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NECESSARY AND SUFFICIENT CONDITIONS FOR EFFICIENCY 

IN AN ECONOMY WITH AN INCOMPLETE SET OF MARKETS 

Robert Forsythe 
California Institute of Technology 

I. INTRODUCTION 

Considerable attention has recently been focused on 

examining an economy in which there is not a complete set of 

markets. The nonexistence of certain markets is typically explained 

by either the presence of transaction costs or, in the case of 

contingent commodities, by a moral hazard argument. If, however, 

an efficient allocation of resources is achieved whenever certain 

markets are not present, it may be argued that the failure of these 

markets to exist occurs simply because they are not needed. Indeed, 

no trade would occur in these markets even if they were established 

since all individuals have imputed the same price to each nontraded 

commodity. The characterization of such an economy is the case 

with which this paper is concerned. 

It should be recognized that if some commodities are not 

traded.but may be consumed by each household, then it must be true 

that, in some sense, each household is capable of producing each of 

these commodities. For this reason, a convenient framework for 

studying this problem is the model of household production which 

has been proposed by Becker [2] and Lancaster [7]. In this

formulation the household purchases goods and, through the use of a 

"household production function," transforms these goods into 
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commodities. Although only the goods are traded, the commodities, 

and not the good themselves, are the arguments of the household's 

utility function. However, in contrast with many of the previous 

applications of the Becker-Lancaster model in which commodities 

are nonmarketable and may even be nonmeasurable, it should be 

emphasized that this paper will concern itself only with commodities 

which are measurable and potentially marketable. 

The definition of efficiency which will be adopted here is 

that, independent of its utility function and endowment, each house­

hold must perceive the same set of commodity prices. When 

households possess arbitrary technologies and commodities are not 

traded, there is no reason to suspect that each household will 

impute the same set of commodity prices. It is the purpose of this 

paper to uncover technoldgical restrictions which are necessary or 

sufficient for achieving an efficient allocation of resources. It 
should be noted that, as defined above, an implication of efficiency 

is that commodity prices must be independent of the commodity 

bundle consumed. Due to this, some of the results presented here 

are similar to those given by Pollak and Wachter [8] who, in the

context of the Becker-Lancaster model, discuss technological 

restrictions which are needed to obtain commodity demand functions 

which exhibit the properties of traditional demand theory. 

A direct application of the household production function 

model is in the analysis of the allocation of resources resulting in 

a two period model. Suppose that all households in the economy are 

sharecroppers who may work on a number of farms in return for 

a fraction of each farm's yield in the second period. Let each farm 

produce only one crop and the yield of each crop may vary with, say, 

the weather conditions that occur next period. Corresponding to 

the weather conditions that may prevail, the second period may be 
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divided into states of the world. Within this framework, the fraction 

of each farm owned by a household may be considered as a good 

which, by means of the household's technology, is transformed into 

a commodity in the second period. There is an additional structure 

contained in this example since goods are not "used up" in any 

production process. In other words, the fraction of farm j used 

to produce consumption in state s may also be used to produce 

consumption in each other state. As examined, for example by 

Dreze [5], this structure is identical to that found in a securities

model in which households use fractional holdings of firms to provide 

for future consumption. 

The added structure which is contained in either of these 

two models provides one further result. As demonstrated by 

Arrow [l], a linear technology in which there is as many independent

securities as future states is sufficient to ensure an efficient 

allocation. It will be shown here that this linear technology is also 

necessary for efficiency. 

II. THE GENERAL MODEL OF HOUSEHOLD PRODUCTION

Suppose that there are N goods, denoted by X = ( x
1
, 

x
N 

), and S commodities, denoted by C = ( c1 , • • •  , cs). Each

household is endowed with a set of goods, x11, and a technology,

T
h

, for transforming the goods into commodities. There is a 

vector of prices, P, at which the goods may be traded, but no 

markets exist in which the commodities may be traded. 
1 

Each 

household possesses a continuous, quasi-concave utility function, 

U
h

(C
h

), and chooses commodities and goods so as to 

maximize U
h

(C
h

) 

subject to 

- h <--hPX = PX 

(C
h

, - Xh) E Th

c
h � o z 

This problem may be rewritten as:
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maximize �(C
h

)

subject to 
h - h <--h 

e (P, C ) = PX--

where e
h

(P, C h
) is a minimum expenditure function whi.ch is the

solution to the problem: 

dual variables 

minimize "Px11 p 

(U) 

subject to 
(E) 

h 
(C ' X

h
) E T

h 

h >-h 
c = c 

h 
q 

rf 

Regarding the technology available to each household, 

the following assumptions are made:
4 

T l  0 ET: it is possible for the household to engage in no activity. 

TZ T is closed: the limit of any convergent sequence of technolog­

ically feasible activities is itself feasible. 

T3 If (C, - X) ET and (C', - X') �(C, - X) then (C', -X') ET: all

feasible activities may be freely disposed. 

4 



T4 T is convex: the technology exhibits non-increasing returns, 
TS If (C, -X) E T and X' .'.'.:X then there is a (C', -X') ET such that

C' .'.'.: C: all inputs are productive.

T6 If (C, -X) ET and C + 
= {max[O, c1], • • •  , max[O, c8]} then

+ + . . (C , -X) E T and (C , -X) .'.'.: 0: the production of nonnegative
commodities requires that all inputs are used at a nonnegative 
level. 

T7 There is an M < "'such that if (C, 0) ET, then each
c < M, s = 1, • • •  , S: unlimited consumption is impossible. s 
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Further assumptions will be given later to achieve specific purposes. 
The first six of the above assumptions are fairly standard 

when considering this type of model. TZ is solely for mathematical 
convenience. As noted in Theorem 1, dispensing with this assumption 
would require that the result there be slightly, but not significantly, 
altered. Furthermore, many of the programming problems defined 
throughout this paper would have to be redefined in terms of supremums 
and infimums rather than maximums and minimums. As will be seen 
below, T4 allows the set dual to the technology to be represented as 
a closed convex cone and Tl and T3 guarantee that the dual variables 
(prices) are nonnegative. Whereas T3 and T7 guarantee that the 
negative orthant is contained in the technology, the nonnegativity 
restriction, T6, ensures that no activity in the orthant is of particular 
interest. 

