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I . INTRODUCTION 

The purpose of this paper is to investigate several alter-

native procedures for making collective decisions regarding the 

provision of discrete public goods. Although much attention has 

recently been focused on the design of procedures which elicit the 

true preferences of a population in order to make efficient decisions1, 

we will show that each of those proposed possess undesirable proper-

ties given the nature of our problem. 

Let us begin by summarizing the particular application that 

led us to this investigation. For each of the past three years, the 

Public Broadcasting System (PBS) has selected programs to be broadcast 

through a market process. This experimental market, called the 

Station Program Cooperative (SPC), enables each of the approximately 

150 member stations to make purchase decisions out of an initial set 

of approximately 130 proposed programs. As far as the stations are 

concerned, each potential program is a public good in as much as the 

transmission costs of providing it to more than one station are 

assumed to be zero. While one might imagine that the quantity of a 

program provided might legitimately be varied over a certain range 

(e.g. by varying the number of episodes or the length of time of 

each episode), the nature of the present institution generally does 

not allow for these quantity adjustments. Thus we are confronted 

with a problem in the provision of discrete public goods where 

stations must make collective decisions to either accept or reject 

each program proposal. 

We will proceed to discuss and analyze the existing 

mechanism along with several alternatives. As we shall see, each 

:2 

mechanism specifies a message space in which stations may communicate, 

a decision rule for accepting or rejecting each program, and a tax 

rule which levies lump-sum amounts on each station. The choice of 

message space is by no means an insignificant one. As we shall see, 

it may be the major shortcoming of the present SPC procedure since 

each station is confronted with prices for each program and may 

communicate only its willingness to but or not buy. 

We will require that each candidate procedure satisfy the 

following requirements: 

1. The center may not run a deficit -- i.e. , the total 

revenues collected from stations must not be less than 

the total cost of all programs provided. 

2. No station may go bankrupt -- i . e. ,  the total amount 

collected from a station must not exceed its programming 

budget. 



3. The bundle of programs produced must not be Pareto 

dominated by any other feasible bundle -- i.e., there 

is no other bundle which satisfies 1) and 2) such that 

each station is at least as well-off with this bundle 

and at least some station is strictly better off. 

The existing mechanism will be analyzed in Section II 

and several alternatives which have been found in the literature 

will be examined in later sections. Unfortunately, ou.r results 

are largely negative. For the current SPC procedure we will show 

that although 1) and 2) are guaranteed due to the nature of the 

3 

price adjustment algorithm, an equilibrium may not exist and if it 

does it may not satisfy 3). Due to this we will then proceed to 

examine two other classes of procedures. In Section III, we will 

examine the mechanism suggested by Dreze and de la Vallee Poussin [2] 

and Malinvaud [10]. Under their mechanism it must be assumed that 

each station does not take the other stations' decisions as given, 

but must act as though the decisions of the other stations are those 

that are the least favorable to it. In other words, stations will be 

assumed to make "minimax" decisions. As they have shown, when the 

quantity of a public good provided may be varied continuously, this 

mechanism will lead stations to correctly reveal their preferences 

except at corner solutions. With discreteness, however, all 

solutions are corner solutions and we shall see that, in general , a 

station will not necessarily reveal its true preferences. 

In Section IV, we will examine the class of mechanisms 

which are strongly individual incentive compatible. This class has 
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been extensively studied previously by Green and Laffont [5,6,7) 

and Groves [7] for the case of a single discrete public good. If 

there is more than one such good, we will prove that there does not 

exist a mechanism satisfying 1), 2), and 3) for which each station 

has a dominant strategy. More specifically, our result points out 

the futility of a search for a mechanism which elicits the truthful 

willingness to pay for each public good from each member of the 

population. Due to this result we will proceed to discuss some 

weaker notions of incentive compatibility and related mechanisms in 

Section V. 

