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A CONVERGENT METHOD FOR LINEAR HALF-SPACE KINETIC EQUATIONS

QIN LI, JIANFENG LU, AND WEIRAN SUN

Abstract. We give a unified proof for the well-posedness of a class of linear half-space equations with

general incoming data and construct a Galerkin method to numerically resolve this type of equations in a

systematic way. Our main strategy in both analysis and numerics includes three steps: adding damping

terms to the original half-space equation, using an inf-sup argument and even-odd decomposition to establish

the well-posedness of the damped equation, and then recovering solutions to the original half-space equation.

The proposed numerical methods for the damped equation is shown to be quasi-optimal and the numerical

error of approximations to the original equation is controlled by that of the damped equation. This efficient

solution to the half-space problem is useful for kinetic-fluid coupling simulations.

1. Introduction

In this paper we propose a Galerkin method for computing a class of half-space kinetic equation with

given incoming data:

(1.1)
(v1 + u)∂xf + Lf = 0, x ∈ [0,+∞), v ∈ V ⊆ R

d ,

f
∣∣
x=0

= φ(v), v1 + u > 0 .

where u ∈ R is a given constant, x is the spatial variable and v is the velocity variable. Typical examples for

the velocity space V are V = [−1, 1] and V = R
d. The density function f is vector-valued when the system

has multiple species. The integral operator L only acts on the velocity variable v. The specific structure and

main assumptions regarding L will be given in Section 2.

In asymptotic analysis, half-space equations arise as leading-order boundary-layer equations for kinetic

equations with multi-scales. Their solutions bridge the gap between the fluid and kinetic boundary conditions.

One motivation of our work is to study the kinetic-fluid coupling using the domain-decomposition method,

where the half-space equation serves as the intermediate equation between the fluid and kinetic regimes.

In this case, understanding the well-posedness of (1.1) and constructing accurate and efficient numerical

schemes to resolve it will provide explicit characterization of the couplings.

In the literature the well-posedness of equation (1.1) has long been investigated [BSS84, BLP79, BY12,

CGS88, Gol08, UYY03] for various models. For example, when L is the linearized Boltzmann operator,

the well-posedness of such half-space equation is fully proved in the fundamental work by Coron, Golse,

and Sulem [CGS88]. In this work, it is shown that depending on the choices of u, one needs to prescribe

various numbers of additional boundary conditions such that (1.1) is well-posed. These numbers of boundary
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conditions correspond to the counting of the incoming Euler characteristics at x = ∞. The proof in [CGS88]

relies mainly on the energy method. Subsequently, a different proof using a variational formulation of (1.1)

for the linearized Boltzmann equation is given in [UYY03]. The key idea in [UYY03] is to revise (1.1) by

adding certain damping terms. The revised collision operator thus obtained is coercive and it enforces the

end-state of f at x = ∞ to be zero. By the conservation properties of L, the authors then show that (1.1) is

well-posed for a large class of incoming data. One restriction in [UYY03] is that u cannot be chosen in the

way such that the Mach number of the system is −1, 1, or 0. This restriction was later removed in [Gol08].

The variational formulation is also a common tool in proving the well-posedness of the neutron transport

equations over general bounded domains Ω in R
d
x. There is a vast literature in this direction and we will

only review some of the main framework and results in [ES12] which are most relevant to us. In [ES12],

the linear operator L is the subcritical neutron transport operator. Hence it has a trivial null space. The

main novelty of [ES12] is that one decomposes the solution f into its even and odd parts in v and imposes

different regularities for these two parts. Using this mixed regularity, the authors of [ES12] write the kinetic

equation into a variational form and verify that the bilinear operator involved satisfies an inf-sup condition

over a properly chosen function space. Moreover, they show that for appropriately constructed Galerkin

approximations, the bilinear operator satisfies the inf-sup condition over finite-dimensional approximation

spaces as well. This then shows the Galerkin approximation is quasi-optimal. Note that the even-odd parity

was widely used for transport equations, see for example [JPT01].

There are two main goals in our paper: first, we will generalize the analysis in [ES12,Gol08,UYY03] to

obtain a unified proof for the well-posedness of half-space equations in the form of (1.1). Second, we will

develop a systematic Galerkin method to numerically resolve (1.1) and obtain accuracy estimates for our

scheme.

We now briefly explain our main results and compare them with previous ones in the literature. In terms of

analysis, we show that with appropriate additional boundary conditions at x = ∞ given in [CGS88], equation

(1.1) has a unique solution. The basic framework we use is the even-odd variational formulation developed

in [ES12]. Compared with [ES12], here we allow the linear operator L to have a nontrivial null space and the

background velocity u to be any arbitrary constant for general models. The number of additional boundary

conditions will change with u.

Due to the loss of coercivity of L, if one directly applies the variational method in [ES12] then the bilinear

operator B ceases to satisfy the inf-sup condition. To overcome this degeneracy, we utilize the ideas in

[Gol08,UYY03] by adding damping terms to (1.1) and reconstructing solutions to (1.1) from the damped

equation. In the case of linearized Boltzmann equation with a single species, we thus recover the results (in

the L2 spaces) in [Gol08,UYY03].

The main differences between our work and [Gol08, UYY03] are: first, we use a different variational

formulation which is convenient for performing numerical analysis. Second, the reconstruction in [Gol08,

UYY03] is restricted to a set of incoming data with a finite codimension such that the damping terms are

identically zero. Here we use slightly different damping terms and we recover solutions to (1.1) from the

damped equation for any incoming data.

On the other hand, our main concern is the convergence and accuracy of the numerical scheme and the

basic L2-spaces are sufficient for this purpose. Therefore, except for the hard sphere case, we do not try to

achieve decay rates estimates of the half-space solution to its end-state at x = ∞, while in the literature

there are a lot of works that show subexponential or superpolynomial decay of the solution to its end-state

for hard or soft potentials for the linearized Boltzmann equation(see for example [CLY04,WYY06,WYY07]).



A CONVERGENT METHOD FOR LINEAR HALF-SPACE KINETIC EQUATIONS 3

Our analysis also applies to linearized Boltzmann equations with multiple species and linear neutron

transport equations with critical or subcritical scatterings, thus providing an alternative proof to the well-

posedness result (in the L2-space) in [BY12].

In parallel with the analysis, numerically we first solve the damped half-space equation and then recover

the solution to the original equation. We will use a spectral method and achieve quasi-optimal accuracy (for

the damped equation) as in [ES12]. The spectral method dates back to Degond and Mas-Gallic [DMG87]

for solving radiative transfer equations, and was later extended by Coron [Cor90] to solving the linearized

BGK equation as well. Compared with these works, our approach differs in three ways: First, as a result of

using the even-odd formulation, we can derive explicit boundary conditions for the approximate equations.

In particular, the number of these boundary conditions is shown to be consistent with the number of the

unknowns. Hence our discrete systems are always well-posed. This was not the case in [Cor90] where a

least square method was used to solve a potentially overdetermined problem. Second, the method in [Cor90]

used Hermite functions defined on the whole velocity space as their basis functions. This leads to severe

Gibbs phenomenon, since in general the solution to the half-space equation has a finite jump at x = 0 and

v = −u. Here we choose to use basis functions with jumps at v = −u which naturally fit into the even-odd

formulation. This idea is inline with the double PN method. Third, we will treat the cases with arbitrary

bulk velocities u in a uniform way while in [Cor90] different schemes are used for the cases u = 0 and u 6= 0.

Since the main purpose of the current work is to establish the basic theoretical framework for solving

the half-space equations, we only present two numerical examples in this paper. Both of them are for 1D

velocity space and a single species. More extensive tests for multi-dimensional velocity space, multi-species,

and multi-frequency cases will be done in a forthcoming paper [LLS] where general boundary conditions

including various reflections at the boundary are considered.

There are also non-spectral methods developed for solving the half-space equations. For example, the

work by Golse and Klar [GK95] uses Chapman-Enskog approximation with diffusive closures. The accuracy

of these approximations would be hard to analyze: the iterative approach couples the error from the sys-

tematic expansion truncation with the numerical error. Moreover, this work ([GK95]) also treats the cases

u = 0 and u 6= 0 separately. A positivity-preserving DG method was proposed in [CGP12] to treat the

Vlasov-Boltzmann transport equation where algebraical convergence is proved. The recent work by Besse

et al. [BBG+11] treats the half-space problem as a boundary layer matching kinetics with the limiting fluid

equation, where a Marshak type approximation [Mar47] is applied for boundary fluxes. Similar idea was also

used in [Del03]. As shown already in [Cor90], in general the Marshak approximation does not yield accurate

approximations to the half-space problem.

The layout of this paper as follows: in Section 2, we gather the basic information related to the linear

operator L and the properties of the damped operator we will be using in the proof, together with the

variational formulation we use. Section 3 is devoted to show the well-posedness of the damped equation and

the recovery of the original equation. In Section 4 we show its numerical counterpart and present the result

on the Galerkin approximation. Section 5 collects all numerical schemes and results for the linearized BGK

and linear transport equations.

2. Linear Operator and Basic Setting

In this section we will set the framework for our analysis and numerics. In particular, we will show the

basic assumptions about the collision operator L and the structure of the damped operator and present the

variational formulation of a damped version of (1.1).

2.1. Linear collision operator. In order to state the main assumptions imposed on L, we first introduce

some notations. Denote NullL as the null space of L. Let P : (L2( dv))m → NullL be the projection onto
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NullL. Define the weight function

(2.1) a(v) = (1 + |v|)ω0 ,

for some 0 ≤ ω0 ≤ 1. Throughout the paper we use

〈f, g〉 = 〈f, g〉v =
∫

V

f · g dv , 〈f, g〉x,v =
∫

Rd

∫

V

f · g dv dx .(2.2)

2.1.1. Assumptions on L. The main assumptions on L are as follows:

(A1) L : D(L) → (L2( dv))m is self-adjoint, nonnegative, and its domain is given by

D(L) = {f ∈ (L2( dv))m
∣∣ a(v)f ∈ (L2( dv))m} ⊆ (L2( dv))m ,

where a(v) is defined in (2.1).

(A2) L : (L2(a dv))m → (L2( 1a dv))
m is bounded, that is, there exists a constant σ0 > 0 such that

‖Lf‖
(L2(

1
a dv))m

≤ σ0 ‖f‖(L2(a dv))m .

(A3) NullL is finite dimensional and NullL ⊆ (Lp( dv))m for all p ∈ [1,∞).

(A4) L has a spectral gap: there exists σ0 > 0 such that

〈f, Lf〉 ≥ σ0
∥∥P⊥f

∥∥2
(L2(a dv))m

for any f ∈ (L2(a dv))m ,

where P⊥ = I − P is the projection (in (L2( dv))m) onto the null orthogonal space (NullL)⊥.

Note that Assumption (A4) guarantees that L has a bounded inverse on (NullL)⊥. Throughout this

paper, we denote L−1 as its pseudo-inverse on (L2( dv))m.

One operator that is of particular importance is P1 : NullL → NullL which is defined by

P1(f) = P((v1 + u)f) for any f ∈ NullL .