It can be seen that an assumption such as T7 is quite 
natural since if an unlimited amount of some commodity could 
be produced without using any goods then that commodity is not 
in any sense scarce and deserves no further consideration. Further, 
T7 is much weaker than the "no free lunch" postulate which is 
usually assumed. 

Following the approach and interpretation provided by 
Cass [3 ], if assumptions Tl-T4 are satisfied, the dual to the 
technology may be written as the closed convex cone 

h h h h h  h h h h h M = [(IT , P, q ):11 C - PX ;;;, q for all (C , - X ) ET } .  (1)

Mh may be thought of as a market corresponding to the technology,
Th, where Tih and P are commodity and good prices, respectively,
and qh is the implicit profit associated with producing ch from xh

The vector of good prices, P ,  is given and is the same for all 
households. From these prices the household imputes commodity 
prices, IIh, and profit, qh. As previously noted, these dual
variables are nonnegative. 

The set dual to Mh may be written as
h h h h h h ' h h h  TI = [( c ' - x , - y ) : II c - PX - q y .:::. 0 

h h ' for all (II , P, q ) E MJ.

T'h is a closed convex cone with N + 1 goods, (Xh, yh). The
N + 1st input, yh, may be considered as a fixed factor to which
profits are imputed. For future notational convenience, let the 

(2) 

h . h h h h vector Y be this N + 1 vector of good Y = (X , y ) and Q be the 
N + 1 vector of good prices, Qh 

= (P, qh).
As shown in Lemma 1 of [3 ], the technology, Th, may

be written as 
h h h h h h h h  T = Uc , x J: (C , - x , - y ) e T' , y �I} 

and the problem (E) may be rewritten as

minimize PXh

subject to 
h h 

(C , - X , h h - Y ) ET' 

dual variables 
p 
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h -h c � c rrh

h q '

(El 
h y .:::. 1



which has as its corresponding dual problem 
. . !Ih-h hmaximize C - q 

subject to 
h h h(II , P, q ) EM 

P=P. 

Any feasible solution to (D) will yield values no greater 
than any feasible solution to (E) since 

h h  h h h h h h h h II C - q _::: PX for ( C , -X ) E T and (IT , P, q ) E M 

and, in particular, 
h-h h h h  rr c  - q _:::rr c  h - h h h h h -hq ;; PX for (C , - X ) ET , C � C 

h h h -
and (II , P, q ) E M , P = P.

To insure that (E) possesses a regular optimal solution 
it will be assumed that Th satisfies Slater's condition, i.e. 

. h h . h - h TS There exists (C , - X ) E T with cs >cs for all h. 

(D) 

(3) 

This condition guarantees that an optimal solution to (E), (C*, - X*), 
is such that 

5 Il*(C* - C) = 0 and Il*C* - PX* = q'' for some (Il'', P, q'') EM, 

and that both (E) and (D) have optimal solutions with equal optimal 
values. Hence, the minimum expenditure function may be written 
as 

e(P, C) = PX* = Il*C - q*. 

It should be noted that Slater's condition insures that: 
For any C;;; 0, there is an X such that (C, - X) E T: any level
of output is producible. 

Otherwise, there would exist some utility function and endowment 
such that the solution to the utility maximization problem (U) 

(4) 
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would be a C which is not technologically feasible. In this instance 
(4) would need to be rewritten as

e(P, C) = PX > II'°C - q'' 

Ill. IMPLICATIONS OF PARETO EFFICIENCY 

In an allocation model such as the one considered here, 
it is well known that Pareto efficiency is attained only for the case 
in which all individuals perceive the same set of implicit commodity 
prices, i. e. , Ilh = Ilj = I1 for all households h and j. In this paper,
the concept of efficiency will be defined independently of any house­
hold's utility function and endowment. It is indeed possible that 
given all households' utility functions and endowments, efficiency 
may result for arbitrary technologies. In this instance efficiency 
results solely by chance, however, since for a different set of 
utility functions and endowments efficiency no longer is achieved. 
This situation is illustrated for two individuals in Figure l(a) and 
(b). Although each individual has a different consumption possi­
bilities set, both individuals impute the same commodities prices 
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at the production point which maximizes their utility. These imputed 
commodity prices form the normal to the separating hyperplane at 
the utility-maximizing production point. If efficiency is to be 
examined on a utility-free and endowment-free basis, the focus 
may be placed entirely on the consumption possibilities set. This 

'set, as defined by the minimum expenditure problem (E), may be
defined as in (3) 

h h  h h -h h h h h II C � PX + q ;:; PX + q for all (C , - X ) E T • 

In this framework, efficiency is equivalent to assuming that, 
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independent of each household' s endowment and the commodities 

it consumes, the output prices each household perceives are 

identical. More simply, this requires that the boundary of each 

individual' s consumption possibility set be defined by a hyperplane 

which has the same slope for each individual. This is shown in 

Figure 2 • 

Within this framework, each household' s implicit profit 

must be independent of the commodity bundle consumed so that 
--h h 

each household' s perceived total income, PX + q , does not 

vary with its consumption. 6 There is no requirement, however, 

that each household' s implicit profit be the same. 

The definition of efficiency may now be formalized as: 

Pareto efficiency occurs if and only if each household' s 

dual set of prices, M
h

, can be represented as 

h h h h 
M = f.(II, P, q ) :P � 0, 0 �II::; II(P), 0 � q (P)::; q }, - - - - -
where II(P) and q

h
(P) are functions solely of P. 

(5) 

The properties of the functions II(P) and q(P) are examined 

in the following lemma • 
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Lemma 1: The implicit commodity prices, II(P), and implicit profit, 

q(P), as specified in (5) satisfy the following conditions:

( a) Il( O) = 0 and q ( O) = O; 

( b) Il(P) > 0 if P> 0;  
( c) Il(P) and q(P) are linear homogeneous with respect to P; 

( d) Il(P) is a concave function with respect to P and q(P) is 

a convex function ¥.rith respect to P; 
( e,l JJ(P) and q(P) are continuous with respect to P. 