I I. THE SPC PROCEDURE 

The existing SPC procedure may be summarized as follows 

(for further information see Ferejohn and Noll [3] ). At each stage 

of the process, each station is confronted with a price for each pro­

gram and asked to indicate which programs it would be willing to 

purchase at these prices. Using these decisions the center calcu­

lates new prices such that if the purchase decisions of all stations 

remain unchanged, the total revenue collected on all produced 

programs will exactly cover their costs. The process reiterates 

until it converges. 

At the heart of this mechanism is a formula for computing 

the cost share of a station on each program at each iteration. This 

share is based upon the progrannning budget of the station and the 

population of the area it serves relative to the budgets and the 

population served by all stations which indicated a willingness to 
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purchase the program on the previous iteration. More precisely, the 

price, p� (t + 1), of program j to station i at time t + 1 is computed J 
as 

where 

i 
p j 

( t + 1) ( Bi 
8 .+ . 2 

l: Bk
Z�(t) + B1 

kfi J 

B
k

: the programming budget of station k, 

Ni 

l: NkZ�(t) 
kfi J 

N
k 

the population of the area served by station k, 

C,: the cost of producing program j, J 

\c 
+ N/ j 

Z� (t): the purchase decision of station k at time t to accept J 
(Z� (t) = 1) or reject (Z� (t) = 0) program j. J J 

We should be careful to note that the current procedure does allow 

for the exclusion of stations from use of a particular program. 

Specifically, if the process converges and a station has indicated 

it does not wish to purchase a program at its current cost share, 

then the station is not charged for that program and is excluded 

from using it. 

As stated in the previous section, one of the major 

difficulties that arises here is that a station may only indicate 

its willingness to buy or not buy at a given set of prices. A 

station which is willing to pay some amount for a program which is 

less than the price it faces may only decline to purchase the pro-

gram and has no way to communicate a bid. Neither does a station 

which is willing to pay more than the current price have any way to 

signal the intensity of its preference. 
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In addition to this difficulty this procedure has several 

other unfortunate features: 

1) Equilibria need not be efficient. 

2) There may be multiple equilibria which may be Pareto-ranked. 

3) If there are multiple equilibria, the efficient equilibium 

may be unstable. 

4) No equilibrium may exist. 

We can illustrate these points by means of two simple examples. 

Without loss of generality, we will use a simplified version of the 

price formula given above, namely 

i Bi 
C. p. ( t + 1) = 

k k . J J l:B Z.(t)+B1 

kfi J 

Example 1: 

Suppose there are two stations whose preferences are represent-

able by the utility functions 

and 

1 1 1 1 1 1 1 U (z
1, z

2, y  ) = 3Z
l + 2z2 + .ly 

2 2 2 2 2 
U (Z1, z2, y ) = 2Z1 

2 2 
+ 3Z2 + . ly 

where y
i 

is the amount of some private good consumed by station i. 

Each station is endowed with 5 units of the private good (B
1 

= B
2 

= 5) 

and may choose from a list of two programs each with a cost of five 

(C
1 

= c2 
= 5). It may be verified that there are multiple equilibria 

in this example which are given by 

1 p 

zl 

(5, 2. 5) 

(1, 0) 

2 
p 

z2 

(2. 5, 5) 

(0, 1) 



and 

1 p 

z
l 

(2 . 5,2 . 5) 

(1,1) 

2 
p 

z
2 

(2 . 5,2. 5) 

(1,1) .  