Note that P1 is a symmetric operator on the finite dimension space NullL. Therefore, its eigenfunctions form
a complete set of basis of NullL. Denote H+, H−, H0 as the eigenspaces of P1 corresponding to positive,

negative, and zero eigenvalues respectively and denote their dimensions as

dimH+ = ν+, dimH− = ν−, dimH0 = ν0 .

Let X+,i, X−,j, X0,k be the associated unit eigenfunctions with 1 ≤ i ≤ ν+, 1 ≤ j ≤ ν−, and 1 ≤ k ≤ ν0

for ν±, ν0 6= 0. Note that if any of ν±, ν0 is equal to zero, then we simply do not have any eigenfunction

associated with the corresponding eigenspace. By their definitions, these eigenfunctions satisfy

(2.3)
〈Xα,γ , Xα′,γ′〉v = δαα′δγγ′ , 〈(v1 + u)Xα,γ , Xα′,γ′〉v = 0 if α 6= α′ or γ 6= γ′ ,

〈(v1 + u)X0,j, X0,k〉v = 0 , 〈(v1 + u)X+,j , X+,i〉v > 0 , 〈(v1 + u)X−,j , X−,j〉v < 0 ,

where α ∈ {+,−, 0}, γ ∈ {i, j, k}, 1 ≤ i ≤ ν+, 1 ≤ j ≤ ν−, and 1 ≤ k ≤ ν0. These relations in particular

give that

(v1 + u)X0,j ∈ (NullL)⊥ , j = 1, · · · , ν0 .

Therefore L−1 ((v1 + u)X0,j) ∈ (NullL)⊥ is well-defined.
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2.1.2. Examples of L. Many well-known linear or linearized kinetic models satisfy the assumptions (A1)-

(A4) for the collision operators. These include the classical linearized Boltzmann equations for either single-

species system or multi-species with hard-sphere collisions and the linear neutron transport equations. The

particular equations that we use as numerical examples are the isotropic neutron transport equation (NTE)

with slab geometry and the linearized BGK equation. Similar analysis can be carried out to models satisfying

(A1)-(A4) without extra difficulties. The main structure of these two equations are as follows. The linear

operator of the isotropic NTE is the simplest scattering operator which has the form

(2.4) Lf = f − 1

2

∫ 1

−1

f(v) dv .

In this case, a(v) = 1 + |v| = O(1) and (L2(a dv))m coincides with (L2( dv))m.

The linearized BGK operator is the linearization of the nonlinear BGK operator, which is introduced

as a simplified model that captures some fundamental behavior of the nonlinear Boltzmann equation. The

collision operator of the nonlinear BGK is defined as

Q[F ] = F −M[F ] ,

where M[F ] is the local Maxwellian associated with F defined by

M[F ] =
ρ√
2πθ

e−
|v−u|2

2θ ,

where

ρ =

∫

R

F dv , ρu =

∫

R

vF dv , ρu2 + ρθ =

∫

R

v2F dv .

For a given bulk velocity u ∈ R, define the global Maxwellian with the steady state (ρ, u, θ) = (1, u, 1/2) as

Mu =
1√
π
e−|v−u|2 .

Linearizing the operator Q around M by setting

F =Mu +
√
Muf ,

we obtain the linearized BGK operator

Luf = f −mu,

where mu(v) is f projected onto the kernel space of Lu. In the case of the 1D linearized BGK, one has:

NullLu = span{
√
Mu, v

√
Mu, v

2
√
Mu} .

Therefore, mu(v) is a quadratic function associated with a Maxwellian to 1/2 power:

mu(v) =
(
ρ̃+ ũ(v − u) + θ̃

2 ((v − u)2 − 1)
)√

Mu ,

where (ρ̃, ũ, θ̃) are defined in the way such that first three moments of m(v) agree with those of f :

〈f −mu, v
k
√
Mu〉 =

∫

R

(f −mu)v
k
√
Mu dv = 0, k = 0, 1, 2 .

The half-space equation with the linearized BGK operator that centered at bulk velocity u is:

(2.5)
v∂xf+Luf = 0,

f |x=0 = φ(v) , v > 0 .

Following the classical treatment of the half-space equations, we shift the center of the Maxwellian Mu to

the origin by performing the change of variable v − u→ v. The half-space equation (2.5) then becomes

(2.6)
(v + u)∂xf + Lf = 0,

f |x=0 = φ(v + u) , v + u > 0 ,
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where

(2.7) Lf = f −m(v) , m(v) = m0 ,

and the null space of L becomes

NullL = span{
√
M, v

√
M, v2

√
M} ,

where M is the global Maxwellian centered at the origin such that

M =M0 =
1√
π
e−v

2

.

As defined in (2.3), we look for H±,0 decomposition of NullL. For this particular case one could write

down the basis functions explicitly. Following [CGS88], we define

(2.8)




χ0 = 1

61/2π1/4

(
2v2 − 3

)
exp(−v2/2)

χ± = 1
61/2π1/4

(√
6v ± 2v2

)
exp(−v2/2)

.

It is easy to show that

(2.9)





〈χα, χβ〉v =
∫
R
χαχβ dv = δαβ ,

〈(v + u)χα, χβ〉v = 0 , α 6= β ,

〈(v + u)χ0, χ0〉v = u0 = u ,

〈(v + u)χ+, χ+〉v = u+ = u+ c ,

〈(v + u)χ−, χ−〉v = u− = u− c ,

where α, β ∈ {+,−, 0}, c =
√
3/2, and

〈f, g〉v =

∫

R

fg dv .

Using these new basis functions, we can decompose NullL into subspaces: NullL = H+ ⊕H− ⊕H0 with:

H+ = span {χβ | uβ > 0} , H− = span {χβ | uβ < 0} , H0 = span {χβ| uβ = 0} ,

where again β ∈ {+,−, 0}. For each fixed u ∈ R, denote the dimensions of these subspaces as

dimH+ = ν+, dimH− = ν−, dimH0 = ν0 .

Note that ν±, ν0 change with u. In particular, we have the following categories:





u < −c : (dimH+, dimH−, dimH0) = (0, 3, 0) ,

u = −c : (dimH+, dimH−, dimH0) = (0, 2, 1) ,

−c < u < 0 : (dimH+, dimH−, dimH0) = (1, 2, 0) ,

u = 0 : (dimH+, dimH−, dimH0) = (1, 1, 1) ,

0 < u < c : (dimH+, dimH−, dimH0) = (2, 1, 0) ,

u = c : (dimH+, dimH−, dimH0) = (2, 0, 1) ,

u > c : (dimH+, dimH−, dimH0) = (3, 0, 0) .

(2.10)

This gives an explicit example that shows the structure of NullL changes with u.
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2.2. Damped Linear Operator Ld. The main difficulty in both analysis and numerics is the non-coercivity

of L. Although in some cases this degeneracy of L can be handled by carefully choosing appropriate function

spaces for the variational formulation, we prefer to work with strictly dissipative operators. To this end, we

utilize the idea developed in [Gol08,UYY03] to modify the original equation (2.6) by adding in damping

terms. The particular damping terms are chosen in the way such that we can easily recover the undamped

equation (2.6) for any incoming data and such that the damped operator is symmetric. The particular

damped operator we introduce is

(2.11)

Ldf =Lf + α

ν+∑

k=1

(v1 + u)X+,k 〈(v1 + u)X+,k, f〉v

+ α

ν−∑

k=1

(v1 + u)X−,k 〈(v1 + u)X−,k, f〉v + α

ν0∑

k=1

(v1 + u)X0,k 〈(v1 + u)X0, f〉v

+ α

ν0∑

k=1

(v1 + u)L−1((v1 + u)X0,k)
〈
(v1 + u)L−1((v1 + u)X0,k), f

〉
v
.

Here the constant α satisfies that 0 < α ≪ 1. The size of α only depends on L. The main property of Ld is

its coercivity as stated in the following lemma:

Lemma 2.1. Let L be the linear operator that satisfies Assumptions (A1)-(A4). Then there exist two

constants σ1, α0 > 0 such that for any 0 < α ≤ α0 we have

〈f, Ldf 〉 ≥ σ1 ‖f‖2(L2(a dv))m for any f ∈ D(L) .

Proof. By the definition of Ld, we have

〈f, Ldf 〉 = 〈f,Lf〉+ α

ν+∑

k=1

〈(v1 + u)X+,k, f〉2 + α

ν−∑

k=1

〈(v1 + u)X−,k, f〉2 + α

ν0∑

k=1

〈(v1 + u)X0, f〉2

+ α

ν0∑

k=1

〈
(v1 + u)L−1((v1 + u)X0,k), f

〉2
.

Write

f = f⊥ +

ν+∑

i=1

f+,iX+,i +

ν−∑

j=1

f−,jX+,j +

ν0∑

k=1

f0,kX0,k ,

where f⊥ = P̃f ∈ (NullL)⊥. By Assumption (A4), if we chose 0 < α≪ 1, then

(2.12)

〈f, Ldf 〉 ≥σ0‖f⊥‖2(L2(a dv))m +
α

4

ν+∑

k=1

γ2+,kf
2
+,k +

α

4

ν+∑

k=1

γ2−,kf
2
−,k

− α

4

ν+∑

k=1

〈
(v1 + u)X+,k, f

⊥
〉2 − α

4

ν−∑

k=1

〈
(v1 + u)X−,k, f

⊥
〉2

≥ σ0
2
‖f⊥‖2(L2(a dv))m +

α

4

ν+∑

k=1

γ2+,kf
2
+,k +

α

4

ν−∑

k=1

γ2−,kf
2
−,k ,

where γ±’s are defined as

(2.13)
γ+,i := 〈(v1 + u)X+,i, X+,i〉v > 0 , 0 ≤ i ≤ ν+ ,

γ−,j := −〈(v1 + u)X−,j , X−,j〉v > 0 , 0 ≤ j ≤ ν− .
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In addition, if ν0 6= 0, then

(2.14)

〈f, Ldf 〉 ≥ σ0‖f⊥‖2(L2(a dv))m + α

ν0∑

k=1

〈
(v1 + u)L−1((v1 + u)X0,k), f

〉2

≥ σ0
2
‖f⊥‖2(L2(a dv))m +

α

4ν0




ν0∑

k,m=1

〈
(v1 + u)L−1((v1 + u)X0,k), X0,m

〉
v
f0,m




2

− α

4

ν0∑

k=1

〈
(v1 + u)L−1((v1 + u)X0,k),

ν+∑

m=1

f+,kX+,k

〉2

− α

4

ν0∑

k=1

〈
(v1 + u)L−1((v1 + u)X0,k),

ν+∑

m=1

f−,kX−,k

〉2

− α

4

ν0∑

k=1

〈
(v1 + u)L−1((v1 + u)X0,k), f

⊥
〉2
.

Since the matrix
( 〈

(v1 + u)L−1((v1 + u)X0,k), X0,m

〉
v

)
is strictly positive, there exists a constant c0 > 0

such that

(2.15)

ν0∑

k=1

( ν0∑

m=1

〈
(v1 + u)L−1((v1 + u)X0,k), X0,m

〉
v
f0,m

)2

≥ c0

ν0∑

k=1

f2
0,m .