Proof: See Appendix. 
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FIGURE 2 

It will first be shown that a necessary condition for an 

efficient allocation is that no household's technology exhibits joint 

production . Prior to examining this concept, however, it will be 

useful to define production functions, £
6

(Y
s

) over the augmented 

technology, T'. For nonnegative input levels, Y � 0, let

12 

f
s 

(Y
s

) = Max [c : (C
s

, 
s 

- Y
s

) E T', c > O} s = 1, • • •  , S, 
s= 

(6) 
where C

s
= (0, . . •  , 0, c ,

s 

7 . 0, . • .  , 0). Lemma 2 details the 

properties which each production function must possess. 

Lemma 2: Each production function, £
6

(Y
s

), as specified by (6) is

a continuous, nonnegative, linear homogeneous, and concave function 

with respect to Y
s

. 

Proof: See Appendix. 

A technology, T', is said to exhibit no joint production or, 

in short, to be non-joint, if it can be represented as a set of pro­

duction functions such that 

s s s s s 
T' = [(C, - Y) : C = L: C , Y = L: Y , c < f (Y ), Y > 0, s

s s s = -

= l: TI 
s s 

1, . . . , S} 

(7) 

where T '  is a sub-technology in which c may be produced at any 
s s 

non-negative level, but all other commodities are not produced. 

Hence, 

T ' = [(C
s

,-Y
s

) :  c < r
6

(Y
s

) ,  Y
s 

> O} s = 1, • • .  , S. 
s s = = 

( 8) 

The definition of non-jointness provided in (7) may perhaps 

best be understood by considering a technology which exhibits joint 

production. Suppose only two commodities are producible in the 



technology and that they are joint products and are produced in the 
propo�tion

_
cl = acz. 

and (C, - Y) E bd Tr, 
If c may be produced from y where cl = acz 

-1 - -2 -
then ( C , - Y) E bd T l and ( C , - Y) E bd T z. 

Thus (C, - ZY) E bd I: T r, and it can be seen that I: T r c Tr, buts s s s 
I: T '  -F Tr. As will be seen in the proof of Theorem 1, it will alwayss s 
be true that I: T r c Tr irregardless of whether or not the technologys s 
is non-joint. 
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The following lemma establishes the properties of each sub­
technology. 

Lemma 3: Each sub-technology, T �· is a closed, convex cone and 
may be alternatively defined as 

T' s 
s s s s [(C , - Y ): !IC - QY � 0 for all (!I, Q) E M} 

Proof: See Appendix. 

Lemma 4: T' exhibits no joint production if and only if there exist
S sub-technologies of the form 

(9)  

Tr = [(Cs' - Ys): ncs - QYS < 0 for all (TI, Q) E M} s = 1,  • . •  ' s,s = 

8 such that I: T r = Tr.s s 

Proof: See Appendix. 

Lemma 4 provides an alternate definition of no joint pro­
duction in terms of being able to partition Tr into S sub-technologies 
where all prices in the dual set, M, are also in the set dual to each 
sub-technology. Through the use of this lemma it may now be 
demonstrated that Pareto efficiency requires that the technology, 
Tr, must be non-joint. 

Theorem 1: Suppose T satisfies T l -T8. If Pareto efficiency is 
achieved then Tr exhibits no joint production. 

Proof: Let T r, s = 1, . . . , S, be defined as in (8) .  By Lemma 4, --- s
Tr exhibits no joint production if� T � = Tr.
( i) To show I: T r c Tr, consider (Cs , - Ys) ET r, s = 1, . • •  , S.s s s 
By (9), 

s s . !IC - QY ;;;,o for all (!I, Q) EM, s = 1, . . . , S.

Summing over these S inequalities gives 
I;(ilCs - QYs) = !IC - QY <for all (!I, Q) EMs = 

where C = I:  Cs and Y = I: Ys. Clearly, (C, - Y) E Tr. It shoulds s 
again be noted that this half of the proof is independ.ent of the 
structure that efficiency imposes on M and is therefore not an 
implication of efficiency. As previously noted, I: T '  c Tr even ifs s 
Tr does exhibit joint production. 
(ii) To show T' c I: T r, suppose (C, - yr) E Tr but (C, - yr) �I: T r.

s s s s - - -s There must be a (C, - Y) E bd I: T '  with Y >yr or I: Y >yr fors s s -s -s -(C , - Y ) E bd T' . This can be seen by deriving Y from thes 
optimal solution to the problem: 9 

minimize 11 Y 11 
subject to 

(C, - Y) EL:T rs s
Y = yr +  Al 
A.> o. 

-s -s Hence, ( C , - Y ) E bd T r. s 
If efficiency is achieved for some (!I(P), Q(P)) E M, then

for any C � 0, there must be some (C, - Y) E bd Tr such that
!I(P)C - Q(P)Y = O. In particular , consider Cs, then there is some

s s s s (C , - Y ) E bd Tr such that !I(P)C - Q(P)Y = O. By ( 8) ,  T �may

14 



be defined as 

T' = [ (C
s

, - Y
s

): (C
s

, - Y
s

) ET', Y
s > O}. 

s = 
-s -s -s -s 

Since (C , - Y  ) Ebd T�, then (C , - Y  ) Ebd T' and it has a non-

trivial support of the form 

and 

- -s - -s -
Il (P)C - Q (P)Y = 0 for some (n (P) , Q (P)) EM 

- - - -s --s 
Il (P)C - Q (P)Y � Il (P)C - Q (P) Y = 0 for all (C, - Y) E T', 

or in particular, 

- s - s - -s - -s s s 
Il (P)C - Q (P)Y < Il (P)C - Q (P)Y = 0 for all (C , - Y ) ET'· - s 

Summing over the S sub-technologies gives 

TI (P)Z:: cs 
- Q (P)Z:: -ys 

= Il(P)C - Q (P)Y = o 
s s 

and since (C, - Y1 ) ET' 

'Il (P)C - Q (P)Y' � Il (P)C - Q (P)Y = 0 

or 

Q (P) (Y - Y') � 0 

which is a contradiction to Q (P) � 0 and Y - Y' > O.