The second equilbria clearly Pareto dominates the first . It may 

also be shown that the efficient equilibrium is unstable. To 

see this consider the following prices: 

1 . 
p (O) = (2 . 5,2 . 5  + s) 2 

p (O) = (2.5,2.5) 

Iterating through the algorithm for calculating prices and demands 

will give the following cycle: 

z1(0) = (1,0) z
2

(0) = (1,1) 

1 p (1) = (2 . 5, 2 . 5) 
2 p (1) = (2 . 5,5) 

z1(1) = (1,1) z
2

(1) = (0, 1) 

1 p (2) = (5,2 . 5) 
2 

p (2) = (2 . 5,2.5) 

z
1

(2) = (1,0) z
2

(2) = (1,1) 

1 1 p (3) = (2.5,2 . 5) = p (1) 
2 2 

p (3) = (2 . 5,5) = p (1) 

Example 2: 
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To show that no equilibria may exist with this procedure, let 

and 

1 1 1 1 
U (z1

,z2,y ) 
1 1 1 1 

z
1 z2 + z1 + . ly , 

2 2 2 2 2 2 2 
U (Z

1
,z2,y ) = max(z

1
,z2) + .ly , 

1 2 
where B = 8, B = 8, c1 

= 6 and c2 5 . The driving force in this 

example is that station 2 will always choose only one program -- the 

one with the lowest price . On the other hand, station 1 will only 

choose program 2 when it can afford to also select program 1 .  This 

will occur only when station 2 has selected the first program, since 
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when station 2 has chosen the second program, the first station is 

given the prices p� 2 
6 and pl = 2. 5  and cannot afford to purchase 

both . On the other hand, when station 2 purchases the first program, 

the first station can afford to purchase both programs. But this 

action will cause the price of the second program to be less than 

the first to station 2 (p� = 3 and p� = 2.5) and thus station 2 will 

revert to choosing program 2. 

Assuming initial prices of p
1

(0) = p
2

(0) = (6,5) and 

iterating through the algorithm gives the following sequences of 

prices and demands: 

z
1

(0) = (1,0) z
2

(0) = (0,1) 

1 
p (1) = (6,2.5) 

2 
p (1) = (3,5) 

z
1

(1) = (1,0) z
2

(1) = (1,0) 

1 
p (2) = (3,5) 

2 
p (2) = (3,5) 

z
1

(2) = (1, 1) z
2

(2) = (1,0) 

1 p (3) = (3,5) 
2 

p (3) = (3, 2.5) 

z
1

(3) = (1,1) z
2

(3) = (0, 1) 

1 
p (4) = (6,2.5) 

2 
p (4) = (3, 2.5) 

z1
(4) = (1,0) z

2
(4) = (O,l) 

1 1 p (5) = (6,2.5) = p (1) 
2 2 

p (5) = (3,5) = p (1) 

Thus, with these initial prices, the algorithm will lead to a cycle . 

Furthermore, we assert by the above logic that with any other initial 

prices we will immediately generate a set of purchase decisions for 

both stations which are found at an iteration in the above cycle . 

Therefore, no stationary point can be found . 
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Because of the need to find a stable equilibrium within 

a small number of iterations, two additional rules have been 

adopted. First, programs which are not generating revenues to cover 

a predetermined fraction of their costs in a given iteration are 

dropped from consideration. This predetermined fraction rises as the 

number of iterations increase. Second, once all but a few programs 

that are likely to be purchased have been eliminated, the center 

announces that all stations will be required to continue selecting 

a program that they selected in the previous iteration if the price 

does not increase. These two rules do succeed in guaranteeing the 

convergence of the process at some loss of efficiency since outside 

of the context of the SPC rules, the final list of programs pur-

chased may not even be an equilibrium. 

One final drawback of this procedure should also be 

pointed out . Programs which generate little support in the early 

rounds of the process are likely to have their prices rise so 

rapidly that they never receive future support. As an extreme 

example of this, consider a program which is not purchased by any 

station in the first round. All stations will be confronted with a 

price equal to the full cost of that program in the second round and 

it is indeed unlikely that it will ever be purchased. 

III. THE MINIMAX PROCEDURE 

As an alternative mechanism to the existing procedure, 

we investigated the properties of a process adopted from Dreze and 

de la Vallee Poussin [2] and Malinvaud [10]. One of the virtues of 
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this process, relative to the existing one, is that the message 

space in which each station may communicate is not as constrained. 

