rx + e 

g (x)-rx+ryf 

- ryt-g (x) )<J>ede . 

Also , since 

then 

fi (g (x) ) > v , <g <x> >  

00 J ooS (g (x) )<J>ede 
g (x)-rx+ry� 

>1· �'(g{i) )<j>ede . 
g(x)-rx+ryf 

From (81) and (82) , these results imply that 

dfz<x*) dfi<x*> 
-=--- > --

and hence 

dx dx 

x-� > xt ·  

The n Period Problem 

'rl x� o :5.. x* :5.. 2y0 + x0 (83) 

(84) 

For an arbitrary n ,  the continuity equation is given by 

x 1 *' r (x -" y ) + e + i - m • n- n n n n n 
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Define 

f (x ) = Max G (y , x - y ) n n n n n n 

where 

xm-rx +ry J n n 
G (y ,x  - y ) n n n n 

00 
ir (y ,x - y ) + f3 n n n 

xu-rx +ry 

0 

+ f3 J f 1 (x u) <P de + n- e 
f n n 

f3 f 1 (rx + e n- n 
xu-rx +ry n n xm-rx +ry n n 

00 
- f3 J c1 Crx + e - ry - xu) <j>  de n n e 

xu-rx +ry 

m 

n n 

f 1 Cxm)<j>  de n- e 

- ryn)<j>ede 

fi\ n f x -rx +ry 
f3 c2 Cx - rxn - e + ry ) <j>  de - c (x) . n e 

:o 
dG2 

Then y* (x ) is defined by �d = 0 . or equivalently by n n Yz 

ir1 (y , x  - y ) - ir2 (y , x  - y ) n n . n  n n  n 

xm-rx +ry 

"' 

f3r f ci (rxn + e 
xu-rx +ry n n 

- xu)<j>  de - f3r e 
f n n 

cz (xm - rxn + ryn - e ) <j>ede 
0 

u rx  -rxn+ryn 
f3r J f ' 1 (rx + e - ry ) <j>  de . n- n n e 

xm-rx +ry n n 
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Using a straightforward induction argument [ 31 ] , the following propo-

s itions can be proven : 

Proposition 7 

If assumptions (a - d) in proposition 1 hold, then 

l) 3 a unique interior maximum y* (x ) n n 

2) 

3) 

dy* 
O < -

d
n < l  x -
n 

y* (x) < y* (x) n - n-1 

4) If n11 = n12 : O, then the optimal release rule is of 

the form 

y* (x ) = x - a n n n n 

where a is a constant dictated by the hydrology of the 
n 

river basin, the size of the reservoir , and the specific 

form of the prof it function. 

Proposition 8 

Under the assumptions of proposition 1 (a  - e) , if g is concave 

and h is a constant, then 

l) f is strictly concave in x 
n n 

df 

and x 

2)  _!!. 
dx = n2 (y* (x ) ,  x - y* (x ) )  n n n n n 

3) 

n 

f ' > f '  n n-1. 

Proposition 9 

Under the assumptions of proposition 3 :  

l) 3 a unique optimal size x* for the reservoir which maximizes 
n 
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the total expected return f (x) n 
2> x* > x�-1 · n 

The Infinite Stage Process 

In this section the following functonal equation will be 

discussed. 

f (x) Max 
09�x 

00 

[n (y ,x-y) + 

xm-rx+ry 00 

a J f (xm) <ji de + a J f (xu)<ji  de e u e 
0 x -rx+ry 

xu-rx+ry 

- a J ci (rx + e - ry - xu) <jie
de + a l f (rx + e - ryJ) <ji l de 

xu-rx+ry xm-rx+ry 

xm-rx+ry 
m -- a J c2 (x - rx - e - ry) <jiede - c (x) ] .  I <&7) 

0 

Proposition 10 

There is a unique solution to (85) which is bounde_ 

any finite real interval. This solution, f (�} ,  is continua� 
=� · I The proof of this proposition is well known and fol 

closely the development given in Bellman [ 3� ] . Define the be 

{f (x) } as follows : n 

f +l (x) = Max G (y ,x  - y ,  f ) .  n 09�x n n = 0 , 1 , 2 ,  . . .  