Hence T' = z:: T '. 
s s 

It is instructive to consider how efficiency fails whenever 
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the technology exhibits joint production, To do this, recall the 

example in which only two commodities are producible in the techno -

logy and may be produced only in fixed proportion. As shown in 

Figure 3, the consumption possibilities set in this example is not

of the form which efficiency requires. Whereas this is an example 

of joint production in its strongest sense, all other technologies 

exhibiting some form of joint production may be shown to yield 

consumption possibilities sets which are also not of the form 

necessary for efficiency. 

16 
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Eliminating the possibility of joint production from a 

household's technology does not preclude the possibility that there 

is some level of each commodity which the household may receive 

even if no goods are used in the production of that commodity. For 

each production function, f
s

(Y
s

),  the fixed factor associated with 

that function is y and, by T7, £8(0, y ) = -;;- may be positive. In 
s s s 

this instance, the household must consume at least c of each 
s 

commodity. An example of such a consumption possibilities set is 

given in Figure 4. Clearly, there exist certain utility functions

such that the household would be better off if trade were permitted. 

Souch would be the case if the household wished to consume less 

than c
s 

of some commodities at a corresponding increase in 

consumption of the other commodities. For this reason, the usual 

"no free lunch" postulate may be given as a necessary condition 

for efficiency. 

Theorem 2: Suppose each household's technology, T
h

, satisfies 

Tl-TS. If Pareto efficiency is achieved then inputs are necessary 

for the production of any output. 

Alternatively, Theorem 2 requires that: 

If (C, - X) E T and C � 0, then X > O. 

This theoren1, when considered along with .T 1, guarantees that the 

origin is a boundary point of each household's technology. Further 

if X must be nonnegative, then ( 0, - X) E bd T only when X = O.

It was seen in ( 2) that each household's augmented tech-

nology, T' , exhibits constant returns to scale. An implication of 

efficiency is that a household's original technology, T, must also 

possess this property if production is impossible without goods. 

17 18 
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Furthermore, households must possess identical technologies. The 
following theorem proves this result. 

Theorem 3: Suppose each household1 s technology, Th, satisfies
T 1-T 8. If Pareto efficiency is achieved then. Th is a cone and
.Th 

;; T�,:; T. for all households h and. j. 

Proof: By (1), the dual to Th is the closed, convex cone
h .  h h h h h h h M = [(n, P, q ): nc - PX ;; q for all (C , - x ) E T }.

It  will first be shown that Pareto efficiency requires that the 
h implicit profit, q , is equal to zero. Using this it can be seen

that each household1 s technology must be identical. Finally it 
will be shown that T is a cone. 

For any given vector of good prices, say P, Pareto 
efficiency obtains only if there is a vector of commodity prices, 

- - -Il(P), such that a hyperplane with the normal (Il(P), P) supports 
all boundary points in the technology with are solutions to each 

h household1s problem (U). By Tl and Theorem 2, 0 E bd T , and
for the endowment X = 0, (C, - X) = (0, 0) is such a solution. 
By (1), (n(P), P, 0) are the corresponding dual variables on the 
boundary of M. Hence 

19 

- h Il(P)C - PX;;, 0 for all (C, - X) ET • (10) 

Any non-trivial (Cl, - X1) E bd Th which is a solution to (U) is
supported by 

Il(P)C' - PX1 = qh(P).

Whereas (10) insures that qh(P) < 0, (5) requires that qh be non-
h - = 

negative. Thus q (P) = O.

The dual set of prices for each household may now be 
written as 

h . h h J M = un, P, q ): P � o, o � n � n(P), q � o , 

and hence Mh = Mj = M for all households h and j. This in turn
implies that households possess identical technologies. 

20 

By setting q = 0, the dimensionality of M may be reduced 
by one, and M becomes 

M = [(IT, P): IlC - PX� 0 for all (C, - X) ET]. 

This permits the dual cone of M to be written as 

T1 = [(C, - X): IlC - PX � 0 for all (Il, P) E M}

and if T = T1, then T is a cone. 
- -

(i) To show Tc T1 suppose that there is a (C, - X) E T but
- - - -

(C, - X) f T1• By (11) this implies that IlC - PX> 0 for some 

(Il, P) EM, which contradicts the definition of M, (1) .

(ii) To show T1 c T suppose that there is a (C, - X1) E T1 but

(11) 

(C, - X1) f T. Then there is a (C, -X) E bd T with x > x1• To

see this simply derive X from the optimal solution to the following
. b 10

programming pro lem: 

minimize 1 I X I I 
subject to 

(C, - X) ET 

X= X1 + U 

A.� O. 

Again using (11) there exists a (Il(P), P) � 0 such that

Il(P)C - PX1 _:: Il(P)C - PX 

or 
P(XI - X) � 0

which is a contradiction to P � 0 and X1 - X < O. Hence T = T1•
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It may now be shown that the necessary conditions derived 
thus far are sufficient to ensure efficiency in an economy with an 
incomplete set of markets. 

Theorem 4: Suppose T satisfies Tl-TB. If all households possess 
the same technology, T, and T is a cone exhibiting no joint pro­
duction, then a Pareto efficient allocation is achieved. 

Proof: Since all households possess the same technology the dual 
set of prices, M, is the same for all households. It must be shown 
that M may be written as in (5) , 

M= Un, PJ: P�o. o�n�n(PJ}, 

since, as previously shown, q may be deleted since T is a cone 
and q = 0 for all nonnegative P. 

First, let P = 0, then n = 0 for all (TI, P) E M. If this
were not the case, TIC - PX could be made arbitrarily large. 
Further, for P ;:: 0, recall the minimum expenditure problem

min [PX: (C, - X) ET, C � C'}

Choosing C' > 0, this problem has a regular optimal solution. 
Thus for (C', - X') with C' > 0, 

TIC - PX�Il'C' - PX' for all (C, - X) ET and all (n, P) EM.

Since T exhibits no joint production, this problem may be examined 
for each commodity. Thus 

ncs, - PXS < n•cs, - PXS < Il'Cs, - PXs, for all (Cs'. - XS) ET I 
= - s 

for all (Il, P) E M. 