Instead of communicating purchase decisions at each stage of the 

planning procedure, each station is asked to communicate what it 

would be willing to pay for the introduction of an unproduced 

program, or, for a produced program, what compensation it would 

require to remain just as well off after the deletion of the program 

as it would have been without the deletion. On the other hand, as 

pointed out in the introduction, this procedure has one major draw-

back -- namely, it requires that each station assume that the other 

stations' decisions are those which are the least favorable to it. 

However, ignoring this assumption for the moment, we will proceed 

to examine this process. 

The planning mechanism we propose here is a mapping 

PS P S . F: R + {O,l} x R where the inputs to the planning procedure at 

each stage are vectors, m
i

(Z), one for each station describing 

their willingness to pay for each program given that the system is 

currently in social state z. 
. p s Here z = (x,y) E {O,l} x R is the 

social state where z
i 

= K
i

' i = l, • • .  , P, indicates whether or not 

program i is being produced, and zp+i = yi, i = l, • . •  ,S, is the 

amount of the private good which station i possesses in this state. 

Given an initial decision by the center, z(O), the stations are 

1 s 
asked to report the vector (m (z(O)), • • •  ,m (z(O))). The center 

computes z(l), etc., according to the following rule. 



Rule: Given z(t) and (m
1

(z(t)), . . •  ,m5(z(t))), the index set J, 

programs eligible for a status change is defined as 

J = {j I [Zm�(z(t)) - C.>O and z.(t) = OJ or 
i J J J 

[Zm�(z(t)) - C.<O and z.(t) = l]} . 
i J J J 

If J = 0, the process terminates. Otherwise choose jE:J 

such that J Zm�(z(t)) - C. 
i J J 

I ..'.': I �� czCt)) - ck I for a11 
l 

i k E: J, and set z
j

(t + 1) = 1 - zj(t) and zk(t + 1) = zk(t) 

for k •= 1, . . . ,P,k/j. 
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Given the selection of zj(t + 1), j = l, ... ,P, the center computes 

the allocation of the private good, z
i

(t + 1), i = P + l, . . .  ,P + S, 

as 

zi(t + 1) - z
i

(t) 
p 
Z (z.(t + 1)  

j=l J 
i 

z. (t))m. (z(t)) 

+ � o�( � m�(z(t)) 
j=l J i=l J 

l J 

- c.)(z.(t + 1) - z.(t)) 
J J J 

. s i 
where 6� � 0, zo. 

J � i=lJ 
1 for j = l, . • .  ,P. 

In other words, at each iteration the center cannot change 

the status of a program which either is currently being produced and 

had a positive surplus (Zm� - c. > O) or is not being produced and
i � J 

has a negative surplus 
l 

(Zmj - cj 
< 0). From the remaining list of 

programs, the center changes the status of the program with the 

biggest absolute surplus. For this change, the center charges each 

station its reported willingness to pay and redistributes any surplus 

according to fixed sharing rules oi. 

i2 

We could assume that each station is correctly revealing 

their true preferences and proceed to show that this process is

monotonic in that for each social state, each station is at least 

as well off as with the social state of the previous iteration. 

Further, under this assumption, the rule has a stable point which is 

optimal. The difficulty with this lies with the assumption of correct 

revelation. Indeed, even if stations exhibit minimax behavior, such 

will not be the case. In the continuous analog of this model in 

which any non-negative amount of the public good may be produced, 

Dreze has shown that if the amount supplied is zero, then there are 

no penalties associated with the under-reporting of preferences 

since no further decrease in the amount supplied can be contemplated. 

More generally stated one can prove that truthful revelation is 

minimax except at corner solutions and, unfortunately, in our problem 

every feasible allocation is a corner. Thus we are lead to search 

for another alternative. 