Hence by multiplying (2.12) by a large enough number and adding it to (2.14), we have

(2.16) 〈f, Ldf 〉 ≥ σ1‖f‖2(L2(a dv))m for some σ1 > 0 .

provided 0 < α≪ 1. �

2.3. Variational Formulation. In this part we present the variational formulation for the half-space equa-

tion. First, we state the full equation that we want to study in this paper using the notation of H±, H0,.

Suppose L is a linear operator in v that satisfies (A1)-(A4). Our goal is to prove the well-posedness of the

following equation and then construct efficient numerical schemes and obtain estimate of its accuracy:

(2.17)

(v1 + u)∂xf + Lf = 0, x ∈ [0,+∞), v ∈ V ,

f
∣∣
x=0

= φ(v), v1 + u > 0 ,

f − f∞ ∈(L2( dv dx))m ,

for some f∞ ∈ H+ ⊕ H0. The particular formulation about the end-state f∞ was given in [CGS88] (for

single species m = 1) where the authors proved the well-posedness of the half-space linearized Boltzmann

equation:

Theorem 2.1 ([CGS88]). Let L be the linearized Boltzmann operator with a hard-sphere collision kernel and

the incoming data φ ∈ L2(a(v)1v1+u>0 dv). Then there exists a constant β > 0 and a unique f∞ ∈ H+⊕H0

such that equation (1.1) has a unique solution f which satisfies

f − f∞ ∈ L2(e2βx dx;L2(a dv)) ,

where a(v) = 1 + |v|.

Remark 2.1. The main result in [CGS88] is actually stronger than Theorem 2.1 where f − f∞ is shown to

be in L∞(e2βx dx;L2( dv)). Here we content ourselves with the L2-weighted space (in x) since L2 suffices

our needs in proving the quasi-optimal convergence of our numerical scheme.
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We will use V = R
3 as the setting to explain the variational formulation. Other spaces for v will work in

a similar way. Let u ∈ R be given. We use the damped operator Ld and obtain the modified equation as

(v1 + u)∂xf + Ldf = 0 ,

f
∣∣
x=0

= φ(v1) , v1 + u > 0 .(2.18)

We define the shifted “even” and “odd” parts of a function as

(2.19) f+(v) =
f(v1, v2, v3) + f(−2u− v1, v2, v3)

2
, f−(v) =

f(v1, v2, v3)− f(−2u− v1, v2, v3)

2

such that f = f+ + f− and

f±(−u+ v1, v2, v3) = ±f±(−u− v1, v2, v3) .

Define the function space

(2.20) Γ =
{
f ∈ (L2(a dv dx))m

∣∣ (v1 + u)∂xf
+ ∈ (L2( 1a dv dx))

m
}
,

which is a Hilbert space with the inner product

〈f, g〉Γ =

∫

R

∫

R3

f · g a dv dx+

∫

R

∫

R3

(v1 + u)∂xf
+ · (v1 + u)∂xg

+ 1
a dv dx .

Thus the norm of Γ is equivalent to

‖f‖(L2(a dv dx))m + ‖(v1 + u)∂xf
+‖

(L2(
1
a dv dx))m

.

Moreover, every element g ∈ Γ has a well-defined trace:

(2.21) T : Γ → (L2(|v1 + u| dv))m

such that

(2.22) T g = g+
∣∣
x=0

, for all g ∈ C([0,∞); (L2(a dv))m) ,

and

(2.23)

∫

R3

|v1 + u||g+|2 dv <∞ .

Now we define a bilinear operator B : Γ× Γ → R such that

(2.24)

B(f, ψ) =−
〈
f−, (v1 + u)∂xψ

+
〉
x,v

+
〈
(v1 + u)∂xf

+, ψ−
〉
x,v

+ 〈ψ,Ldf〉x,v +
〈
|v1 + u|f+, ψ+

〉
x=0

=−
〈
f−, (v1 + u)∂xψ

+
〉
x,v

+
〈
(v1 + u)∂xf

+, ψ−
〉
x,v

+ 〈ψ,Lf〉x,v

+ α

ν+∑

k=1

〈
〈(v1 + u)X+,k, ψ〉v , 〈(v1 + u)X+,k, f〉v

〉
x

+ α

ν−∑

k=1

〈
〈(v1 + u)X−,k, ψ〉v , 〈(v1 + u)X−,k, f〉v

〉
x

+ α

ν0∑

k=1

〈〈
(v1 + u)L−1((v1 + u)X0,k), ψ

〉
v
,
〈
(v1 + u)L−1((v1 + u)X0,k), f

〉
v

〉
x

+ α

ν0∑

k=1

〈
〈(v1 + u)X0,k, ψ〉v , 〈(v1 + u)X0,k, f〉v

〉
x
+
〈
|v1 + u|f+, ψ+

〉
x=0

.

Recall that the inner product 〈·, ·〉x,v is defined in (2.2). It is straightforward to check by using integration

by parts and symmetry that the variational formulation of (2.18) has the form

(2.25) B(f, ψ) = l(ψ) , for every ψ ∈ Γ .
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Here the linear operator l(·) is given by

(2.26) l(ψ) = 2

∫

v1+u>0

(v1 + u)φψ+ dv ,

where φ is the given incoming data and ψ+ is the even (with respect to −u) part of ψ as defined in (2.19).

3. Well-posedness

In this section we show the well-posedness of the half-space equation (2.17). The proof will be done in two

steps: first, we use the variational form (2.25) to show the well-posedness of the damped equation (2.18).

Then we construct recovering procedures to find the solution to the original half-space equation.

3.1. Solution of the damped equation. The main tool we use to show the well-posedness of the weak

formulation (2.25) is to use the Babuška-Aziz lemma [BA72]. There are two parts in this lemma and we

recall its statement below.

Theorem 3.1 (Babuška-Aziz). Suppose Γ is a Hilbert space and B : Γ×Γ → R is a bilinear operator on Γ.

Let l : Γ → R be a bounded linear functional on Γ.

(a) If B satisfies the boundedness and inf-sup conditions on Γ such that

• there exists a constant c0 > 0 such that |B(f, g)| ≤ c0‖f‖Γ‖g‖Γ for all f, g ∈ Γ;

• there exists a constant κ0 > 0 such that

(3.1)

sup
‖f‖Γ=1

B(f, ψ) ≥ κ0‖ψ‖Γ , for any ψ ∈ Γ ,

sup
‖ψ‖Γ=1

B(f, ψ) ≥ κ0‖f‖Γ , for any f ∈ Γ

for some constant κ0 > 0.

then there exists a unique f ∈ Γ which satisfies

B(f, ψ) = l(ψ) , for any ψ ∈ Γ .

(b) Suppose ΓN is a finite-dimensional subspace of Γ. If in addition B : ΓN × ΓN → R satisfies the inf-sup

condition on ΓN , then there exists a unique solution fN such that

B(fN , ψN ) = l(ψN) , for any ψN ∈ ΓN .

Moreover, fN gives a quasi-optimal approximation to the solution f in (a), that is, there exists a constant

κ1 such that

‖f − fN‖Γ ≤ κ1 inf
w∈ΓN

‖f − w‖Γ .

It is clear that the inf-sup condition of B is essential to the solvability of (2.25). We thus first show that

B satisfies this condition.

Proposition 3.2 (Inf-sup). Let Γ and B be the function space and the bilinear operator defined in (2.20)

and (2.24) respectively. Then B : Γ× Γ → R satisfies the inf-sup condition (3.1).

Proof. Note that B is symmetric in its variables. Hence it suffices to show that the second condition in (3.1)

holds. To this end, let f ∈ Γ be arbitrary. We only need to find an appropriate ψ such that

(3.2) B(f, ψ) ≥ κ0‖f‖2Γ , ‖ψ‖Γ ≤ κ1‖f‖Γ .

Indeed, if ψ satisfies (3.2), then one can simply let Ψ = ψ
‖ψ‖Γ

and obtain the second inequality in (3.1) (with

a different constant). The construction of such ψ will be carried out in two steps. First, let ψ1 = f . Then

by Lemma 2.1,

B(f, ψ1) = 〈f, Ldf 〉x,v +
〈
|v1 + u|f+, f+

〉
x=0

≥ σ1‖f‖2(L2(a dv dx))m .
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Next, let

ψ2 =
1

(1 + |v1 + u|+ |v2|+ |v3|)ω0
(v1 + u)∂xf

+ .

We claim that ψ2 ∈ Γ. Indeed, by the definition of a(v), one can find two constants c1, c2 > 0 such that

c1
a(v)

≤ 1

(1 + |v1 + u|+ |v2|+ |v3|)ω0
≤ c2
a(v)

.

Here the constants c1, c2 depend on u. Thus ψ2 ∈ (L2(a dv dx))m because

‖ψ2‖(L2(a dv dx))m ≤ ‖(v1 + u)∂xf
+‖(

L2(
1
a dv dx)

)m ≤ ‖f‖Γ .

Moreover the definition of ψ2 implies that

ψ+
2 = 0 ∈ (L2( 1a dv dx))

m .

Hence ψ2 ∈ Γ and it satisfies

(3.3) ‖ψ2‖Γ ≤ ‖f‖Γ .

Using ψ2 in B, we have

B(f, ψ2) =
〈
(v1 + u)∂xf

+, ψ2

〉
+ 〈ψ2,Lf〉+ α

ν+∑

k=1

〈
〈(v1 + u)X+,k, ψ2〉v 〈(v1 + u)X+,k, f〉v

〉
x

+ α

ν−∑

k=1

〈
〈(v1 + u)X−,k, ψ2〉v 〈(v1 + u)X−,k, f〉v

〉
x

+ α

ν0∑

k=1

〈
〈(v1 + u)X0,k, ψ2〉v 〈(v1 + u)X0, f〉v

〉
x

+ α

ν0∑

k=1

〈〈
(v1 + u)L−1((v1 + u)X0,k), ψ2

〉
v

〈
(v1 + u)L−1((v1 + u)X0,k), f

〉
v

〉
x

≥‖(v1 + u)∂xf
+‖2

(L2(
1
a dv dx))m

− κ2‖f‖2(L2(a dv dx))m ,

for some constant κ2 > 0. Hence by taking κ3 > 0 large enough, we have that

(3.4) B(f, κ3ψ1 + ψ2) ≥ κ0‖f‖2Γ ,

for some κ0 > 0. Recall that by the definition of ψ1 and (3.3), we also have

‖κ3ψ1 + ψ2‖Γ ≤
√
1 + κ3 ‖f‖Γ ,

which, together with (3.4), shows the inf-sup property of B on Γ× Γ. �

Using the inf-sup property of B and the Babuška-Aziz Lemma, we can now show the solvability of the

variational form (2.25).