or x in 

and 

ows 

uence 

· where f0 (x) = v (x) and f0 (x) is continuous over x � 0 .  Then i t  can be 

shown that Lim f (x) = f (x) exists for x > 0 and is the soJution of 
n +oo n - J 

f (x) = Max G (y , x , f) . Moreover, the convergence of f (x) is. uniform. n 
o::;y�x 
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Therefore, since each function in the sequence is continuous 

and concave , f (x) is continuous . To show the similarity of (87) to 

the problem discussed by Bellman [ 31 ] , the following theorem is stated: 

Bellman ' s  Theorem 

The functional equation 

f (x) = Min [k(y - x) + z [�p (s-y)$ {s )ds + f (O) �$ (s )ds 
y'!.}< y y 

y 
+J f (y - s)$ (s)ds ] ]  

0 

has a unique solution which is bounded for x contained in any finite 

interval. The solution f (x) is continuous .  Assumptions : 

K(y-x) and P (x-y) are convex. 

Proposition 11 

In the case of an infinite planning horizon and under the 

assumption that y� (x) exists and is unique for any arbitrary n: 

Proof : 

1) there exists a unique optimal policy y* (x) where 

2) 

y� (x) + y*(x) , 

0 < � < l dx -

3) -1 < � < 0 - - . 
dx 

xm < x < xu 
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Since for any arbitrary n, we have xm < x < xu 
- n -

it follows that 

y� (�) has an 

has also been 

such that 

upper bound equal to x and a lower bound equlal 

shown that the sequen� {y*} is a non-decreasln n 

y! (x) � y! (x) � y� (x) � • • • •  

to O .  It 

sequence 

Since each Y! is bounded below, y�(x) converges to y*(x) [2p] 1! where 

y*(x) is the solution of  

n1 Cy, x  - yl - n2 (y, x - y) - a' � xm-rx+ry 
m cz (x - rx + ry l e�$ede 

i co l �u -rx+ry 
+ ar 

u
ci (rx + e - ry - xu)$ede - ar 

m
f ' (rx + e - ry)�ed 

x -rx+ry x -rx+ry 

(88) 

o. 

The proof of .the comparative statics results in the infinit� �tage 

process is similar to the proof previously outlined for the! tlfo period 

case . 

Proposition 12 

There exists a unique optimal size x* for the reservo�r which 

maximizes f (x; x) . 

Proof :  

Since the assumptions of the model make each member l o� the 

sequence {f (x)} concave , f (x) is also concave . The next ste 
� I prove that x is bounded .  Assume as before that there exists 

- - I that TI1 (y0) = 0 and x0 such that TI2 (x0) = 0 .  The discountid 
revenue realised must, ,be less than the gross revenue when the 

is to 

gross 

reservoir 
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is always operating at y0 , because of the cost of importing and 

exporting water. Thus , 

realized gross revenue � n(yo ,xo) 

(1-r) 
'tJ x 

Define x by C (i) 
) = 

n(yo ,xo) 
1-r (1-r) 

then 

realized gross revenue � c (x) 'tJ x 
(1-r) 

That is if 'X > �. then the realized net revenue must be negative and 

hence � bounds x. 

The Long Term Distribution and 
the Case of the Linear 
Decision Rule 
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The process we are dealing with is represented by the continuity 

equation 
x = rx - ry* + e + i p-1 p p p - m • p 

This is a discrete time, continuous state Markov process .  Therefore 

the usual "ergodic theorem" could not be employed to find the long-run 

distribution of the water stock . 

In this section it is shown that the long-run distribution 

exists and can be derived for a special class of objective functions . 

This class of functions corresponds to the case when n11 and n12 :: 0 • 
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Proposition 13 

If the assumptions of proposition 12 hold, and if rl� = n12 • 0 ,  

then there exists a long run distribution for the water stocJ in the 

reservoir given by 

P (x = xm) c $(xm + ra) 

P (x = xu) = 1 - $(xu + ra) 

and x - q>(x + ra) for x, xm < x < xu 

where a is a constant. 