IV. AN INDIVIDUALLY INCENTIVE COMPATIBLE PROCEDURE 

Recently a body of literature has evolved in which attention 

has been devoted to designing mechanisms which elicit the true tastes 

of the population. Groves [8] has studied one such process in which 

it is in every individual's interest to announce his true preference 

for a public good independent of the announcements of the rest of the 

population. As opposed to the minimax assump t ion of the previous 

section, this is the competitive assumption since each member of the 



population takes the messages of all other members as given. In 

environments with separable utility functions, these mechanisms 

have the property that truthful revelation of preferences is a 

dominant strategy for each agent and a Pareto optimal decision is 

taken. In a number of papers, Green and Laffont [5,6,7] have 
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extensively studied this mechanism and have shown that any mechanism 

which makes Pareto optimal decisions and for which dominant 

strategies exist is isomorphic to a Groves mechanism. 

The difficulty that arises in applying this procedure is 

that with the exception of [6] none of these papers imposed a 

constraint on the taxes which may be imposed on each agent and 

thus bankruptcy was generally feasible. Green and Laffont narrowed 

the class of Groves' mechanisms to take account of this no-bankruptcy 

condition in the case of one discrete public good. 

The result which we wish to pursue here is to attempt to 

extend this analysis to the cases of more than one public good and 

impose a no-bankruptcy condition on each individual and a no-deficit 

condition on the center. To do this we will need to use the 

following notation repeatedly: 

mi: The message communicated by station i,

m)i(: (S - 1)-tuple of messages communicated by all stations 

except station i, 

i 1 s )i( M (c1, ... ,Cp,B, ... ,B,m ): The message space correspondence 

Q 

of station, 

{O,l}p x R!: The set of possible allocations for which no 

station faces bankruptcy, 

rt 
{ p . s < 
(x,y)Ert l L Ckxk .. + Lyk 

k=l . - k=l

s ) 
rnk). 

k=l ' . 
the set of tMsibi1:> 

allocations for which no station faces bankruptcy and 

for which the center does not incur a deficit. 

With these definitions, we have imposed a certain structure on the 

institution. The set of admissible messages may depend only on 

observable data (namely, the costs of the programs, the budgets of 

t4 

the stations, and the messages of all other stations). Secondly, the 

set of possible allocations, rt, has restricted allocations of the 

private good to the non-negative orthant to ensure no bankruptcy 

can occur. Finally, the set of feasible allocations, rt, guarantee 

that the center cannot run a deficit since, if we regard tk 
= Bk - yk 

A 

as the lump sum tax paid by station k, the set rt requires 

s > L t
k k=l 

p L Ck
xk. 

k=l 
Given the message space, we may now define our 

mechanism as a mapping of messages into the set of feasible alloca-
S . A • 

tions. More specifically let F: � M1 + Q where M1 denotes the range 
i=l 

of Mi. 

In order to compare different allocations in Q, we will need to 

assume that each station has a preference relation, R., which is l 

defined on Q. This relation is assumed to be complete, transitive, 

and reflexive. Further, let Pi denote the asymmetric part of Ri 
and 

let Ii denote the symmetric part. 



With these definitions we can now define the notion of 

admissible dominant strategies: 

Definition: Fis non-strategic if and only if Vi = l, ... ,S, 

:!!m.EM
i 

such that for each m)i(EM)i( 
1 

)i( A )i( 
F(mi,m )Ri

F(mi,m ) 

A i for all mi
EM . 
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In the case where the dominant strategy for each agent was his true 

preference, the mechanism is said to be strongly individually 

incentive compatible (SIIC). Such may not be the case here, in as 

much as the SIIC strategy may be inadmissible (as in [6]). 

The definition of Pareto optimality creates some diffi-

culty in this setting. The ordinary definition of optimality 

requires the mechanism, F, to exactly balance the budget (i.e. 

s 
E t 

j=l j_ 
> 
= 

p 
E Cix.) for each S-tuple of messages. 

