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I. MAGNETIZATION AS THE RESPONSE OF
QUASIENERGY TO A MAGNETIC FIELD

Here we derive Eq. (2) in the main text, showing that

the single-period averaged magnetization 〈M〉(n)
T of a Flo-

quet eigenstate |ψn〉 with quasienergy εn is given by the
response of its quasienergy to an applied “probing” uni-

form magnetic field, B: 〈M〉(n)
T = −∂εn∂B . (Note that, in

addition to the probing field B, a nontrivial field B0(r, t)
may already be present in the system.) Throughout this
work the magnetic field is given in units of [1/Area], such
that the flux quantum has value 2π.

As a first step, we note that ∂εn
∂B can be written as

∂εn
∂B

=
i

T
〈ψn|

(
U†(T )

∂

∂B
U(T )

)
|ψn〉. (S1)

This relation can be checked using the spectral decom-
position U(T ) =

∑
n |ψn〉〈ψn|e−iεnT , together with the

identity 〈ψn| ∂∂B |ψn〉 + ∂
∂B

[
〈ψn|

]
|ψn〉 = 0. Here ∂

∂B |ψn〉
measures the change of Floquet eigenstate |ψn〉 when a
uniform magnetic field B is introduced to the system.

We now use U(T ) = T e−i
∫ T
0
dtH(t) to obtain

U†(T )
∂

∂B
U(T ) = −i

∫ T

0

dtU†(t)
∂H(t)

∂B
U(t). (S2)

Hence, substituting back into Eq. (S1), we get

∂εn
∂B

=
1

T

∫ T

0

〈ψn(t)|∂H(t)

∂B
|ψn(t)〉, (S3)

where |ψn(t)〉 = U(t)|ψn〉 is the time-evolved Floquet
eigenstate at time t.

What is the nature of the operator ∂H
∂B ? By analogy

to equilibrium systems, clearly it is suggestive of magne-
tization. However, similar to the magnetization density
operator mp discussed in the main text, the operator ∂H

∂B
is gauge-dependent. Nonetheless, expectation values of
∂H
∂B taken in stationary states are in fact gauge invariant,
and therefore physical (see next section). The stationar-
ity condition is satisfied for the full-period average of ∂H∂B
in a Floquet eigenstate, as appears on the right hand side
of Eq. (S3). Indeed this must be the case, since the quan-
tity ∂εn

∂B on the left hand side is itself gauge-invariant.

To obtain an expression for ∂H(t)
∂B , we consider the

change of the Hamiltonian when the small uniform prob-
ing magnetic field B is introduced. In this case, the ma-
trix elements Hab(t) of the Hamiltonian in the lattice

site basis (here a, b refer to lattice site indices) acquire

Peierl’s phases: Hab(t) → Hab(t)e
i
∫ ra
rb

dr·A(r)
, where the

contour of integration is a straight line from site b to
site a and B = ∇ × A. Given that the result of
Eq. (S3) is gauge-independent, we work in the symmet-
ric gauge below. This gauge choice highlights the di-
rect relation to the magnetization defined in Eq. (1) of
the main text. In the symmetric gauge, a uniform per-
pendicular “probing” magnetic field B is produced by
the vector potential A(r) = B

2 ẑ × r. Using the identity
A · (B × C) = B · (C × A), we thus obtain the following
modification of Hab(t) due to the probe field B :

Hab(t)→ Hab(t) exp

[
iB

2

∫ ra

rb

dr · (ẑ× r)

]
= Hab(t) exp

[
iB

2
ẑ ·
(∫ ra

rb

r× dr
)]

= Hab(t) exp

[
iB

2
ẑ · (ra × (ra − rb))

]
.

Here we used that ra × (ra − rb) = rb × (ra − rb).
Taking the derivative of Hab(t) with respect to the

probe field strength B, we obtain

∂Hab(t)

∂B
=
i

2
Hab(t) (ra × (ra − rb)) · ẑ. (S4)

This structure of the matrix elements of H implies that

∂H(t)

∂B
=
i

2
(r× [r, H(t)]) · ẑ. (S5)

Equation (S5) can be verified by taking a matrix element
with 〈a| and |b〉 on the left and right, respectively, and
comparing with Eq. (S4). Comparing with Eq. (1) of
the main text, and using ṙ(t) = −i[r, H], we identify
the right hand side above as minus the magnetization,
−M(t). Substituting this result into Eq. (S3), we obtain
Eq. (2) in the main text.