Proof: 

We have seen that 

i > 0 <=> m = 0 or rx - ry*(x )+e p p p p p < xm 

<a9> 
m - rx + ry*(x ) .  9 <=> e < X  p p p 

Moreover, we have seen that separabilit; and linearity of � �mplies a 

linear decision rule of the form 

y*(x ) = x - a p p 
10 

Then, from (89) and substituting for y*(x ) from p 

i > 0 �> e < xm - ra. p p 

Therefore , it follows that 

P (i > 0) = $(xm - ra) p 

(90) , w,e 

9This is Iff statement ,  because importing and expdrt 

=�=�::t��t!:!:;:g
o�e��:i��io!u�or:��;:c: �=�a�=�i!�:���:llsb 

after the decisions are taken . 
lONotice that a is the same from period to period qnl 

long run for the infinite planning horizon case . However,! i 
case yp(�} = � - ap . 

ng actions 
the 

r surpluses 

in the 
the finite 



In a similar fashion, it is pGJssible to show that 
P (m > O) = 1 - <l>(xu - ra) p 

a-.1d 
P(i = 0 ,  m = O) = <l>(xu - ra) - <l>(xm - ra) . p p 

However, we know that 

and 

m P(i > 0) "' P (x l "' x ) , P(m > 0) "' P (x p- p p-1 

P (ip 0 ,  m = O) p P (xm < x < xu) p-1 
·Therefore , 

P(x = xm) = <l> (xm - ra) 
p-1 

P (x = xu) "' 1 - <l>(xu - ra) 

xu) 

p-1 
and x 1 is distributed as $ (x 1 - ra) p- e p- xm < x < xu 

p 

(96-98) show that the distribution of x 1 has two mass p-
m 

and x and is continuously distributed with $ (x 1 ra) � . p- - . 

of (xm , xu) .  That is , the distribution of x is given by 

Hxm+ra) 

$ (xt-ra) 

1 - <l> (xu+ra) 

ac x • x" J m u x < x < x 
u x = x 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

points at xu 

in the range 

(99) 

and u x 
E (x) = xm<l> (xm - ra) + xu {l - <l> (xu - ra) } + f x (x - ra)dx. 

m x 
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'lhe expression above could only be evaluated if a specific form for the 

profit function is postulated. It is also necessary to simulate the 

dynamic program for a large number of periods p until 

(a - a ) + 0 . 
p p-1 

Using the simulated value of a and postulating a specific form for the 
2 

inflow distribution (e . g .  log-normal or X ) after calibrating with 
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actual data, the solution is found by : (1) select the optill policy , 

given a p articular physical size of the reser:oir x (i . e .  y = x - a�x) ) ;  

(2)  obtain the optimal size of the reservoir x*. The selec ion of x* 

defines a exactly ; therefore , the distribution of x is debeimined and 

so is E (x) . 

Conclusion and Summary 

It has been demonstrated that chance constrained jprpgramming can 

be incorporated within the usual dynamic programming formul�tion by 
I transforming the chance constraints into a penalty function! that is 

added to the criterion function to be maximized. Moreover , ! it has been 

found that allowing for importing and exporting of water l ft!om the 

reservoir provides an economic rational for the penalty funlction and 

provides acceptable economic interpretation to the technlc�l require­
•�"' for the aolution of the •"""'-ration problem. Alli 
:�::�:i::,::·�::e:� ::::�:.o:r::ew::::x::::��i�'t:�c:::�:i�. 

from the water otock in the re•e�oir for power geoeratif n l  Wlthin 

the chance constrained dynamic programming, the manager loives for the 

dual problem of optimal oper�ting policy and optimal s·izle chi the res­

ervoir . The procedure of maximization is similar to .thJt �f two-step 

programming in that water import and export is considered a residual 

dedeion to cormt for <he violation of the coo,,rain�. I Specifically , 

it does not pay to engage in importing or exporting water hnless vio­

lation of the constraints occur as a result of implemenJin� the optimal 

policy . These conditions , together with concavity of tJe criterion 
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function and convexity of the penalty function, are found sufficient to 

get all the usual dynamic programming results , such as the existence , 

uniqueness ,  monotonicity, and convergence of the optimal policy . It 

has also been demonstrated that the usual dynamic programming results 

extend to the optimal size of the reservoir under these and some other 

plausible conditions . Assuming the criterion function to be separable 

and linear in water releases , the optimal operation policy is found to 

be linear. Moreover,  under this condition, it has been demonstrated 

that the long-run distribution of the water stock in the reservoir 

exists and is derived .  Finally , another model is presented in the 

Appendix which incorporates the chance constrained problem into a 

planning model by finding a. deterministic equivalent to the chance 

constraints . It has been demonstrated, that for an infinite sized 

reservoir ,  the optimal operating policy exis ts and is unique . Moreover,  

a formula for the long-run distribution of the water stock is  derived 

and some bounds on the expected value are developed . 
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