The left-hand inequality further reduces to 
ncs,;;, Il' Cs, for all m. P) � M
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or 

or that 
TT c ' <TT'c 's s = s s 

TT <TT' for all (n, P) EM.s = s 
Defining n(P) = Il', M may be represented as in (5) and, therefore,
efficiency is achieved. 

IV. A SHARECROPPING MODEL 

Consider an economy composed of N farms each of which 
produces a single crop. Let each household act as a sharecropper 
who, in return for his labor on farm j, receives a fraction of that 
farm's crop. The crop yield on each farm may vary with the state 
of the world that occurs, where states correspond to, say, weather 
conditions. The fractions of each farm j, x., to which a household J 
has a claim may be though of as the goods in this model. With 
these goods the household produces consumption later if state of 
the world s obtains, cs' s = 1, • • .  , S. It should be realized that
the fraction of each farm j used in the production of some commodity, 
c , is the same fraction used in the production of any other corn-s 
modity, c , • That is, goods are not diminished by any productions 
process. Due to this property, the household's augmented techno-
logy may be defined as: 

sT' = [(C, - X, - y): 2: C s 
s s s C, � y = y, cs;, f (X, y ),

s= l, • • •  , S} (12) 

Further, this structure permits the following result to be obtained. 

Theorem 5: Suppose that each household's technology, T, satisfies
Tl-TB, and that each augmented technology, T', is defined as in 
(12). If efficiency is achieved, then: 
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(a) household's possess identical, constant returns to 
scale technologies, and 

(b) for each state, there must be a farm whose crop has 
a positive yield in that and only that state. 

Proof: By application of Theorems 2 and 3, (a) follows immediately. 
To see that for any state there must be some farm whose crop has 
a positive yield in that state, assume that for some state there is 
no such farm. It is not possible to obtain any non-zero level of 
consumption in that state and, hence, efficiency is not achieved. 

Finally, to show that a farm's crop may have a positive 
yiel d in one state, recall that for any Cs � 0, there must be a
-s s ( C , - X ) E T such that

c s = fs(Xs)

s' s 0 = f (X ) for s' f s. 

These two equations imply that for any Xs f 0, the goods used to
produce cs are not technologically feasible for the production of
any other c 1, s' # s. In other words, each farm must produce as 
crop which has a positive yield in only one state. 

(13) 

(14) 

This result may be interpreted in the following way. Let 
there be two possible states: rain and drought. There must be some 
farm that plants its crop shallow and has a positive yield if there 
is a drought but a zero yield if there is rain. Alternatively, there 
must be some other farm that plants its crop deep and realizes 
a positive yield if there is rain but a zero yield if there is drought. 

At this point it should be recognized that this sharecropping 
model is essentially equivalent to a securities model. In this. model, 
households purchase fractions of firms, x ., in order to provide for 

J 
consumption if state s obtains, c , s = 1, . • • , S. If securitys 
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holdings are required to be nonnegative, Theorem 5 states that
there must be a complete set of "pure" Arrow-Debreu securities, 
i. e. , for each state s, there is a firm s which pays a positive return, 
r , only in the event that state occurs. All other securities mays 
then be represented as linear combinations of the "pure" Arrow -
Debreu securities. 

In many models, security holdings may be negative since 
short sales are permitted. Since this is inconsistent with T6, 
assumptions T6 and T7 may be replaced by 

T61 The set C(X) = [C:(C, - X) ET, C�O} is compact. 

The production functions defined previously for Y � 0 now exist
for any Y, since T61 guarantees the compactness of the set over 
which they are defined, 

It should be noted that Theorem 2 needs no longer hold in 
the presence of short sales. Negative security holdings permit 
the trading off of consumption endowments in each state. With 
T6', the necessary conditions for efficiency become that each 

s s production function, f (X, y ) is linear in at least S securities.
-s -s s As in Theorem 5, for any C ;;;;, 0, there must be a (C , - X , _ y) ET'

such that 

where :Z ys 
= y.

SS X = :z X , or thats 

s s' s since f (X , y )

c s
0 

fs(Xs, ys)
s' s s' f (X , y ) for s ' f s

-s Furthermore, C = � C may be produced from

s s s s s c 6 = f (X, y ) = f (X , y )
S SI S 

= :z, f (X , y ) s = 1, ... , S s (15) 

0 for s' f s. Since r8(X, ys) is linear homogeneous,



(15) requires that fs(X, ys) is linear in all securities. Thus
s s s I S S  S S f (X, y ) = x.h. (y ) + h (y ) s = 1, .. .  , S, J J 0 

j=l 

where, by Tl , h s(ys) > 0, j = 1, . • . , S.
0 = 

The linear homogeneity of the production functions 
provides that 

s s s s s s f (tX, ty ) = t L: x.h. (ty ) + h (ty )
j J J 0 

s s s s 
= t L: x.h. (y ) + th (y ) for all t > O. 

j J J 0 

By choosing X appropriately, it may be seen that 

and 

s s h. (y )J r .s > 0, j = 1, . . .  , S,J -

s s s s 
h (y ) = r y • 

0 0 

Thus the production function may be written as 
s s s s s f (X, y ) = L: r .  x. + r y 

j J J 0 

25 

s s The term r 
0 

y may be thought of as exogeneous income the house-
hold receives if state s occurs. 

V. FACTOR PRICE EQUALIZATION 

At first glance, it may seem that the model presented in 
Section II is completely symmetric to an international trade model 
in which countries trade outputs but riot inputs. The question then 
asked is: What are the necessary and sufficient conditions for 
countries to equalize factor prices? In attempting to sketch proofs 
to the theorems which, in this framework, are the analogs to those 
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presented in Section III, it will become apparent that there is some 
asymmetry between the two cases. 