1=1 1 
As shown by 

Green and Laffont [7], this requires that F can not be non-

strategic. Due to this, we have chosen to relax the usual effi-

ciency requirement with the following: 

Defiinition: (x,y) is said to Pareto-dominate (x' ,y') if and 

only if 

and 

(i) xk f xk for some k 1, .. . ,P 

(ii) (x,y)R. (x' ,y') V i = 1,.,, ,S and (x,y)P. ( x' ,y') ·1 
J 

for some j = l, . • .  S. 

(iii) x +· < Bi '<:/ i E S p 1 -
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Thus we will consider one alternative to Pareto-dominate another if 
and only if it differs on the set of programs selected, it is non-

distributive and the usual def ini t ion of Pareto domination, (ii),

holds. We will call this mechansim weakly efficient when F(m) 

selects the maximal elements of �. 

With these definitions, we hoped to construct a class of 

mechanisms which were weakly efficient and non-strategic. Indeed, 

in [6], the authors have constructed such a class in the case of 

a single public good. What we discovered in the case P � 2, was 

that no such mechanism existed. This can be shown by way of the 

following example. Let us begin by examining a special class of 

preferences which we denote by L. A preference relatl.Qu is 

in L if there is a vector (v1, ... ,vp) of non-negative numbers such 
+ p i > that for each (x,y), (x',y' ) E �. (x,y)Ri

(x',y') � E x.v. 
+ yi = 

j=l J J 
p i E x'.v. + y'. Now suppose there are two stations with preference 

j =l J J i 

relations in L and two programs with C = Cl = c2 = Bl + B
2 . If 

station i has preferences (vi, v�) such that 

where 

1 2 1 2 
v1 + v1 > c1 and v2 + v2 < c2 

1 1 1 2 2 
c1 > v2 > v1 > B and c1 > v1 > B , 

weak efficiency requires that F(m) = (1,0,0,0). Alternatively, 

-i -i if stations have preferences (v1, v2) such that 

-1 -2 -1 -2 
v1 

+ v1 < c1 
and v2 + v2 > c2 



where 

-z 
CZ 

> v
l 
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z -2 2 -1 1 
v1 

> v2 > B and c1 
> v2 > B , 

weak-efficiency requires that the second program is produced, i. e. 

F(m) = (0, 1, 0, 0). 

Now let us suppose that station 1 has preferences given 

1 1 � � 
by (v1, vz) and station 2 has preferences (v

1
, vz). Thus 

where 

1 � 1 � 
v1 + v1 > c1 

and v2 + v2 > CZ 

1 1 -2 -Z 
v2 > v1 and v1 > v2 

Here, weak-efficiency only requires that either program be produced. 

However, if F(m) = (0, 1, 0, 0), then station 2 has the incentive to

misreveal its preferences as (v� , v;) which will cause the first 

program to be produced. On the other hand, if F(m) = (1, 0, 0, 0), 

-1 -1 
then station 1 will misreveal his preferences as (v1, v2) to 

guarantee production of program two. Thus this example proves 

the following impossibility result: 

> Proposition: If P = 2 and F is weakly efficient then F is not 

nonstrategic. 

V. Concluding Remarks 

From our search for a satifactory mechanism we are left 

with the following observation. If we wish to continue with the 

class of deterministic mechanisms we must allow for some strategic 

behavior, but this creates a major implementation difficulty. 

18 

The mechanisms described in the previous section are static 

mappings between agents' messages and final allocations. This 

static property is relatively unobjectionable when the agents 

have dominant strategies but if dominant strategies do not exist, 

such mechanisTIEmust be implemented as adjustment procedures. 

With the exception of Smith [11], there has been little attention 

paid to the problem of modeling such institutions and the theore-

tical analysis of the associated adjustment procedures is lacking. 

Due to this we are left to analyze the properties of competing 

institutionsthrough the use of laboratory experiments (see [4]) in 

order to compare their properties under different evaluative 

criteria .  
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