II. GAUGE INVARIANCE OF
MAGNETIZATION DENSITY

Here we show that the magnetization density operator
mp(t), defined in Eq. (3) of the main text, yields gauge-
independent time-averaged expectation values if and only
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if the density is stationary over the averaging interval τ ,
i.e., 〈ρ̇〉τ = 0. In this case, we furthermore show that
the magnetization density obeys the lattice version of
Ampere’s law given in Eq. (4) of the main text.

In the presence of a magnetic flux φp piercing through
plaquette p, the matrix elements of the Hamiltonian
in the lattice site basis are given by Hab(φp) =

eiAab(φp)Hab(φp = 0). (Here we work in units
where the lattice constant is 1). Here the vector
potential {Aab(φp)} should have the following prop-
erty: for a sequence of sites (a1, a2, . . . aN ) forming a
closed counterclockwise loop on the lattice, the phase∑N
n=1Aan+1an(φp) should equal φp if the loop encloses

the plaquette p, while the sum should vanish otherwise
(here we set aN+1 = a1). The magnetization density
operator is then given by

mp(t) = −∂H(t)

∂φp
= −

∑
〈a,b〉

∂H(t)

∂Aab

∂Aab
∂φp

, (S6)

where the sum runs over all pairs of sites on the lattice
connected by bonds.

We note that there is a gauge freedom in choosing
Aab(φp): if the vector potential {Aab(φp)} results in a
flux φp on plaquette p, then so will a vector potential
{A′ab(φp)} that satisfies

A′ab(φp) = Aab(φp) + fa(φp)− fb(φp), (S7)

where {fa(φ)} can be any set of scalar functions.
In order for 〈mp〉τ to be gauge-invariant, the time-

averaged expectation value of the right hand side of
Eq. (S6) should remain unchanged if we replace Aab with
A′ab. In order for this to be satisfied, we must have∑

〈a,b〉

〈
∂H

∂Aab

〉
τ

(ga − gb) = 0, (S8)

where {ga = ∂fa
∂φ

∣∣
φ=0
} are arbitrary coefficients. Equa-

tion (S8) is satisfied if we require that the net current
flowing into or out of every site a on the lattice vanishes:∑

b∈n.n.(a)

〈Iab〉τ = 0, Iab(t) = −∂H(t)

∂Aab
. (S9)

Here the sum runs over all sites b that are connected with
a bond to site a. It is trivial to see that this condition
ensures that the sum over terms proportional to ga in
Eq. (S8) vanishes. The vanishing of the sum over terms
proportional to gb follows by relabeling.

The sum on the left hand side of Eq. (S9) gives the
net current flowing into site a, which is equal to the rate
of change of density:

∑
b∈n.n.(a)Iab = ρ̇a, where ρa is the

density operator on site a. Therefore the gauge invari-
ance condition for expectation values of the magnetiza-
tion density, Eq. (S8), is satisfied if and only if the density
on every site is stationary over the time-window from 0
to τ : 〈ρ̇a〉τ = 0. This condition is the lattice-analogue of
the condition that the current density in the continuum
must be divergence-free.

A. Ampere’s law on the lattice

To prove the lattice version of Ampere’s law, we first
consider the case where the vector potential is given by
Aab on a single bond ab, in the direction from site b to
site a, and zero everywhere else. In this situation the
magnetic flux is zero everywhere, except for the two pla-
quettes p and q adjacent to the bond ab, here taken such
that the direction from site b to site a is counterclockwise
with respect to plaquette p. In these two neighboring pla-
quettes, the fluxes are given by φp = Aab and φq = −Aab,
respectively. Hence, with this choice of gauge (i.e., A
nonzero on a single bond),

∂H(t)

∂Aab
=
∂H(t)

∂φp
− ∂H(t)

∂φq
. (S10)

Noting that ∂H(t)
∂Aab

= −Iab(t), and mp = −∂H(t)
∂φp

, we

obtain an operator equation similar to Eq. (4) in the
main text. However, this operator equation holds only
in the specific gauge above, where A is nonzero only on
the bond ab. Importantly, as shown above, the time-
averaged expectation value of the right hand side is gauge-
independent for times τ where the density is stationary,
〈ρ̇〉τ = 0. Therefore Eq. (S10) produces meaningful phys-
ical results, and reduces to Eq. (4) of the main text, when
it is used to compute time-averaged expectation values
in stationary states.