Suppose each country is endowed with a set of factors, 
XC, and a technology Tc, for transforming inputs, X, into outputs,
C. There is a vector of prices, II, at which outputs may be traded, 
but no markets exist for trading factors. Each country chooses 
outputs and inputs so as to 

maximize TI Cc

subject to 
(Cc, - Xe) E Tc

Xe < Xe

dual variables 
II 

cq 

pc 
' 

which has as its corresponding dual problem 
. . . p=xc cmin1m1ze + q 

subject to 

(ll, Pc, qc) EM

II = II • 

To continue with the analogy, factor price equalization 
requires that, independent of a country' s endowment, each country 
must impute the same set of factor prices. The definition of factor 
price equalization may be formalized as: 

Factor price equalization occurs if and only if each 
country' s dual set of prices, Mc, can be represented
as 

c { c c c M = (ll, P, q ) : II > 0, 0 < P(II) < P, 0 < q (II) < q } 
= = = = = 

where P(lT) and qc(I!) are functions solely of n. 
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In exa1nining the necessary conditions for factor price 
equalization it is easy to show that Theorems 2 and 3 continue to hold. 

c If 0 E bd T, then each country's implicit profit, q , may be set
c equal to zero and the dimensionality of the dual set of prices, M ,

may be reduced by one. Then Mc = Md= M for all countries c and
d. As before, the dual cone to M, T', may be shown to equal the
original technology, T. Hence, if each country's technology 
satisfies Tl-TS, then a necessary condition for factor price equaliza­
tion is that all countries must possess identical, constant returns 
to scale technologies. 

However, in attempting to prove that Theorem 4 continues 
to hold, the asymmetry between inputs and outputs becomes apparent. 
Indeed, the absence of joint production is not a necessary condition 
for factor prices equalization. Consider a technology in which some 
outputs are produced jointly. For given output prices, there is no 
reason that imputed input prices are not the same for every level 
of factor endowment. Factor price equalization requires only that 
for every set of factors, Y, for which the inputed level of expenditure 
is fixed, Q(l'!) Y = k, there must be some feasible level of output, 
(C, - Y) E T', such that the value of output is constant, i. e. , TIC = k.

VI. CONCLUDING COMMENTS

It should be noted that, as defined by ( 5) ,  efficiency is 
tantamount to assuming that a nonsubstitution theorem holds. Re­
examining Figure 2 should yield this equivalence transparent. Non­
substitution is the same as assuming that the dual problem, (D), 
has an optimal solution (Tl':', P, q':') which is independent of its
objective vector (C, - 1). In other words, for fixed input prices, 
P, there is essentially a single price system which will be observed 

in a competitive equilibrium. Thus, the theorems in Section III 
may also be thought of as necessary and sufficient conditions for 
non-substitution to obtain in an economy. 
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Although the results presented in this paper deal only with 
household behavior there is a straightforward adaption for dealing 
with the problem a firm faces. By discarding problem (U), the
problem (E) may be interpreted as a model of firm behavior. 
Suppose that each firm possesses a technology, Tf, with which it 
produces output, cf, from a set of inputs, xf, and let the firm
minimize its cost of production subject to producing some given 
level of output, c:/. Pareto efficiency requires that, independent
of the level of output the firm wishes to produce, the implicit 
price of each output must be the same for all firms. In other 
words, the "northeast" boundary of the production possibilities 
set must be a hyperplane. The results of this paper are then 
applicable in the analysis of the firm' s technology. 
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APPENDIX 

Prior to proceeding to Lemma 1, the following lemma must 
first be proved for future use. 

Lemma Al: Every convergent sequence of boundary points of a closed 
set converges to a boundary point •

. 

Proof: Let {x } be a sequence of boundary points of a closed set X
n 

which converges to some x0• Since X is closed, x0 EX. Thus, if
XO is not a boundary point of x it must be an interior point. Define
B(x0, €) as an n-ball of radius € about x0, such that any point in
B(x0, €) is contained in X. For some n, x E B(x , €), Choose N':' n 0 

':' € sufficiently large such that for n _:::N , d(x0, xn) = o <z where
d(xo, x ) is the distance between XO and x • Thus, B(x ' o) cB(xo' €)n n n ,,_ 

and if x0 is an interior point of X, then so must be x , for n > N-··,n -
contradiction. Hence, x0 must be a boundary point.

Lemma 1: The implicit commodity prices, 11 (P), and implicit profit,
q(P), as specified in (5) satisfy the following conditions:

(a) 11(0) = 0 and q(O) = 0:
(b) ll(P) > 0 if p > O;
(c) lI(P) and q(P) are linear homogeneous with respect to P; 
(d) lI(P) is a concave function with respect to P and q(P) 

is a convex function with respect to P; 
(e) l1(P) and q(P) are continuous with respect to P. 

Proof: (a) Let P = 0, and suppose IT(O) '.'.'.:. 0 and q(O) > 0. Since for 
any C ;  0 there is a (C, - X) E T, C may be increased to any level
desired, and hence if 11(0) .'.:: 0, TI(O)C is unbounded. Thus 11(0) = O. 
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Clearly, if P = 0 and TI(O) = 0, then q(O) = 0,
(b) Let P > 0, and suppose that some TT (P) = O. For thes 

commodity vector Cs, where c > 0 and c , = 0 for s' t- s,s s 
TI(P)Cs - PX< 0 for all (Cs, - X) ET.

Hence q(P) < O, a contradiction. 
{c) This follows immediately since M is a cone. 

. 0 0 0 1 1 l (d) Consider (IT(P ), P ,  q(P )) EM and (TI(P ), P ,  q(P )) EM. 
Since M is a convex set, for 0 '.:: t '.:: 1, (If, P\ qt) EM., where

and 

By (5), 

t 0 1 P = tP + (1 - t)P ,

...t 0 I ff = tTI(P ) + (1 - t)l1(P ) , 

t 0 1 q = tq(P ) + (1 - t)q(P )

t t t t IT ; 11(P ) and q ; q (P ) • 

(e) To show that Il(P) and q(P) are continuous with respect 
to P, consider the set 

M(P) = {IT(P), P, q(P)):(l1(P), P, q(P)) EM, 0; P � P} 

To show that M(P) is bounded, suppose that there is a sequence 

{ ...i - i .i (ll, P, q )} EM such that at least one TT �co. s (Without loss of 

. i .i i -generality, assume that TT 1 �co • ) Set TT s = 0 for s f- 1 and q = q(P).