Proposition 3.3 (Well-posedness of the damped equation). Suppose L satisfies Assumption (A1)-(A4)

and Ld is defined as in (2.11) with α small enough such that the coercivity in Lemma 2.1 holds. Let

φ ∈ (L2(a(v)1v1+u>0 dv))
m and Γ be the function space defined in (2.20). Then

(a) There exists a unique f ∈ Γ such that (2.25) holds.

(b) Moreover, f satisfies that

(v1 + u)∂xf ∈ (L2( 1a dv dx))
m
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and it solves the damped half-space equation in the sense of distributions

(3.5)

(v1 + u)∂xf + Ldf =(v1 + u)∂xf + Lf + α

ν+∑

k=1

(v1 + u)X+,k 〈(v1 + u)X+,k, f〉v

+ α

ν−∑

k=1

(v1 + u)X−,k 〈(v1 + u)X−,k, f〉v + α

ν0∑

k=1

(v1 + u)X0,k 〈(v1 + u)X0,k, f〉v

+ α

ν0∑

k=1

(v1 + u)L−1((v1 + u)X0,k)
〈
(v1 + u)L−1((v1 + u)X0,k), f

〉
v
= 0

with the boundary conditions (defined in the trace sense at x = 0)

(3.6) f |x=0 = φ(v) , v1 + u > 0 .

(c) If a(v) = 1 + |v|, then there exists β > 0 such that (L2(e2βx dx;L2(a dv)))m.

Proof. (a) It is straightforward to verify the boundedness of B and l as defined in (2.24) and (2.26). The

well-posednes of the variational form is then an immediate consequence of Proposition 3.2 and part (a) of

the Babuška-Aziz lemma.

(b) In order to show that (v1 + u)∂xf ∈ (L2( 1a dv dx))
m, we note that the damped equation (3.5) holds in

the sense of distributions by choosing the test function ψ ∈ C∞
c ((0,∞)× R). Thus

(v1 + u)∂xf = β(v1 + u)f − Ld(f) ∈ (L2( 1a dv dx))
m .

By the density argument this implies that
〈
(v1 + u)∂xf

−, ψ+
〉
x,v

+
〈
(v1 + u)∂xf

+, ψ−
〉
x,v

− β 〈(v1 + u)ψ, f〉x,v + 〈ψ,Ldf〉x,v = 0 ,

for all ψ ∈ C∞(0,∞). Therefore, if we choose φ ∈ C∞[0,∞) and integrate by parts in the variational form

(2.25), then boundary terms satisfy

〈
(v1 + u)f−, ψ+

〉
v
+
〈
|v1 + u|f+, ψ+

〉
v
= 2

∫

v1+u>0

(v1 + u)φψ+ dv at x = 0 ,

which implies, ∫

v1+u>0

(v1 + u)fψ+ dv =

∫

v1+u>0

(v1 + u)φψ+ dv at x = 0 .

Since ψ+ ∈ C∞(0,∞) is arbitrary, we have f = φ at x = 0 when v1 + u > 0.

(c) If a(v) = 1+ |v|, then there exists β > 0 such that f ∈ (L2(e2βx dx;L2(a dv)))m. The proof will be along

the same line for the general case of a(v). We use the standard way to incorporate the exponential into the

bilinear form by changing f by g = eβxf . The new bilinear form Bβ is

Bβ(g, ψ) = B(g, ψ)− β 〈(v1 + u)g, ψ〉x,v ,

where B(g, ψ) is defined in (2.24). Note that by Cauchy-Schwartz, if we choose 0 < β ≪ α, then by the

spectral gap assumption (A4), we have

∣∣β 〈(v1 + u)g, ψ1〉x,v
∣∣ ≤ 1

2
B(g, ψ) ,

∣∣β 〈(v1 + u)g ψ2〉x,v
∣∣ ≤ 1

2
B(g, ψ) + 1

2

〈
(v1 + u)∂xg

+, ψ2

〉
x,v

.

Hence, this extra β-term will not affect the inf-sup estimate. Since g ∈ (L2( dv dx))m, we have that f ∈
(L2(e2βx dx;L2( dv)))m. �

Remark 3.1. Note that f − f∞ for the neutron transport equations satisfy the exponential decay as x→ ∞
since a(v) ∼ 1 in this case.
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3.2. Recovery of the undamped solution. Using the solution of the damped equation (3.5), we now

explicitly construct solutions to the original undamped equation (2.17). First we introduce the following

notations: for any solution f to the damped equation (3.5), denote

(3.7)

~U+(f) =
(
〈(v1 + u)X+,1, f〉v , · · · ,

〈
(v1 + u)X+,ν+ , f

〉
v

)T
,

~U−(f) =
(
〈(v1 + u)X−,1, f〉v , · · · ,

〈
(v1 + u)X−,ν− , f

〉
v

)T
,

~U0(f) =
(
〈(v1 + u)X0,1, f〉v , · · · , 〈(v1 + u)X0,ν0 , f〉v

)T
,

~UL,0(f) =
(〈
(v1 + u)L−1((v1 + u)X0,1), f

〉
v
, · · · ,

〈
(v1 + u)L−1((v1 + u)X0,1)X0,ν0 , f

〉
v

)T
,

and

(3.8) ~U(f) =
(
~UT
+ (f), ~UT

−(f), ~UT
0 (f), ~UT

L,0(f)
)T

.

Next we define some auxiliary functions. For each 1 ≤ i ≤ ν+, let g+,i be the solution to (2.18) with

boundary conditions given by X+,i:

g+,i|x=0 = X+,i, v1 + u > 0.

Similarly, for each 1 ≤ j ≤ ν0, denote g0,j as the solution to (2.18) where

g0,j |x=0 = X0,j , v1 + u > 0 .

Let C be the block matrix defined by

(3.9) C =

(
C++ C+0

C0+ C00

)
,

where

C++,ii′ = 〈(v1 + u)X+,i, g+,i′〉
∣∣
x=0

, C+0,ij′ = 〈(v1 + u)X+,i, g0,j′〉
∣∣
x=0

,

C0+,ji′ = 〈(v1 + u)X0,j, g+,i′〉
∣∣
x=0

, C00,jj′ = 〈(v1 + u)X0,j , g0,j′〉
∣∣
x=0

for 1 ≤ i, i′ ≤ ν+ and 1 ≤ j, j′ ≤ ν0. In the case where dimH0 = 0, we have

C = C++ .(3.10)

The main property we will show about C is that C is non-singular. This will be an easy consequence of the

following lemma:

Lemma 3.1. Let f be a solution to the damped equation (3.5) and ~U(f) be defined as in (3.8). Suppose

~U+(f) = ~U0(f) = 0 , at x = 0 .(3.11)

Then ~U(f) = 0 for all x.

Proof. We separate the proof in two parts according to dimH0.

Case 1: dim(H0) = 0. In this case condition (3.11) reduces to

~U+(f) = 0 , at x = 0 .(3.12)

Moreover, the damped equation (3.5) reduces to

(3.13)

(v1 + u)∂xf + Lf + α

ν+∑

k=1

(v1 + u)X+,k 〈(v1 + u)X+,k, f〉v

+ α

ν−∑

k=1

(v1 + u)X−,k 〈(v1 + u)X−,k, f〉v = 0 ,
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and ~U(f) becomes

~U(f) =
(
~UT
+ (f), ~UT

−(f)
)T

.

Multiplying (3.13) by X+,k, X−,j and integrating over v ∈ V, we obtain a linear system for ~U :

(3.14) ∂x~U +A1
~U = 0 ,

where the coefficient matrix is diagonal:

(3.15) A1 =

(
αD+ 0

0 −αD−

)
,

where D+, D− are positive definite and

D+ = diag(γ+,1, · · · , γ+,ν+) , D− = diag(γ−,1, · · · , γ−,ν−) ,

where γ±,k > 0 are defined as in (2.13). Since solutions to (3.13) are in (L2( dv dx))m, it is clear that

〈(v1 + u)X−,j, f(0, ·)〉v = 〈(v1 + u)X−,j, f(x, ·)〉v = 0 , for all 1 ≤ j ≤ ν− and x ≥ 0 .

Hence ~U−(f) = 0 holds for all x. Moreover, by the structure of A1 in (3.15) and the initial condition (3.12),

we have ~U+(f) = 0 for all x. Thus ~U(f) = 0 for all x.

Case 2: dim(H0) 6= 0. In this case, we multiply X+,j , X−,i, X0,k,L−1(v1X0,m) to (3.5) and integrate over

v ∈ V. This gives

(3.16) ∂x~U +A2
~U = 0 ,

where the coefficient matrix A2 is

(3.17) A2 =




αD+

−αD−

0
αA21

αA22

0 0 αB

αAT
21 αAT

22 I + αB αD


 ,

where again D± are positive diagonal matrices such that

D+ = diag(γ+,1, · · · , γ+,ν+)ν+×ν+ , D− = diag(γ−,1, · · · , γ−,ν−)ν−×ν− .

The other matrices are

A21,ik =
(〈
(v1 + u)X+,i, L−1((v1 + u)X0,k)

〉
v

)
ν+×ν0

,

A22,jk =
(〈
(v1 + u)X−,j, L−1((v1 + u)X0,k)

〉
v

)
ν−×ν0

,

Bij =
〈
(v1 + u)X0,i, L−1((v1 + u)X0,j)

〉
v,ν0×ν0

,

Dij =
〈
(v1 + u)L−1((v1 + u)X0,i), L−1((v1 + u)X0,j)

〉
v,ν0×ν0

,

where B is symmetric positive definite and D is symmetric. Note that if we define

Q =




I

I
0 0

0 (αB)1/2(I + αB)−1/2 0

0 0 I


 ,

and

Ã2 =




αD+

−αD−

0
αA21

αA22

0 0 (I + αB)1/2(αB)1/2

αAT
21 αAT

22 (I + αB)1/2(αB)1/2 αD


 .
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Then

(3.18) A2 = Q−1Ã2Q .

Thus A2 and Ã2 have the same signature. In particular, they have the same number of negative eigenvalues.

Now we count the number of negative eigenvalues of Ã2. Let

P =




I

I
0 0

0 I 0

−AT
21D

−1
+ AT

22D
−1
− 0 I


 .

Then P is non-singular and

A3 = PÃ2P
T =




αD+

−αD−

0 0

0 0 (I + αB)1/2(αB)1/2

0 (I + αB)1/2(αB)1/2 αD1


 ,

where D1 is symmetric and

D1 = D −AT
21D

−1
+ A21 +AT

22D
−1
− A22 .

By Sylvester’s law of inertia, the matrices Ã2 and A3, thus A2 and A3, have the same number of nega-

tive eigenvalues. The total number of negative eigenvalues of A3 is determined by that of the submatrix(
0 (I + αB)1/2(αB)1/2

(I + αB)1/2(αB)1/2 αD1

)
. Define

P1 =

(
(I + αB)−1/4(αB)−1/4 0

0 (I + αB)−1/4(αB)−1/4

)
.

Then

A4 = P1

(
0 (I + αB)1/2(αB)1/2

(I + αB)1/2(αB)1/2 αD1

)
PT
1 =

(
0 I

I αD2

)
,

where

D2 = (I + αB)−1/4(αB)−1/4D1(I + αB)−1/4(αB)−1/4 .