III. RELATION TO WINDING NUMBER

Here we show that the quantized value of the magne-
tization density for a fully-localized Floquet system on a
torus, m̄∞, is a topological invariant; its value is equal to
W [U ]/T , where W [U ] is the winding number introduced
in Ref. 1. Noting that the numbers W [U ] and m̄∞ do not
change when we increase the system size, provided that
all Floquet eigenstates remain localized, we will consider
the limit where the size L goes to infinity. In this section,
we work in the Heisenberg picture.

In order to define the winding number W [U ], we con-
sider the Hamiltonian H(A, t) of the system when a uni-
form vector potential A is introduced along the surface
of the torus. Let U(A, t) be the corresponding evolu-
tion operator of the system. As an important ingredient
in the computation of the winding number, we first de-
fine the effective Hamiltonian of the system, Heff, ε(A),

via: U(A, T ) = e−iHeff,ε(A)T , where the eigenvalues of
Heff,ε(A) lie in the interval [ε, ε+2π/T ). Here ε is chosen
within one of the system’s quasienergy gaps, which are
present due to the finite extent of the system for any fixed
L (see Ref. 1). To find the system’s winding number, we

define the 2T -periodic evolution Ũε(A, t), obtained by
first evolving the system with Hamiltonian H(A, t) in the
time-interval [0, T ], and then applying a static Hamilto-
nian −Heff,ε(A) in the time-interval [T, 2T ]. The evolu-

tion operator Ũε(A, t) is given by U(A, t) in the first half
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of the driving, from 0 to T , and by e−iHeff,ε(A)(2T−t) in
the second half of the driving. In particular, the extended
evolution satisfies Ũε(A, 2T ) = 1.

With the definition of Ũε(A, t) above, we obtain the
winding number of the evolution via:

W [U ] =
1

8π2

∫ 2T

0

dt

∫ 2π/L

0

d2A

Tr
(
Ũ†∂tŨ · Ũ†∂AxŨ · Ũ†∂Ay Ũ

)
− x↔ y.

(S11)

Given that W is independent of ε (see Ref. 1), for brevity

we drop the subscript ε on Ũ here and below.
As a first step in our derivation, we rewrite the above

formula using basic identities for the time-evolution op-
erator. We first use the identities ∂tŨ = −iH̃Ũ and
∂AxŨ · Ũ† = −Ũ∂AxŨ† to obtain

W [U ] =
iεαβ
8π2

∫ 2T

0

dt

∫ 2π/L

0

d2ATr
(
H̃∂AαŨ · ∂Aβ Ũ†

)
.

Here εαβ is the antisymmetric tensor, with α, β = {x, y}.
Next, we perform partial integration over Aα and obtain

W [U ] =
iεαβ
8π2

∫ 2T

0

dt

[∫ 2π/L

0

dAβTr
(
H̃Ũ · ∂Aβ Ũ†

)Aα=2π/L

Aα=0

−
∫ 2π/L

0

d2ATr
(
∂AαH̃Ũ · ∂Aβ Ũ†

)]
. (S12)

We now make use of the fact that we can write H̃(A +

êα2π/L, t) = X†αH̃(A, t)Xα, where êα is the α-unit vec-
tor, and Xα = e2πixα/L (see Ref. 1 for more details).

Similarly, Ũ(A+ êα2π/L, t) = X†αŨ(A, t)Xα. Using that
∂AβXα = 0 when α 6= β, together with the cyclic prop-
erty of the trace, we obtain

Tr
(
H̃Ũ · ∂Aβ Ũ†

)
A=( 2π

L ,Aβ)
= Tr

(
H̃Ũ · ∂Aβ Ũ†

)
A=(0,Aβ)

.