{ i - } i Then the sequence ((TT1, O, • • •  , 0), P, q(P)) EM and 111 � co, 

Let t= 1 \ , and since M is a cone, ((trr �, O, • • .  , 0), tP, tq(P)) E M.

Trr1

Let TT�� 00and, since M is closed,

i ((tTT1, 0, • . •  , 0), tP, tq(P)) �((T, 0, • . •  , 0), 0, 0) EM .

Since T may be made arbitrarily large, then there is a contradiction 
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to (5), 0; n1; n1 (P), since by (a) of this lemma, n 1 (0) = 0. Thus

Il(P) is bounded. To show that q(P) is also bounded, recall, by T7, 
for (C, 0) E T, C is bounded from above, or that

q(P) = Il(P)C 
is bounded since Il(P) is bounded. Since q(P) and Il(P) are bounded, 
then M(P) is bounded. 

Since M(P) is bounded, then any sequence in M(P) , say 

fn(Pv), Pv, q(Pv) } must be bounded. That sequence has a convergent 
subsequence, without loss of generality the original sequence itself, 
such that 

( v v v} 0 0 0 II(P ), P , q(P ) -7 (II , P , q )

Since fn(Pv), Pv, q(Pv)} is a sequence of boundary points of M, then
by Lemma Al, it must converge to a boundary point, (ITO, Po, qo) .
But by (5), (Il(Po), Po, q(PO)) is also a boundary point of M, and since
II(P) and q(P) are functions, then 

fn(Pv)}-7rr0 = Il(Po)
and 

L v } 0 0 L<J.(P ) -7q = q(P )

Hence, II(P) and q(P) are continuous functions with respect to P. 

Lemma 2: Each production function, fs(Ys), as specified by (8), is a
continuous, nonnegative, linear homogeneous, and concave function 
with respect to Ys.

Proof: The nonnegativity of fs(Ys) follows trivially from the definition
of the production function in (6). Further, the linear homogeneity of 

each fs (Ys) results since T' is a cone.
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In order to see that fs(Ys) is a concave function with respect
s -s =s to Y , let Y and Y be two feasible input vectors, and

By (8),

and 

"s -s -s Y = (1 - t)Y + tY for 0 ; t; 1 •

£6{Y:-s)=-;;-
s

fs(Ys) = c s
Since T' is convex 

where 

Now 

and therefore 

( e;6, - �s) E T

� = (1 - t)c + tc s s s

s I\ I\ 
f (Ys) > c 

= s 

(1 - t)fs(Y) +tfs(Ys) = � < fsctsl •
s = 

To demonstrate that fs(Ys) is continuous with respect to Ys,
recall that the set 

C(Y) = [c :(Cs, - Y) ET', c > 0}s s = 

is compact and non-empty. Let [Yv} be a sequence of input vectors 
converging to Y0• Since C(Y) is compact, a subsequence can be 
chosen, without loss of generality the original sequence itself, 
with an associated sequence [c v} such that c v = fs(Yv) ands s 
lim c v = c0•
y-700 s s 

then 

If c �' is an optimal solution to the problems 
s 0 max [c :(C , - Y ) E T', c > O}, 

s s = 

lim r6(Yv) = lim c v 
v-'> 00 v-'> 00 s c 0 < c '� = r6 (Y0)s = s 

and it remains to be shown that a strict inequality is impossible, 
Now, since by Tl, the origin is in T', and by free disposal, T3, 



it is known that any (N + 1) -vector in the /h direction, e-, there
. si si i . is some C such that (C , - e )  ET' for i = 1, .. . , N + 1 where 
Csi = (0, . • •  , 0, c i, 0, . .. , 0). Further, since T' is a convex s 
cone, by determining the scalar 

v 
a. 

v v 
- · [ yl Yz - min 1, - _ o' o' 

yl Yz

v 
YN+l]• • •  ' 0 

YN+l 

(if necessary, employing the convention % = 1), it is seen that
N+l N+l 

v s* l v v o si v o l v v o i (a. C + ( y. - a. y. ) C , - [a. Y + ( y. - a. y. ) e ])
1 1 1 1 

i=l 

Hence, 

i= 1
N+l 

v s* l v v o si v (a. C + (y. - a. y. )C , - Y ) ET' • 
1 1 

i=l 

N+l 
V S V V "  l V V O  i c = f (Y ) > a. c"' + (y. - a. y. )c s = s 1 1 s 

i=l 
which implies (if necessary, picking an appropriate subsequence) 

N+l 
o v . v l v v o i c = lim c > hm[a. c * + (y. - ct y. )c ] = 
S V'°+"' S = v-+co S 1 1 S 

i= 1
c *s 

Hence, fs(Yv)-+ r8(Y0) and, therefore, £8(Y) is a continuous
function with respect to Y. 
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Lemma 3: Each sub-technology, T', is a closed, convex cone ands 
may be alternatively defined as 

T '  
8 

s s s s [(C , - Y ): TIC - QY ;;;, 0 for all (TI, Q) E M}.

Proof: Recall from Lemma 2 that fs(Ys) is continuous, concave

and linear homogeneous with respect to Ys. Since fs (Ys) defines
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the "northeast" boundary of T �· the following properties of T � are 
trivial to show. 

(1) T' is closed by the continuity of r8(Ys),s 
( 2) T ' is convex by the concavity of l(Ys), ands 
( 3) T ' is a cone by the linear homogeneity of fs(Ys).s 

Further recall that 
TIC - QY :::_ 0 for all (TI, Q) EM and all (C, - Y) ET', 

and since T � is a subset of T', then

ncs - QYS 
< 0 for all (TI, Q) EM and all (Cs, - Ys) ET I 
= s

Hence, T � may be alternatively defined as

T 's
s s s s [(C , - Y ): TIC - QY :::_ 0 for all (TI, Q) EM}.