Note that D2 is symmetric. Hence, D2 has a complete set of eigenvectors. Let (λ,E) = (λ, (e1, e2)
T) be an

eigenpair of A4 such that

(3.19)

(
0 I

I αD2

)(
eT1

eT2

)
= λ

(
eT1

eT2

)
.

This is equivalent to

e2 = λe1 , e1
T + αD2e

T
2 = λeT2 .

Note that λ 6= 0. Since D2 is symmetric, it has a complete set of orthogonal eigenvectors. Let e be an

arbitrary eigenvector of D with eigenvalue λe and take e2 = e. Then

(3.20) e1 =
1

λ
e ,

1

λ
eT + αD2e

T = λeT .

Thus

(3.21)
1

λ
+ αλe − λ = 0 ,
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which has exactly one negative solution for λ. Since the set of eigenvectors of D2 is complete, the matrix

A4 has exactly ν0 negative eigenvalues. Together with D−, we have that A3, thus A2, has exactly ν− + ν0

negative eigenvalues, which prescribes ν− + ν0 conditions on ~U such that

(3.22) Ek · ~U(x) = 0 , 1 ≤ k ≤ ν− + ν0 , x ≥ 0 ,

where Ek are the eigenvectors associated with negative eigenvalues. Write each Ek as

Ek = (ek,+, ek,−, ek,0, ek,L,0)
T

and define the matrix E by

E =




e1,− e1,L,0

· · ·
eν−+ν0,− eν−+ν0,L,0




(ν−+ν0)×(ν−+ν0)

By (3.11) we have

(3.23) E



~U−

~UL,0


 = 0 , at x = 0.

Now we show that E is nonsingular. Suppose not. Let N2 be the space spanned by the eigenvectors of A2

with negative eigenvalues. Then there exists a nontrivial vector in N2 which takes the form

Ê = (ê+, 0, ê0, 0)
T .

By (3.18), if E = (e+, e−, e0, eL,0)
T is an eigenvector of A2 with eigenvalue λ, then F = Q(e+, e−, e0, eL,0)

T

is an eigenvector of Ã2 with the same eigenvalue. By the definition of Q, if we denote

F = (f+,f−,f0,fL,0)
T ,

then

e− = f−, eL,0 = fL,0 .

Let QN 2 as the space spanned by the eigenvectors of Ã2 with negative eigenvalues. Then there exists a

nontrivial F̂ ∈ QN 2 such that

F̂ = (f̂+, 0, f̂0, 0)
T .

Since QN 2 is an invariant subspace of Ã2, we have that

Ã2F̂ = (αD+f̂
T

+, 0, 0, f̂2) ∈ QN 2

where f̂2 = αAT
21f̂

T

++(I+αB)1/2(αB)1/2)Tf̂
T

0 . By the symmetry and non-degeneracy of Ã2, the quadratic

form given by Ã2 on QN 2 is strictly negative. Therefore,

F̂
T
Ã2F̂ = αf̂

T

+D+f̂+ ≤ 0 .

Since D+ is strictly positive definite, we have that f̂+ = 0 and

F̂
T
Ã2F̂ = 0 ,

which implies that F̂ = 0. This contradicts the assumption that F̂ is non-trivial. Hence the matrix E is

non-singular. By (3.23) we derive that

~U−(f) = 0 , ~UL,0(f) = 0 , at x = 0.

Together with (3.11), we have the initial data for the ODE (3.16) as ~U(f) = 0 at x = 0. Thus the only

solution to this ODE is ~U(f) = 0 for all x. �
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Using Lemma 3.1 we can now show

Lemma 3.2. The matrix C defined in (3.9) is non-singular.

Proof. First we recall [CGS88] the uniqueness property of the solution to (3.29): if f is a solution to (3.29)

which satisfies f ∈ (L2(a dv dx))m and (v1 + u)∂xf ∈ (L2( 1a dv dx))
m, then f must be unique. For the

convenience of the reader, we brief explain its proof: Suppose h is a solution to the half-space equation

(3.29) with incoming data φ = 0. Then
∫
R3(v1+u)h

2 dv is decreasing in x. Since there exists h∞ ∈ H+⊕H0

such that h− h∞ ∈ (L2( dv dx))m, we can find a sequence xk such that
∫

R3

(v1 + u)h2(xk, v) dv →
∫

R3

(v1 + u)h2∞(v) dv ≥ 0 .

Hence
∫
R3(v1 + u)h2(x, v) dv ≥ 0 for all x ≥ 0. This holds in particular at x = 0. Since the incoming data is

zero at x = 0, the outgoing data at x = 0 must also be zero and
∫
R3(v1 + u)h2(xk, v) dv = 0 for all x ≥ 0.

The conservation property of the half-space equation then implies that h(x, ·) ∈ (NullL)⊥. By multiplying

the equation by h and integrate over v, we have 〈h, Lh〉 = 0 for all x ≥ 0. Hence P̃h = 0 for all x ≥ 0 by the

spectral gap of L in (A4). Therefore h ≡ 0 and the solution to the half-space equation is unique.

Now suppose C is singular. Then there exist constants

(η+,1, · · · , η+,ν+ , η0,1, · · · , η0,ν0) 6= 0

such that we can find incoming data

φg =

ν+∑

j=1

η+,jX+,j +

ν0∑

k=1

η0,kX0,k

that gives rise to a solution g satisfying that

(3.24)
〈(v1 + u)X+,1, g〉v = · · · =

〈
(v1 + u)X+,ν+ , g

〉
v
= 0 ,

〈(v1 + u)X0,1, g〉v = · · · = 〈(v1 + u)X0,ν0 , g〉v = 0 ,
at x = 0.

By Lemma 3.1, we have

(3.25) ~U(g) = 0 for all x .

Thus the solution g satisfies both the damped and the original half-space equation (1.1) with the end-state

g∞ = 0. By the uniqueness of solutions to (1.1), we have η+,1 = · · · = η+,ν+ = η0,1 = · · · = η0,ν0 = 0 which

is a contraction. Thus C must be non-singular. �

Now we state and prove the main recovery theorem.

Proposition 3.4 (Recovery). Let φ ∈ (L2(a(v)1v1+u>0 dv))
m and f be the solution to the damped equa-

tion (3.5) with incoming data φ. Let C, g+,i, g0,j be the matrix and the family of auxiliary functions defined

in (3.10) and (3.9). Define the coefficient vector η =
(
η+,1, · · · η+,ν+ , η0,1, · · · , η0,ν0

)T
such that

(3.26) η = C−1(~U+(f), ~U0(f))
T
∣∣∣
x=0

and

g =

ν+∑

i=1

η+,ig+,i +

ν0∑

j=1

η0,jg0,j , Φ =

ν+∑

i=1

η+,iX+,i +

ν0∑

j=1

η0,jX0,j .(3.27)

Define

(3.28) fφ = f − g +Φ = f −
ν+∑

i=1

η+,i(g+,i −X+,i)−
ν0∑

j=1

η0,j(g0,j −X0,j) .
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Then fφ is the unique solution to the half-space equation

(3.29)

(v1 + u)∂xfφ + Lfφ = 0,

fφ|x=0 = φ(v) , v1 + u > 0 ,

fφ − fφ,∞ ∈ L2( dx;L2( dv))m ,

where fφ,∞ ∈ H+ ⊕H0 is the end-state given by

fφ,∞ =

ν+∑

j=1

η+,jX+,j +

ν0∑

k=1

η0,kX0,k .

Proof. We directly show that fφ satisfies (3.29). First, by the definitions of g+,i, g0,j, we have fφ|x=0 = φ(v)

for v1 + u > 0. Second, it follows from the definition in (3.27) that g, thus f − g, are both solutions to the

damped equation (3.5). By the definition of η we have

~U+(f − g) = 0 , ~U0(f − g) = 0 .

Hence by Lemma 3.1, we have ~U(f − g) = 0. This shows f − g is in fact a solution to the undamped

equation (3.29). Since every X+,i and X0,j are solutions to (3.29), we have fφ as a solution to (3.29). �

4. Galerkin Approximation and Numerical Scheme

Let us now use the variational formulation (2.25) to design a Galerkin method to approximate the solution

to the damped equation (3.5). There are two parts in this section: first we show the construction of the finite-

dimensional approximation and its error estimate. Then we transform the finite-dimensional variational form

into an ODE system which will set base for our numerical scheme.

4.1. Galerkin approximation. First we use both parts of the Babuška-Aziz lemma to show the validity

of the Galerkin approximation and its quasi-optimality.

Proposition 4.1 (Approximations in R
3). Suppose {ψ(1)

n }∞n=1 is an orthonormal basis of L2(dv1) such that

• ψ
(1)
2n−1(v1) is odd and ψ

(1)
2n (v1) is even in v1 with respect to −u for any n ≥ 1;

• (v1 + u)ψ
(1)
2n (v1) ∈ span{ψ(1)

1 , · · · , ψ(1)
2n+1} for each n ≥ 1.

Suppose {ψ(2)
n }, {ψ(3)

n }∞n=1 are orthonormal bases for L2(dv2) and L2(dv3) respectively. Define the closed

subspace ΓNK as

ΓNK =



g(x, v) ∈ Γ

∣∣∣ g(x, v) =
m∑

i=1

K∑

l,n=1

2N+1∑

k=1

g
(i)
kln(x)ψ

(1)
k (v1)ψ

(2)
l (v2)ψ

(3)
n (v3) ei, g

(i)
kln ∈ H1(dx)



 ,

where ei = (0, · · · , 0, 1, 0, · · · , 0)T is the standard ith basis vector of Rm with 1 ≤ i ≤ m. Then

(a) there exists a unique fNK ∈ ΓNK such that

(4.1) fNK(x, v) =

m∑

i=1

K∑

l,n=1

2N+1∑

k=1

a
(i)
kln(x)ψ

(1)
k (v1)ψ

(2)
l (v2)ψ

(3)
n (v3) ei ,

which satisfies

(4.2) B(fNK , g) = l(g) for every g ∈ ΓNK ,

where B and l for the damped equation and are defined in (2.24) and (2.26) respectively. The coefficients

{a(i)kln(x)} satisfy

a
(i)
kln(·) ∈ C1[0,∞) ∩H1(0,∞), 1 ≤ k ≤ 2N + 1 , 1 ≤ l, n ≤ K , 1 ≤ i ≤ m.
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(b) There exists a constant C0 such that

‖f − fNK‖Γ ≤ C0 inf
w∈ΓNK

‖f − w‖Γ ,

where ‖·‖Γ is the norm defined in (2.20).