Hence the integrand in the first term in Eq. (S12) van-
ishes, and

W [U ] =
−iεαβ
8π2

∫ 2T

0

dt

∫ 2π/L

0

d2ATr
(
∂AαH̃ · Ũ∂Aβ Ũ†

)
.

(S13)

Using the identity ∂Aβ Ũ
† = −Ũ†∂Aβ Ũ Ũ†, along with the

cyclic property of the trace, we get

W [U ] =
i

8π2

∫ 2T

0

dt

∫ 2π/L

0

d2ATr
(
Ũ†∂AαH̃Ũ · Ũ†∂Aβ Ũ

)
.

Going to the thermodynamic limit L → ∞, we treat
the integrand as constant within the A-interval [0, 2π/L]
(cf. Ref. 2). Thus we arrive at the formula

W [U ] =
i

2L2

∫ 2T

0

dtTr
(
Ũ†
(
∂AαH̃

)
Ũ · Ũ†∂Aβ Ũ

)
.

(S14)

What we have achieved so far, with Eq. (S14), is to relate
the winding number to two Heisenberg picture operators,

Ũ†∂AŨ, and Ũ†
(
∂AH̃

)
Ũ. Below we expose the physical

meaning of each of these operators, and thereby link the
winding number to the system’s magnetization.

A. Displacement operator

Having transformed the original winding number for-
mula (S11) into the form of Eq. (S14), we now introduce
an additional operator that will be useful in making the
final connection with the magnetization. Specifically, for
a system with Hamiltonian H(t), and evolution U(t), we
introduce the “displacement operator” ∆r(t):

∆r(t) ≡ −iU†(t)∂AU(t). (S15)

With this definition, we note that ∂t∆r(t) =
U†(t) (−∂AH(t))U(t). The displacement operator can
be seen as the Heisenberg picture operator that mea-
sures the displacement of a particle relative to its starting
point, in the sense that displacement is the time-integral
of the velocity. This definition is important because the
standard position operator on the torus is complicated
by the necessity of imposing a branch cut due to the pe-
riodic boundary conditions. The displacement operator
in Eq. (S15) is insensitive to this issue.

To further elucidate the physical meaning of the dis-
placement operator ∆r(t), we consider the case where the
system has open boundary conditions, where the position
operator r is naturally single-valued. In the lattice site
basis, the Hamiltonian’s matrix elements depend on the
vector potential A in the following way:

Hab(A) = Habe
iA·(ra−rb). (S16)

Consequently, ∂H(t)
∂A = i[r, H(t)], and we find ∂t∆r(t) =

∂tr(t), where r(t) = U†(t)rU(t) is the time-evolved posi-
tion operator in the Heisenberg picture. Using the initial
condition ∆r(0) = 0, we find

∆r(t) = r(t)− r(0). (S17)

For a system with periodic boundary conditions (e.g., a
torus), it is not possible to write ∆r(t) as a difference
of initial and final positions, as in the above equation.
However, when ∆r(t) acts on a state |ψ〉 that stays lo-
calized within a region S that is much smaller than the
size of the torus, we can ignore the boundary conditions
and write

∆r(t)|ψ〉 = (rS(t)− rS)|ψ〉, (S18)

where rS is a position operator defined with a branch cut
outside S. (We note that the right-hand side does not
depend on the exact location of the branch cut, as long
as it is located far outside the region S.)
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B. Relationship with magnetization density

Having defined the displacement operator, we now
rewrite the winding number formula (S14) in terms of
this operator. Using the definition in Eq. (S15), we re-

place Ũ†∂AŨ with i∆r̃(t), where ∆r̃(t) is the displace-

ment operator for the system governed by H̃(t). Simi-
larly, as noted in the text below Eq. (S15), we may replace

Ũ†(∂AH̃)Ũ with −∂t∆r̃(t). Thus we obtain

W [U ] =
1

2L2

∫ 2T

0

dtTr (∆r̃(t)× ∂t∆r̃(t)) . (S19)

The integrand in Eq. (S19) above has a very similar form
to that of the magnetization, Eq. (1) of the main text.
It remains to show that this expression, which involves
the displacement operator defined in Eq. (S15), precisely
reduces to the magnetization discussed in the main text.