Lemma 4: T' exhibits no joint production if and only if there 

exists S sub-technologies of the form 

T1 = [(Cs, - Ys): TICs - QYs <for all (TI, Q) EM} s = 1, • • • , S,s = 

such that 
:ET ' = T'.s s 

Proof: (i) The sufficiency half of this proof follows trivially since 

it has already been asserted that T' is non-joint if T' = :E T' where
. s s 

T ' =[(Cs, - Ys): c < fs(Ys), Ys > O} s = 1, . . •  , Ss s = = 

and Lemma 3 shows that T ' may alternatively be written as in 
s 

( 11).

(ii) 
s For Y � 0, 

Suppose that T' = :E T ' where T '  is defined as in (9). 
s s s 

define a production function over each T 1 as:s 



s s s s f (Y ) = max [ c : ( C , - Y ) E T ', c > 0} ss s s = 
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1,  . . .  ' s (Al)

In order to prove that this maximum exists, it will be shown that 
the constraint set is compact. This set is closed since, by Lemma 
3, T ' is closed, To show that this set is bounded consider the s 
programming problem 

max [ITC: (C, - Y) E T', 0 � Y � Y}.

Let Y > 0, then for TI >' 0 this problem has a regular optimal solution
since it satisfies Slater's condition, This in turn implies that there 
is some (IT, P) E M with IT > O. By (9) 

s s ITC - QY ;; for all (IT, P) E M,
and since IT > 0 for some (IT, P) E M, cs must be bounded.

v s 

Next consider the set V , where s 
[(Cs, _ Ys): 0 < ys, < ys c <fs(Ys')} s= s 1, ... ' s. 

Now if V = T '  for all s then T' = I: V and is of the form of (9). s s s s 
T' may then be said to be non-joint. 

To show that V = T ', s s s -s By (Al) ,  cs:;;_ f (Y ), and as T � 
consider a point (Cs, - Ys) ET' .s 
is defined in (11), if (Cs, - Ys) ET' s

and Ys > Y8 then (Cs, - Ys) ET'· - s Thus (Cs, - Ys) E V for
-s s O<Y <Y .

s 

In a similar manner consider a point (Cs, - Ys) E V • s 
By the definition of l(Ys) in (Al), (Cs, - Ys) ET '· Therefore,s 
T ' = V and T' may be said to be non-joint. s s 

FOOTNOTES 

1. This assumption is overly strong. Indeed, if some of the 
commodities are traded, say the first s1 of them, then the
technology may be written as 

c < x h 1 = 1 
h h } 

(C:, - X:) E Th
T 

h h where c1 and x1 are S1 x 1 vectors and, corresponding to 
the nontraded commodities, C� is of dimension (S - S1) x 1
which is produced from x: of dimensionality (N - S 1) x 1.
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2. The sign convention concerning X follows that adopted by Cass
[3 ]. This allows for both inputs and outputs to be measured 
in nonnegative quantities and along with two further assumptions 
regarding Th given later in this section (in particular, Tl and
T3) this convention ensures the nonnegativity of the associated 
dual variables. 

3, Throughout this paper (i) X;; Y means x s;; y s for all s, (ii)
X > Y means x > y for all s and x > y for some s, and - s= s s s 

4. 

(iii) 0 denotes the zero vector of appropriate dimensionality.

Except where it is needed for clarification, the superscript h, 
denoting household, will be deleted. 

5 . See (3 ], pp. 276-278.

6. It is at this point that the analysis substantially differs from 
that of Pollak and Wachter [8]. For their purposes it is critical 



that implicit profit, q
h

(P),  be zero for all households. If 

this were not the case, income will depend upon good prices 

and the commodity demand functions they derive may fail to 

exhibit traditional properties. 

7. To show that this maximum exists, choose an arbitrary non-
s -s -s 

negative level of Y , say Y , and examine C(Y ) = 

[c : (C
s

, - Y
s

) E T1, c > O}. Since T' is closed, then
s s = 

C(Y
s

) is closed. Since 0 E T1, then (0, - Y
s

) ET'. This

implies that c(Ys
) is non-empty. To show that C(Ys

) is
si -s 

bounded, suppose that there is a sequence (C , - Y ) ET' 

i
such that c � "'· 

s 
Let t 

1 
1 . - _l 
Ml 1 cs1 l I __!_ c i M s

and since T' is 
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a cone, (tC
si

, - tY
s

) ET'. Let c i � oo and, 
s 

since T1 is closed, 

(£, 1 i 
-c M s 

-s 

l 
- y Ii � ((0, • • •  , 0, M, 0, • • •  , 0), 0) ET'.

-c M s

Since M can be made arbitrary large, this point in T1 can be 

seen to violate T7. Thus C(Y
s

) is bounded and the production 

function f
s

(Y
s

) exists. 

8. This lemma is very similar to a theorem found in Hall (6] who

shows that non-jointness is equivalent to being able to sum 

input requirement sets. 

9. This minimum can be shown to exist by arguing that the

constraint set may be made compact without affecting the 

solution. Since each T 1 is a closed cone with vertex 0, then
s 

L: T 1 is 
s s 

closed. This guarantees that the constraint set is 
closed. Since T ' is a subset of T', then, by T8, there is 

s 
s - s s 

some Y such that (C , - Y ) E T' for s = 1, • . • , S. It is
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-s s 
necessarily true that (C , - Y ) ET 1 or that (C, - Y) EL: T 1 

s s s 
s -

where Y = L: Y . Since (C, - Y') f L: T 1, at least one component
s s s 

of Y' must be increased in order to produce C in L: T 1 • Thus
s s 

Y may be made strictly greater than Y' and Y may be chosen 
- -

such that Y � Y > Y' � O. Adding the restriction Y .'.':_ Y > Y'

will bound the set and not alter the solution. 

10. To show that this minimum exists, the constraint set may be

shown to be compact. This set is closed since, by T2, T is 

11. 

closed. By T8, there is some X such that ( C, - X) E T. 

Since (C, - X') f T, at least one component of X' must be 

increased in order to produce C in T. Thus, by free disposal, 

X may be made strictly greater than X1 and X may be chosen

such that X .'.':_ X > X' � O. Adding the restriction X .'.':_ X > X'
- - -

to the constraint set will bound the set and not affect the 

solution. 

It is in this proof that assumption T2 is critical to the analysis. 

If T were not closed then it is the closure of T that is dual to 

M. 
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