Proof. Both (a) and (b) directly follow from the Babuška-Aziz lemma as long as we verify the inf-sup condi-

tion of B on the finite-dimensional subspace ΓNK . Since it is similar as the continuum case in Proposition 3.2,

we only explain the modification in choosing the test functions ψ1 and ψ2. For any f ∈ ΓN , we choose

ψ1 = f , ψ2 = PN
(

1

(1 + |v1 + u|+ |v2|+ |v3|)ω0
(v1 + u)∂xf

+

)
,

where PN : (L2( dv))m → ΓN is the projection onto ΓN . The rest of the estimates are similar to the proof

in Section 3, and thus omitted. �

Since our numerical examples are both in one-dimension for a single species, we apply Proposition 4.1 to

V ⊆ R
1 and m = 1 to obtain the following corollary for two special cases:

Corollary 4.2 (Approximations in R
1). Let V = R

1 or V = [−1, 1]. Let u ∈ R be arbitrary if V = R
1 and

u = 0 if V = [−1, 1]. Suppose {ψn}∞n=1 is an orthonormal basis of L2( dv) such that

• ψ2n−1 is odd and ψ2n is even in v with respect to −u for any n ≥ 1;

• (v + u)ψ2n(v) ∈ span{ψ1, · · · , ψ2n+1} for each n ≥ 1.

Define the closed subspace ΓN as

ΓN =

{
g(x, v) ∈ Γ

∣∣∣ g(x, v) =
2N+1∑

k=1

gk(x)ψk(v), gk ∈ H1( dx)

}
.

Then there exists a unique fN ∈ ΓN such that

(4.3) fN (x, v) =

2N+1∑

k=1

ak(x)ψk(v) , ak(x) ∈ C1[0,∞), 1 ≤ k ≤ 2N + 1 ,

which satisfies

(4.4) B(fN , g) = l(g) , for every g ∈ ΓN ,

where B and l are defined in (2.24) and (2.26) respectively.

The approximate solution to the undamped solution is constructed similarly as for the continuous case:

let C, g+,i, g0,j be the same matrix and auxiliary functions as in (3.10) and (3.9). Let g
(i)
+,NK , g

(j)
0,NK be the

Galerkin approximate solutions to g+,i and g0,j respectively. Let

(4.5)

ηNK =
(
η
(1)
+,NK , · · · η

(ν+)
+,NK , η

(1)
0,NK , · · · , η

(ν0)
0,NK

)T
= C−1(~U+(fNK), ~U0(fNK))T

∣∣∣
x=0

,

gNK =

ν+∑

i=1

η
(i)
+,NKg

(i)
+,NK +

ν0∑

i=1

η
(j)
0,NKg

(j)
0,NK , ΦNK =

ν+∑

i=1

η
(i)
+,NKX+,i +

ν0∑

i=1

η
(j)
0,NKX0,j ,

Let fφ be the solution to the undamped half-space equation (3.29). Define its approximation fφ,NK as

fφ,NK = fφ − gNK +ΦNK ,(4.6)

which is an analog of the continuous version in (3.28). The following proposition shows the above approxi-

mation is almost quasi-optimal with a correction term.
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Proposition 4.3. Let fφ be the solution to the undamped half-space equation (3.29). Suppose fφ,NK is

constructed as in (4.6). Suppose fφ is the unique solution to the equation (2.6). Then there exists a constant

C0 such that

‖fφ − fφ,NK‖Γ ≤ C0

(
inf

w∈ΓN

‖fφ − w‖Γ + inf
w∈ΓN

‖f − w‖Γ + δN‖f‖(L2(a dv dx))m

)
,

where ‖·‖Γ is the norm defined in (2.20) and

δN :=

ν+∑

i=1

inf
w∈ΓN

‖g+,i − w‖Γ +

ν0∑

j=1

inf
w∈ΓN

‖g0,j − w‖Γ .

Proof. Let f be the solution the damped equation (3.5) with incoming data φ. Let g,Φ be defined as

in (3.27). Then there exist constants κ4, κ̃4 > 0 such that

‖Φ− ΦNK‖Γ = ‖Φ− ΦNK‖(L2( dv))m

≤ κ4‖f − fN‖Γ + κ̃4‖f‖(L2( dv dx))m




ν+∑

i=1

‖g+,i − g
(i)
+,NK‖Γ +

ν0∑

j=1

‖g0,j − g
(j)
0,NK |Γ


 ,

Second, since f − g is a solution to the damped equation, we have

‖(f − g)− (fN − gNK)‖Γ ≤ κ5 inf
w∈ΓNK

‖w − (f − g)‖Γ ,

since fNK , gNK ∈ ΓNK . Therefore,

‖(f − g +Φ)− (fNK − gNK +ΦNK)‖Γ ≤ κ5 inf
w∈ΓNK

‖w − (f − g)‖Γ + ‖Φ− ΦNK‖Γ

≤ κ5 inf
w∈ΓNK

‖w − (f − g + Φ̃)‖Γ + κ4‖f − fNK‖Γ

≤ κ6

(
inf

w∈ΓNK

‖fφ − w‖Γ + inf
w∈ΓNK

‖f − w‖Γ + δNK‖f‖(L2( dv dx))m

)
,

where

δNK =

ν+∑

i=1

inf
w∈ΓNK

‖g+,i − w‖Γ +

ν0∑

j=1

inf
w∈ΓNK

‖g0,j − w‖Γ .

Note that the second inequality holds because Φ ∈ H+ ⊕H0 ⊆ ΓNK . �

Remark 4.1. Note that in the above reconstruction scheme, the solutions g
(i)
+,NK for 1 ≤ i ≤ ν+ and g

(j)
0,NK

for 1 ≤ j ≤ ν0 can be precomputed, as they do not depend on the prescribed incoming data φ. In particular,

we can use a higher order approximation (larger N,K) for these functions.

4.2. ODE formulation. In this part we reformulate the variational form (4.2) into an ODE with explicit

boundary conditions. This ODE will be the system that we solve in numerics; since this is a linear ODE,

its solution can be directly obtained by solving the associated generalized eigenvalue problems. To illustrate

the idea, we first treat the special case where there is a single species in 1D, that is, m = K = 1.

Proposition 4.4. The variational form (4.4) is equivalent to the following ODE for the coefficients ak(x)

together with the boundary conditions at x = 0:

2N+1∑

k=1

Akl∂xak(x) =

2N+1∑

k=1

Bklak(x) ,(4.7)

N+1∑

k=1

〈(v + u)ψ2k−1, ψ2j〉v a2k−1(0)+

N∑

k=1

〈|v + u|ψ2k, ψ2j〉v a2k(0) = 2

∫

v+u>0

(v1 + u)φψ2j dv ,(4.8)
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where 1 ≤ j ≤ N and

(4.9) Akl = 〈(v + u)ψk, ψl〉v , Bkl = −〈ψk, Ldψl〉v , 1 ≤ i, j ≤ 2N + 1 .

Proof. In order to show that the boundary conditions for the solution to (4.4) are given by (4.8), we first

choose test functions G2j(x, v) = g(x)ψ2j(v) where g(x) ∈ C∞
c ([0,∞)) and 1 ≤ j ≤ N . Applying Gj in

(4.4), we get

(4.10) −
〈
f−
N , (v1 + u)ψ2j(v)∂xg(x)

〉
x,v

+ 〈(Lψ2j)g(x), fN 〉x,v = 0 ,

where fN is defined in (4.3) and fN = f−
N + f+

N with

f−
N =

N+1∑

k=1

a2k−1(x)ψ2k−1 , f+
N =

N∑

k=1

a2k(x)ψ2k .

By integration by parts in (4.10) we obtain
〈
N+1∑

k=1

ψ2k−1∂xa2k−1(x), (v1 + u)ψ2j(v)g(x)

〉

x,v

+ 〈(Lψ2j)g(x), fN 〉x,v = 0 .

Since g ∈ C∞
c ([0,∞)) is arbitrary, we have

(4.11)
N+1∑

k=1

〈ψ2k−1, (v1 + u)ψ2j(v)〉v ∂xa2k−1(x) + 〈(Lψ2j), fN〉v = 0 ,

for each 1 ≤ j ≤ N and x ∈ [0,∞). Note we choose G̃2j = g̃(x)ψ2j(x) where g̃ ∈ C∞([0,∞)). Then equation

(4.4) becomes

(4.12)

−
〈
f−
N , (v + u)ψ2j(v)∂xg(x)

〉
x,v

+ 〈(Lψ2j)g(x), fN 〉x,v +
〈
(v1 + u)f+

N , ψ2j g̃(0)
〉
x=0

= 2

∫

v1+u>0

(v1 + u)φ(v)ψ2j(v)g(0) dv ,

for each 1 ≤ j ≤ N . The set of N boundary conditions (4.8) then follows from integrating by parts in (4.12)

and applying (4.11). �

The general case follows from the similar idea and we only sketch its proof.

Proposition 4.5. Let

A =

(〈
(v1 + u)ψ

(1)
k , ψ

(1)
j

〉
v1

)

(2N+1)×(2N+1)

.

Define two 8-tensors A and B as

(4.13)

A = A⊗ I ⊗ I ⊗ I =
(
Aikδljδnsδpq

)
(2N+1)2×K2×K2×m2 ,

B
ijsq
klnp = −

〈
ψ
(1)
k (v1)ψ

(2)
l (v2)ψ

(3)
n (v3) ep, Ld

(
ψ
(1)
i (v1)ψ

(2)
j (v2)ψ

(3)
s (v3) eq

)〉
v

for 1 ≤ i, k ≤ 2N + 1, 1 ≤ j, l ≤ K, 1 ≤ s, n ≤ K, and 1 ≤ p, q ≤ m. Then the variational form (4.2) is

equivalent to the following ODE for the coefficients a
(p)
kln(x):

(4.14)

m∑

p=1

K∑

l,n=1

2N+1∑

k=1

A
ijsq
klnp∂xa

(p)
kln(x) =

m∑

p=1

K∑

l,n=1

2N+1∑

k=1

B
ijsq
klnpa

(p)
kln(x),

together with the boundary conditions at x = 0:

(4.15)

N+1∑

k=1

〈
(v1 + u)ψ

(1)
2k−1, ψ

(1)
2i

〉
v1
a
(q)
2k−1,jl(0) +

N∑

k=1

〈
|v1 + u|ψ(1)

2k , ψ
(1)
2i

〉
v1
a
(q)
2k,jl(0)

= 2

∫

v1+u>0

(v1 + u)φ · ψ(1)
2i (v1)ψ

(2)
j (v2)ψ

(3)
k (v3)eq dv
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for i = 1, · · · , N , j, l = 1, 2, · · · ,K, and q = 1, · · · ,m.

Proof. Equation (4.14) is obtained by choosing the test function g in (4.2) as the basis functions such that

the velocity part is ψ
(1)
i (v1)ψ

(2)
j (v2)ψ

(3)
l (v3) eq. The boundary condition (4.15) is derived by choosing the

test functions as ψ
(1)
2i (v1)ψ

(2)
j (v2)ψ

(3)
l (v3) eq. �

Numerically, the approximate solutions fNK in (4.14) (or fN (4.7) in 1D) will be solved using the method

of generalized eigenvalues. In particular, we define the generalized eigenvalues and its associated eigen-tensor

for (A,B) as λ ∈ R and η = (η
(p)
kln)(2N+1)×K×K×m such that

(4.16) Aη =

m∑

p=1

K∑

l,n=1

2N+1∑

k=1

A
ijsq
klnp η

(p)
kln = λ

m∑

p=1

K∑

l,n=1

2N+1∑

k=1

B
ijsq
klnp η

(p)
kln

for all 1 ≤ i ≤ 2N+1, 1 ≤ j, s ≤ K, and 1 ≤ q ≤ m. When reduced to 1D system, the generalized eigenvalue

problem for (A,B) becomes

(4.17) A η = λB η .