Writing out the trace in terms of the (localized) Flo-
quet eigenstates {|ψn〉}, and using Eq. (S18), we obtain

W [U ] =
1

2L2

∫ 2T

0

dt
∑
n

〈ψn|(r̃n(t)− rn)× ∂tr̃n(t)|ψn〉.

Here r̃n(t) ≡ Ũ†(t)rnŨ(t), where rn is a position opera-
tor, defined with a branch cut far away from the region
where the state |ψn〉 is localized. Using that Ũ(2T ) = 1,
such that r̃n(2T ) = r̃n(0) = rn, we find

W [U ] =
1

2L2

∫ 2T

0

dt
∑
n

〈ψn|r̃n(t)× ∂tr̃n(t)|ψn〉. (S20)

In the first half of the driving, i.e., for 0 ≤ t ≤ T ,
the system evolves according to the original Hamiltonian
H(t). Here r̃n(t) = rn(t) ≡ U†(t)rnU(t), where U(t)
is the corresponding evolution operator of the original
system. In the second half of the driving, from T to
2T , the Hamiltonian of the system is given by H̃(t) =

−Heff , and the time-evolution operator is given by Ũ(t) =

e−iHeff (2T−t). Using r̃n(t) = Ũ†(t)rnŨ(t), we then have
(for T ≤ t ≤ 2T ):

r̃n(t)× ∂tr̃n(t) = −ieiHeff (2T−t)rn × [rn, Heff ]e−iHeff (2T−t).

Using Heff =
∑
n Pnεn, where Pn = |ψn〉〈ψn|, we obtain

〈ψn|r̃n(t)× ∂tr̃n(t)|ψn〉 = −i
∑
m

〈ψn|rn × [rn, Pm]|ψn〉εm.

Thus the integrand in Eq. (S20) is actually constant over
the interval T ≤ t ≤ 2T . This allows us to perform part
of the integration and obtain

W [U ] =
1

2L2

∫ T

0

dt
∑
n

〈ψn|rn(t)× ∂trn(t)|ψn〉

+
iT

2L2

∑
m,n

〈ψn|rn × [rn, Pm]|ψn〉εm. (S21)

We now argue that the last term in Eq. (S21) must
be zero. To do this, we note that for a fully-localized
system, the winding number is independent of the choice
of the quasienergy zone (i.e., the position of the branch
cut ε in Heff,ε, see Ref. 1). If we shift the quasienergy cut
to the gap between εm0 and εm1 , where εm0 and εm1 are
the lowest- and second lowest quasienergies, respectively,
the quasienergy εm0 changes by 2π/T , while all other
quasienergies remain the same: εm0 → εm0 + 2π/T . The
invariance of the left-hand side of Eq. (S21) under this
shift of quasienergy zone implies that∑

n

〈ψn|rn × [rn, Pm0
]|ψn〉 = 0. (S22)

Since the branch cut could be placed anywhere in the
spectrum, the argument above should in fact hold for
any choice of m0. Therefore the last term in Eq. (S21)
must vanish, and we arrive at

W [U ] =
1

2L2

∫ T

0

dt
∑
n

〈ψn|rn(t)× ∂trn(t)|ψn〉. (S23)

Following the discussion in the main text, we identify

1

2T

∫ T

0

dt 〈ψn|rn(t)× ∂trn(t)|ψn〉 = 〈M〉(n)
T (S24)

as the time-averaged magnetization of Floquet eigenstate
n. Hence

W [U ] =
T

L2
〈M〉T , 〈M〉T =

∑
n

〈M〉(n)
T , (S25)

where 〈M〉T is the total magnetization of the system
when all states are occupied (on a torus). Using 〈M〉T =
L2m̄∞, we finally arrive at

m̄∞ =
W [U ]

T
. (S26)

This is what we set out to show: the magnetization den-
sity of a fully-localized Floquet system is a topological
invariant, with its value equal to the winding number
identified in Ref. 1, divided by the driving period, T .

IV. MEASUREMENT OF MAGNETIZATION IN
A COLD ATOMS EXPERIMENT

In this section, we prove Eq. (10) in the main text.
We show that the time-averaged magnetization can be
measured via the net y-component of total (pseudo)-spin
of a cloud of two-component cold atoms subjected to a
spin-dependent artificial magnetic field. In this section,
we will work in the Heisenberg picture. For an individual
atom in the experiment, the wave function before the
measurement is given by

|ψ〉 =
1√
2
|χ〉 ⊗ (|↑〉+ |↓〉) , (S27)
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where |χ〉 denotes the orbital part of the atom’s wave
function, and the tensor product separates the orbital
and spin parts of the wave function. The time evolu-
tion operator of the system for the case where the spin-
dependent effective field acts only on the |↑〉 spin com-
ponent is given by

U(τ) = UB(τ)⊗ |↑〉〈↑|+ U0(τ)⊗ |↓〉〈↓|, (S28)

where UB(τ) is the time-evolution operator (acting only
on the system’s orbital degrees of freedom) when a uni-
form field B is applied.

After an evolution time τ in the presence of the effec-
tive field B, the atom’s wave function is given by

|ψ(τ)〉 =
1√
2

(UB(τ)|χ〉 ⊗ |↑〉+ U0(τ)|χ〉 ⊗ |↓〉) . (S29)

Hence, at time τ , the expectation value of the y-spin
operator σy = i

2 (|↑〉〈↓ | − |↓〉〈↑|) is given by

〈σy(τ)〉 =
i

2
〈χ|
(
U†B(τ)U0(τ)− U†0 (τ)UB(τ)

)
|χ〉. (S30)

Using UB(τ) = U0(τ) + B ∂
∂BUB(τ)|B=0 + O(B2), valid

in the linear response regime of weak fields, we obtain

〈σy(τ)〉 = −iB〈χ|
(
U†0 (τ)

∂

∂B
U0(τ)

)
|χ〉+O(B2),

(S31)

where for brevity we write ∂
∂BUB(τ)|B=0 ≡ ∂

∂BU0(τ).

To arrive at Eq. (S31), we used the identity ∂
∂BU

†
0 ·U0 =

−U†0 · ∂
∂BU0. Using Eq. (S2) we obtain the following

result, which is valid on short times where the spin pre-
cession angle remains small:

〈σy(τ)〉 = B

∫ τ

0

dt 〈χ(t)|M(t)|χ(t)〉+O(B2). (S32)

Here we have introduced the operator M(t) as a short-

hand for −∂H(t)
∂B . We note that this operator, and its

expectation values (for non-stationary states), in general
depend on the implementation of the gauge field, see dis-
cussion below.

The above result, Eq. (S32), holds for an individual
atom. For a droplet of many non-interacting atoms the
droplet’s total y-spin 〈Sy〉 can be obtained by summing
together their individual contributions:

〈Sy(NT )〉 = BNT
∑
j

〈M〉(j)NT +O(B2), (S33)

where the sum runs over all atoms j in the droplet, and

〈M〉(j)τ denotes the time-averaged expectation value of
M(t) for the atom j, taken over the interval 0 ≤ t ≤ τ .
Importantly, for long times, N →∞, the particle density

is stationary and 〈M〉(j)NT becomes gauge independent. In

this limit,
∑
j〈M〉

(j)
NT → 〈〈M〉〉 and we find

lim
NT→∞

1

BNT
〈Sy(NT )〉 = 〈〈M〉〉+O(B). (S34)

For a finite number of periods N , there will in gen-
eral be a transient correction to the relation in Eq. (S34)
above. Consider a filled droplet, as described in the main
text, where the many-body state is described by a single
Slater determinant. Within such a state, atoms localized
deep inside the bulk of the droplet (i.e., centered many
localization lengths from its boundary), where all sites
are filled, can be taken to be occupying Floquet eigen-
states. For an atom j initialized in a Floquet eigenstate

n, 〈M〉(j)NT = −∂εn∂B for any integer number of periods, N .
Thus atoms in the bulk do not give any transient correc-
tions to Eq. (S34). However, an atom j localized near
the boundary of the droplet does not generically occupy
a single Floquet eigenstate. In this case, the contribution
of atom j to the total density is not stationary over a sin-

gle period, and 〈M〉(j)NT generally depends on N . Thus
the motion of atoms localized in a strip of width ∼ ξ
along the boundary of the droplet produces a transient
deviation of 1

BNT 〈Sy(NT )〉 from its long-time asymp-
totic value 〈〈M〉〉.