To solve for the coefficient a(x), we take (4.7) as an example. Define γ(x) = ηTB a(x) and multiply (4.7) by

ηT from the left. We then obtain the equation for γ as

ηTA ∂xa(x) = ηTB a(x) ⇒ λ∂xγ(x) = γ(x) .

If λ = 0, then we immediately get the constraint

(4.18) γ(x) = ηTB a = 0 .

If λ 6= 0, then we have

γ(x) = ex/λγ(0) .

Depending on the signs of the eigenvalues, γ either grows exponentially to infinity or decays exponentially

to zero; as we look for bounded decaying solutions, this gives us constraints to γ(0) for the growing modes:

If λ > 0, then we have the constraints

(4.19) γ = ηTB a = 0.

Note that we do not need constraints for modes with negative eigenvalues. The total number of constraints in

the form of (4.19) is determined by the number of positive generalized eigenvalues. The following Proposition

gives the signature of (A,B):

Proposition 4.6. Let A,B be the 8-tensors defined in (4.13) with any arbitrary u ∈ R and N,K ≥ 1. Then

(a) there are mNK2 positive generalized eigenvalues, mNK2 negative eigenvalues, and mK2 zero eigenvalue

for the pair (A,B).

(b) In the special case where m = K = 1 and A,B be the matrices defined in (4.9) with any arbitrary u ∈ R

and N ≥ 1, there are N positive generalized eigenvalues, N negative eigenvalues, and one zero eigenvalue

for the pair (A,B)

Proof. We first verify that in the 1D case, (A,B) has N positive, N negative, and one zero generalized

eigenvalues. By the definition of B and the strict coercivity of Ld, the matrix B is symmetric and strictly

positive definite. Hence the numbers of positive, negative, and zero generalized eigenvalues are the same

with the signature of the matrix B
−1

A. Furthermore, by the Sylvestre’s Law of Inertia, B−1
A and A have

the same signature. Hence, we only need to count the numbers of positive, negative, and zero eigenvalues of

A. Note that by the definition of the basis functions ψk in (5.4), A is independent of u since one can perform
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a change of variable v + u → v in each entry in A. Thus we only need to study the matrix A0 with u = 0.

Change the order of the basis functions such that

(ψ̃1, ψ̃2, · · · , ψ̃N+1, ψ̃N+2, · · · ψ̃2N+1) = (ψ1, ψ3, · · · , ψ2N+1, ψ2, · · · , ψ2N ) = P (ψ1, ψ2, · · · , ψ2N+1) ,

where P is the similarity matrix. Defined Ã0 = PA0P
−1. Then Ã0 and A0 have the same signature. By the

even/odd properties of ψ̃i, the matrix Ã0 has the form

Ã0 =

(
0 A1

AT
1 0

)
,

where A1 =
(∫

R
vψ2iψ2j+1

)
N×(N+1)

. Suppose η = (η1,1, · · · , η1,N , η2,1, · · · , η2,N+1)
T = (ηT1 , η

T
2 )

T is an

eigenvector of Ã0 with eigenvalue λ. Then one has

A1η2 = λη1 , AT
1 η2 = λη1 .

It is clear that (η1,−η2) is also an eigenvector of Ã0 and the associated eigenvalue is −λ. This shows the

eigenvalues of Ã0 appear in pairs. Since A1 has a full rank N , we have that rank Ã0 = 2N . Therefore Ã0,

thus A0 and A, has N positive eigenvalues, N negative eigenvalues, and one zero eigenvalue.

Now we claim that each generalized eigenpair (λ, v) of A gives rise to mK2 eigenpairs of A. Indeed, let

{w(l)}Kl=1 be a set of basis vectors of RK . Choose the 4-tensor η
(ln)
i = v ⊗ w(l) ⊗ w(n) ⊗ ei. Then

Aη
(ln)
i = (A⊗ I ⊗ I ⊗ I)(v ⊗ w(l) ⊗ w(n) ⊗ ei) = (Av) ⊗ w(l) ⊗ w(n) ⊗ ei = λη

(ln)
i ,

for any 1 ≤ l, n ≤ K. Thus each (λ, v ⊗ wl ⊗ w(n) ⊗ ei) is an eigenpair of A.

Note that we can also view A and B as two matrices of size (m(2N +1)K2)× (m(2N +1)K2) by defining

a bijection between the indices

Υ : {(i, j, l, p)| i = 1, · · · , 2N + 1, j, l = 1, · · · ,K, p = 1, · · · ,m} → {1, · · · ,m(2N + 1)K2} .

Then B is symmetric and positive definite and A is symmetric. Therefore, by a similar argument as for

(A,B) using Sylvestre’s Law of Inertia, the number of positive, negative, and zero generalized eigenvalues

agree with those of A. This shows there are mNK2 positive, mNK2 negative, and mK2 zero generalized

eigenvalues for (A,B). �

By Proposition 4.6, we outline the specific steps that we take in our numerical computation: in total

we have N + 1 equations for a(0) given by the constraints (4.18) and (4.19). Combining them with the N

equations given by the boundary conditions (4.8) for a(0), we get 2N + 1 equations for 2N + 1 unknowns

{ak(0)}. The linear system (4.7) for a is then uniquely solvable, which further uniquely determines the

approximate solution fN (x, v) by (4.3).

4.3. Numerical scheme. Let us now summarize the numerical algorithm for the half space equation. For

simplicity, we present the algorithm for the 1D case and the extension to the higher dimensional cases is

similar.

The whole procedure consists of two parts: Compute the damped equation, as shown in Algorithm 1 and

recover the solution to the original equation, as presented in Algorithm 2. Computing the damped equation

itself has discretization set-up step and computation step.

The first substep in Step I requires constructing 2N + 1 basis functions. Since it depends on the collision

operator, we leave the details to numerical example section where we show basis preparation for the linearized

BGK and the transport equation. The forth step in Step I requires the number of non-negative eigenvalue

being exactly N + 1 and this is guaranteed by Proposition 4.6, which is also used in substep 1 in Step II.
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Algorithm 1: Compute the damped equation (2.18)

Data: Boundary condition: φ(v) for v > 0 and the discretization N .

Result: f that solves (2.25), the variational formulation of (2.18).

Step I Set up discretization:

1. Construct 2N + 1 basis functions.

2. Compute two matrices defined in (4.9).

3. Solve the generalized eigenvalue problem (4.17).

4. Store the N + 1 eigenvectors associated with non-negative eigenvalues.

Step II Compute the damped equation, seek for a(0).

1. Find 2N + 1 equations satisfied by a(0):

– Use (4.19) to find N + 1 equations that projects out positive eigenvectors provided in II.4.

– Impose the boundary condition (4.8), which provides N equations.

2. Compute a(0).

Step III Assemble f using equation(4.3).

The main cost of the numerical scheme lies in solving the eigenvalue problem (4.17), which scales cubicly as

N increases. Note that this is a common step for different boundary conditions for the damped equation, and

thus only needs to be done once. As we employ a spectral discretization, as shown further in the numerical

results, accurate results are obtained even with a small number of basis functions 2N + 1. Therefore, the

computational cost is quite low.

Algorithm 2: Recover the solution to the original equation(3.29)

Data: Boundary condition: φ(v) for v > 0 and the positive modes X+,0.

Result: fφ that solves (3.29).

1. Use Algorithm 1 to compute (2.18) using φ as the boundary condition.

Denote the solution by f .

2. Use Algorithm 1 to compute (2.18) using X+,0 as the boundary conditions.

Denote the solution by g+,0.

3. Compute C in (3.9) and U in (3.7).

4. Invert C for η as shown in (3.26).

5. fφ given by (3.28) and f∞ given by the equation below (3.29).

5. Numerical Examples

As explained in Section 4.3, the overall strategy to solve the half-space equation consists of two steps: First,

we solve for the numerical solution to the half-space damped equation (3.5) using the Galerkin approximation;

Second, we recover the undamped solution by Proposition 3.4, which involves the solutions of the damped

equation with various boundary conditions in order to obtain the matrix C in the linear system (3.26).

Below we consider the linearized BGK equation and a linear transport equation, both restricted to one

dimension and single species (more general cases are studied and presented in [LLS]). As in Proposition 4.2,

for the Galerkin approximation, we specify a set of even and odd functions to form the approximation space

ΓN . The choice of these functions depends on the particular equation under study. By Proposition 4.4,

the solution of the approximate system (4.7)–(4.8) is reduced to solving the generalized eigenvalue problem
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(4.17), where we assemble the matrices A and B using Gaussian quadrature. This will be discussed in more

details below.

Our algorithm is implemented in MATLAB. The Gaussian quadrature abscissas and weights are obtained

using symbolic calculations in order to guarantee the precision.

5.1. Linearized BGK equation. We first consider the case of one-dimension linearized BGK equation. In

this case, the basis functions is constructed using the half-space Hermite polynomials. Those are orthogonal

polynomials defined on the positive half v-axis with the weight functions exp(−v2): {Bn(v), v > 0} such

that each Bn(v) is a polynomial of order n and

(5.1)

∫ ∞

0

Bm(v)Bn(v)e
−v2 dv = δnm .

The orthogonal polynomials can be constructed using three term recursion formula (see for example [Shi81]).

For completeness we recall some details in Appendix A.

The basis functions ψk’s we need are either odd or even with respect to v = −u. Hence we shift the

functions Bn’s by −u and make even and odd extensions:

BEn (v) =




Bn(v + u)/

√
2, v > −u ,

Bn(−v − u)/
√
2, v < −u .

(5.2)

BOn (v) =




Bn(v + u)/

√
2, v > −u ,

−Bn(−v − u)/
√
2, v < −u .

(5.3)

Finally, ψk’s are obtained by multiplying these functions by the square root of the Maxwellian: for n ≥ 1

(5.4)
ψ2n−1 = BOn−1e

−(v+u)2/2,

ψ2n = BEn−1e
−(v+u)2/2.

By definition, ψ2n−1 is odd, ψ2n is even, and they form a orthonormal basis of L2(dv). For a fixed n,

(v + u)ψ2n(v) is a odd function with respect to v = −u. For v > −u,

(v + u)ψ2n(v) = (v + u)Bn−1(v + u)e−(v+u)2/2/
√
2.

Since (v + u)Bn(v + u) is a n-th order polynomial in v + u, there exists an expansion

(5.5) (v + u)Bn−1(v + u) =

n∑

i=0

αiBi(v + u).

This yields that

(5.6) (v + u)ψ2n(v) =
n∑

i=0

αiψ2i+1 ∈ span{ψ1, · · · , ψ2n+1}.