The non-universal transient depends on details of the
implementation, including in particular the choice of
“gauge” used for producing the effective spin-dependent
magnetic field. That is, the spin rotation of an atom mov-
ing through the lattice depends explicitly on the “vector
potentials” A↑ and A↓ for up and down spins, respec-
tively, and not only on the effective magnetic fields B↑ =
∇×A↑ and B↓ = ∇×A↓. Independent “gauge” transfor-
mations of A↑ and A↓ correspond to position-dependent
spin rotations around the z-axis. Since the system is ini-
tialized and measured in a fixed, spatially uniform frame,
there is no symmetry under spin-dependent gauge trans-
formations.

We now estimate the magnitude of the transient cor-
rection. To do so, we consider the case of a circular
droplet of radius R, where the magnetic field is im-
plemented in the symmetric gauge (here the origin of
the coordinate system is located in the droplet’s cen-
ter). In the symmetric gauge, recall from Sec. I that

M(t) = −∂H(t)
∂B = 1

2 ẑ · (r × ṙ(t)). For an atom at
the boundary of the droplet we write r(t) = R + δr(t),
where R = 〈〈r(t)〉〉 is a vector of length ∼ R pointing
from the origin to the atom’s long-time-averaged posi-
tion, and δr(t) describes the motion around this point,
with |δr| ∼ ξ. The time-averaged expectation value of
M for an atom in the boundary region is then

〈M〉(j)NT =
1

2
ẑ · [R× 〈δṙ〉NT + 〈δr× δṙ〉NT ] . (S35)

The first term yields a contribution to 〈M〉NT of or-

der R
〈
ṙ‖
〉
NT

, where ṙ‖(t) denotes the tangential com-
ponent of the atom’s velocity along the boundary. Since
the atom must remain confined within a region of lin-
ear dimension ξ for all times, the N -period average of
the tangential velocity takes a typical value of order
ξ/NT . Therefore we expect the corresponding transient

contribution to 〈M〉(j)NT to have a magnitude at most
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∼ Rξ
NT . Assuming that the atoms are initially randomly

distributed within their respective localization areas (this
is assured by letting particle density in the droplet reach
a steady profile before the measurement begins), the sign
of
〈
ṙ‖
〉
NT

is expected to be random. Any transient con-

tributions to 〈M〉(j)NT from the second term in Eq. (S35)
involving δr×δṙ are expected to be relatively suppressed
by a factor ξ/R, and we ignore them below.

Having estimated the scale of the transient contribu-

tion to 〈M〉(j)NT for each boundary atom, we now infer the
net contribution of all atoms to the net transient devia-
tion of 1

BNT 〈Sy(NT )〉 from the asymptotic value 〈〈M〉〉.
First, note that total number of atoms in the boundary
region (a strip of width ξ around the perimeter of the
droplet) is of order Rξ/a2. Assuming a random sign for
the contribution of each atom, we get a net transient

correction with magnitude of order
√

Rξ
a2 ·

Rξ
NT . Using

Aloc = ξ2, and Afilled ∼ R2, we thus obtain∑
j

〈M〉(j)NT = 〈〈M〉〉+
1

NT
O
(
AlocAfilled

a
√
Rξ

)
. (S36)

While this result was obtained for a field implemented
in the symmetric gauge, analogous arguments to those
above can be used for other natural implementations,
e.g. the Landau gauge, to show that the transient should
have the same magnitude as above.

Using Eq. (S36) in Eq. (S33), we see that

〈Sy(NT )〉
BNT

= 〈〈M〉〉+
1

NT
O
(
AlocAfilled

a
√
Rξ

)
+O(B).

(S37)
Hence the cloud’s total magnetization can be extracted
from the asymptotic behaviour of the growth rate of
〈Sy(τ)〉 in the long-time limit. The result for the average
y-spin per particle 〈σy(NT )〉, in Eq.(10) in the main text,
is obtained by dividing both sides of Eq. (S37) with the
total number of atoms, Afilled/a

2.
The “long time limit” in which the magnetization can

be extracted should be understood as a time that is long
compared with the damping of transients due to the sys-
tem’s initialization, but still short enough that the atoms’
spin precession angle is small. The necessary separation
of timescales can be guaranteed both by working at small
fields, B, and by taking a large enough droplet (since the

transient correction to 〈σy(NT )〉 decays as 1/
√
R). In

practice, our numerics show that the transients can be
made quite small for square droplets of only a few tens
of lattice sites per side (see below and main text).

Finally, we note that our results were derived for a
tight-binding model with one (s-type) orbital per site.
This means that each on-site orbital does not carry
any intrinsic magnetization. Due to mixing with higher
bands, small non-quantized contributions to the mag-
netization density may arise, as discussed in the main
text. However, such contributions are strongly sup-
pressed when the driving is adiabatic with respect to the

FIG. S1. Statistical behaviour of the normalized growth rate
ΩNT , whose saturation value yields the long-time-averaged
magnetization density. a) Normalized growth rate ΩNT as
function of droplet size R, obtained for 100 disorder real-
izations, with parameters set as in the main text (for each
R, each realization corresponds to one black cross). The
red shading indicates the interval within one standard de-
viation from the data points’ mean. b) Deviation ∆ΩNT of
the net y-spin growth rate from the expected saturation value
m̄∞ = 1/T , as a function of the averaging time NT , taken as
an rms-average over 100 disorder realizations. The data are
shown in a logarithmic plot.

gap to higher bands, and gap is large compared to the
bandwidth. In this limit, over one driving period the cen-
ter of mass of the orbital on each site shifts by a distance
that is small compared with the lattice spacing. The
non-quantized contribution to the magnetization density
(in units of the driving frequency) is proportional to the
area swept out by the center of mass, divided by the
area of the unit cell, and is therefore small compared to
m̄∞ = 1/T in the AFAI phase.

V. NUMERICAL SIMULATION

Here we provide additional details from the numerical
simulations, beyond what was discussed in the main text.
The magnetic field in the simulation was implemented in
the Landau gauge, A = (0,−B(x − x0)), where x0 is
located in the center of the lattice.

To explore the generic behavior of the system in the
parameter regime used in the main text, we find and
diagonalize the Floquet operator for 100 random disor-
der realizations, on a lattice of 80 × 80 sites with peri-
odic boundary conditions. Among all Floquet eigenstates
across these 100 realizations, we find the largest localiza-
tion length to be 11.7a, where a is the lattice constant.
Thus we are well within the fully-localized, AFAI regime.
We furthermore have compiled statistics to demonstrate
how the normalized growth rate ΩNT ≡ 1

Ba2NT 〈σy(NT )〉
converges to the quantized value with system size and av-
eraging time, which we now discuss.

In Fig. S1a we show the time-averaged magnetization
density after 50 periods as function of R (the side length
of the filled squared droplet) for each of the 100 realiza-
tions. For each value of R, each black cross indicates
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the the value obtained for a specific realization. The red
area marks the interval within one standard deviation
from the mean value of Ω50T , obtained from the 100 re-
alizations. For all disorder realizations we see that Ω50T

rapidly converges to the quantized value as the size of
the filled region, L, is increased.

To see how the average magnetization converges to the
quantized value with the averaging time, NT , we inves-
tigate the deviation ∆ΩNT of ΩNT from the quantized

value m̄∞ = 1/T as a function of N . The value of ∆ΩNT
is obtained as a root-mean-squared deviation, taken over
the 100 realizations, in the case where a region of 50×50
sites is initially occupied. The data are shown in a log-
log plot in Fig. S1b. The linear trend indicates that the
deviation decreases with a power-law scaling behaviour.
From a linear fit (green line), we find that the deviation
from the quantized value decreases as (NT )−0.64.
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