Therefore, ΓN = span{ψ1, · · · , ψ2N+1} satisfies the condition of Proposition 4.2 and the variational formu-

lation (4.4)–(4.8) is well-posed. The (2N + 1)× (2N + 1) matrices A and B are then given by

Aij =

∫

R

(v + u)ψiψj dv and Bij = −
∫

R

ψiLdψj dv.
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Note that both matrices are symmetric. The matrix A can be obtained by using the recurrence relation of

the orthogonal polynomials. For the matrix B, recall that

Lψi = ψi −mi = ψi − χ0

∫

R

ψiχ0 dv − χ+

∫

R

ψiχ+ dv − χ−

∫

R

ψiχ− dv.

Ldψi = Lψi + α

ν+∑

k=1

(v + u)X+,k

∫

R

(v + u)X+,kψi dv

+ α

ν−∑

k=1

(v + u)X−,k

∫

R

(v + u)X−,kψi dv + α

ν0∑

k=1

(v + u)X0,k

∫

R

(v + u)X0ψi dv

+ α

ν0∑

k=1

(v + u)L−1((v + u)X0,k)

∫

R

(v + u)L−1((v + u)X0,k)ψi dv.

All the integrals involved in calculating B can be easily made exact up to machine precision by using Gaussian

quadrature. For simplicity, let us just focus on
∫

R

ψ2jχ0 dv

and note that the other integrals share the same structure: the integrand is a product of two polynomials

and two Gaussians e−v
2/2 and e−(v+u)2/2. To evaluate this type of integral using Gaussian quadrature, we

first split the integral into two parts:
∫

R

ψ2jχ0 dv =

∫ ∞

−u

ψ2jχ0 dv +

∫ −u

−∞

ψ2jχ0 dv.

Note that ψ2j , on either side of −u, is a (j−1)-th order polynomial multiplied by exp(−(v+u)2/2), while χ0

is a quadratic function multiplied with a different weight function exp(−v2/2). The product of two Gaussians

centered at different locations could be combined into a single Gaussian:
∫ ∞

−u

ψ2jχ0 dv =

√
2

2

∫ ∞

−u

Bj−1(v + u)
χ0(v)

e−v2/2
e−

(v+u)2+v2

2 dv(5.7)

=

√
2

2
e−u

2/4

∫ ∞

0

Bj−1(v)
χ0(v − u)

e−(v−u)2/2
e−(v−u/2)2 dv .

Similarly, for v < −u we have
∫ −u

−∞

ψ2jχ0 dv =

√
2

2

∫ −u

−∞

Bj−1(−v − u)
χ0(v)

e−v2/2
e−

(v+u)2+v2

2 dv(5.8)

=

√
2

2
e−u

2/4

∫ ∞

0

Bj−1(v)
χ0(−v − u)

e−(v+u)2/2
e−(v+u/2)2 dv .

The integrals (5.7) and (5.8) can be evaluated up to machine precision by Gaussian quadrature based on

weight e−(v−u/2)2 and e−(v+u/2)2 respectively, as Bj−1χ0e
v2/2 is a polynomial with its degree up to N + 3.

The boundary condition (4.8) requires the numerical evaluation of the integral
∫

v+u>0

(v + u)φψ2j dv.

We calculate this using Gaussian quadrature with the weight e−(v+u)2 . The error of the quadrature depends

on the number of quadrature points and the regularity of the incoming data φ.

We now present some numerical results for the linearized BGK equation. In the first set of examples, we

compare our numerical results with analytical solutions, when the specified boundary data φ is given by the

restriction of some f ∈ H0 ⊕H+ on v > −u. In this case, the solution to the undamped equation (1.1) is

simply f on the whole velocity space. As discussed in (2.10), the dimension of the space H0 ⊕H+ depends
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on the bulk velocity u and the sound speed, which is c =
√
3/2 in our case as T = 1/2. We will choose

χ+/−/0 defined in (2.8) as the incoming data. By the uniqueness of the half-space equation, the solution will

simply be χ+/0 when the incoming data is chosen as χ+/0. We take six choices of u corresponding to the six

cases listed in (2.10) (the case u < −c gives an empty H0 ⊕H+ hence not included). The results are shown

in Figures 1–6 below. In all these figures, the blue squared line is the incoming data, given by χ−, χ0 and

χ+ respectively. The green triangle line is the solution at x = ∞, and the red dotted line is the solution at

x = 0.

Several remarks are in order: First, when the χ modes lie in H0 ⊕ H+ for the given bulk background

velocity u, we observe in Figure 1-6 that the solution at x = 0 gives a perfect match. We thus recover the

exact solution from the numerical scheme. Second, we note that in general, the solution exhibits a jump at

v = −u, as clearly seen for example in Figure 1(left). This justifies our choice of the even-odd formulation

and basis functions from the half-space Hermite polynomials. Finally, we remark that we have used a filtering

(with 2nd order cosine filter) to reduce the Gibbs oscillations caused by the large derivatives in some cases

(for instance Figure 2(left)).
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Figure 1. u = −
√
1.5 = −c. In this case χ+ ∈ H0, and χ− and χ0 are in H−.
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Figure 2. −c < u = −0.5 < 0. In this case χ+ ∈ H+, and χ− and χ0 are in H−.

Next, we consider an example where the exact solution is not known. We solve the equation (1.1) for

u = 0 with boundary data φ = v3, v > 0. The numerical solution is shown in Figure 7.

5.2. Isotropic neutron transport equation. We further consider the isotropic neutron transport equa-

tion. The construction of the basis functions is similar to the linearized BGK case. However, instead of using

half-space Hermite polynomials, we start with Legendre polynomials on the interval [0, 1] and carry out the
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Figure 3. u = 0. In this case χ+ ∈ H+, χ0 ∈ H0 and χ− ∈ H−.
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Figure 4. 0 < u = 0.5 < c. In this case χ+ and χ0 are in H+, and χ− ∈ H−.
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Figure 5. u =
√
1.5 = c. In this case χ+ and χ0 are in H+, and χ− ∈ H0.

even-odd extensions. The Legendre polynomials, which are orthogonal polynomials for constant weight func-

tion, are used since the equilibrium states for the neutron transport equation are simply constants. We then

apply Gauss-Legendre quadrature to assemble A and B for the generalized eigenvalue problem. The rest of

the details are skipped here since the construction is relatively straightforward compared with the linearized

BGK case.

To validate our methods in this case, we compare the numerical solution with the analytical solution with

boundary data given by φ = v for v ∈ [0, 1]. The analytical solution is known as

(5.9) fφ(−v) =
1√
3
H(v)− v, v > 0 ,
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Figure 6. u = 2 > c. In this case all χ are in H+.
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Figure 7. Blue boxed line is the input data φ = v3(v > 0). Green triangle line is the

solution at infinity and the red circled line is the solution at the boundary. N = 36 here.

where H is the Chandrasekhar H-function. In Figure 8 we plot both analytical and numerical solutions,

where a second order cosine filter is used. The plot shows good agreement of the numerical solution with the

exact one. Using the knowledge of the singularity of the solution at v = 0, more sophisticated techniques can

be used to post-process the Galerkin solution. For example, Figure 9 shows the result of using Gegenbauer

reprojection method (with end-point singularity) [GS97, CS14, CS15]. Excellent agreement with the exact

solution is observed.

Furthermore, the limit at x = ∞ of the solution to the half-space isotropic NTE is a constant, whose

amplitude agrees with the extrapolation length. In Table 1 we compare our numerical approximation of the

extrapolation length with the exact result, which is again in good agreement. In comparison, we note that

the approximate value for the extrapolation length obtained in [Cor90] is 0.71040377 with 70 modes, while

we achieve better results with piecewise polynomial of orders up to 12.
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Table 1. Numerical approximations of the extrapolation length.

4 0.709324539775964 24 0.710445373807707 44 0.710446026371328 64 0.710446075479882

8 0.710386430787361 28 0.710445703544666 48 0.710446044962143 68 0.710446078520678

12 0.710434523809144 32 0.710445863417934 52 0.710446057194912 72 0.710446080785171

16 0.710442451548528 36 0.710445948444682 56 0.710446065509628 76 0.710446082499459

20 0.710444603305304 40 0.710445997010591 60 0.710446071320336 exact 0.710446089598763
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Figure 8. Analytical solution and numerical solution to the isotropic neutron transport

equation at x = 0.
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Figure 9. Analytical solution, numerical Galerkin solution, and the Gegenbauer repro-

jected solution to the isotropic neutron transport equation at x = 0 (zoomed in around

v = 0).
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Appendix A. Half-Hermite polynomial

Here we derive the half-space orthogonal polynomial with weight exp(−(v − u)2) with u a real number.

The zeroth order half space Hermite polynomial is:

(A.1) B0 =
1√
m0

with m0 =

√
π

2
(1 + erf(u)) .

The higher order polynomials are defined through recurrence relation:

(A.2)
√
βn+1Bn+1 = (v − αn)Bn −

√
βnBn−1,

where α and β are defined by

(A.3)





βn+1 = n+
1

2
+ uαn − α2

n − βn;

αn+1 = u− αn +
1

2βn+1

n∑

k=0

αk

with α0 = m1/m0 and
√
β1 =

√
m0m2 −m2

1/m0, where mi, i = 0, 1, 2 are moments of the Gaussian:

(A.4) mi =

∫ ∞

0

vie−(v−u)2 dv, i = 0, 1, 2.

The deduction formula are derived from the Christoffel-Darboux identity

(A.5)

n∑

k=0

B2
k =

√
βn+1

(
B′
n+1Bn −Bn+1B

′
n

)

as follows. By orthogonality of {Bn}, we get

αn =

∫ ∞

0

vB2
ne

−(v−u)2 dv, and
√
βn+1 =

∫ ∞

0

vBnBn+1e
−(v−u)2 dv.

Integrate the identity (A.5) over v with the weight, we get

n+ 1 =
√
βn+1

∫ ∞

0

B′
n+1Bne

−(v−u)2 dv =

∫ ∞

0

vBn+1B
′
n+1e

−(v−u)2 dv

= −1

2
+

∫ ∞

0

v2B2
n+1e

−(v−u)2 dv − uαn,

where the second equality is obtained by taking the inner product with B′
n+1 of recursion equation (A.2),

and the third comes from integration by parts. From this we get the first deduction relation in (A.3). Next

multiply (A.5) with v and then integrate, we obtain

n∑

k=0

αk =
√
βn+1

∫ ∞

0

vB′
n+1Bne

−(v−u)2 dv

=
√
βn+1

(
2

∫ ∞

0

v2Bn+1Bne
−(v−u)2 dv − 2u

∫ ∞

0

vBn+1Bne
−(v−u)2 dv

)

= 2βn+1 (αn + αn+1 − u) ,

where the first equality comes from the fact that
∫∞

0 vBn+1B
′
ne

−(v−u)2 dv = 0, the second is due to integra-

tion by parts, and the third comes from integrating the recursion equation (A.2) multiplied by vBn+1. This

gives the other deduction relation in (A.3).
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