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Conduction spectroscopy measures the current I through a nano-
system as a function of the voltage V between two electrodes. The
differential conductance, dI�dV, has peaks that can be assigned to
resonance conditions with different electronic levels of the system.
Between these increments, the current has roughly constant pla-
teaus. We discuss how measurements of the current vs. voltage can
be used to perform Boolean operations and hence construct finite
state logic machines and combinational circuits. The inputs to the
device are the source–drain voltage, including its sign, and a gate
voltage applied in a manner analogous to optical Stark spectros-
copy. As simple examples, we describe a two-state set–reset
machine (a machine whose output depends on the input and also
on its present state) and a full adder circuit (a circuit that requires
three inputs and provides two outputs).

conduction spectroscopy � nanoelectronics � quantum dots � single
electron transistors � molecular logic

Confined nanosystems have well separated, discrete electronic
levels with energy spacings that reduce with increasing size of

the system. It is therefore possible to prepare nanodevices where
the electronic states of the system are resolvable by conductance
spectroscopy, meaning that level spacings are of the order of weak
DC fields. Conductance spectroscopy can be implemented in a
regime of strong coupling between the system and the electrodes in
which the electrons tunnel, one at a time, through the system, or for
weaker coupling where electrons can accumulate on the system
(1–13). The system itself can be a molecule where the confinement
is due to the localized levels. For solids, the confining potential well
can be induced by external fields and�or by the finite size of a
colloidal particle to generate a quantum dot (QD). Although the
details of the system do matter a great deal, for the purpose of this
work we need only the observation that there can be one or more
discrete levels that can be accessed by varying the electric potential
across the device. We consider a three-terminal device so that one
cannot only vary a source–drain voltage (Vsd) across the system, but
one also can apply an electric field or gate voltage (Vg) in a
perpendicular direction. In terms of its contacts, the device is a
transistor, but because of the discrete nature of its levels, we will
claim that we can do much more. Unlike a solid-state transistor, we
will not talk of the Fermi level of the system but only about its
discrete and resolvable levels. For the intended applications, it is
convenient to operate in the intermediate coupling regime where
the departure of electrons out of the system is sufficiently slow that
one can perform level-filling spectroscopy, yet the coupling is strong
enough that after a finite time interval the excess electrons will
tunnel out.

There have been extensive discussions aimed at using confined
quantum structures to implement quantum computing (14–25).
Our purpose here is distinctly more modest. We do use the discrete
level structure made possible by quantum confinement, but we only
take advantage of the occupancy of the level and not of its quantum
mechanical phase. Indeed, in this work we use the most elementary

question: ‘‘Is the level occupied or is it not?’’ In other words, we use
occupancy as a classical Boolean variable having the values 1 (for
‘‘yes’’) or 0, and from this code, we construct both combinational
circuits and also finite state logic machines.

By using a variety of nanosystems, such as lithographic QDs,
colloidal QDs, C60, molecules, metallo-organic complexes, etc.
(1–11, 26–31), the following common characteristic can be
established: As a function of the applied voltage, and at suffi-
ciently low temperature and for slow tunneling rates, it is possible
to obtain a rather sharp answer to the following question: Is a
given level occupied or not?

Overview of the Physical Considerations
The observed current–voltage characteristics of nanosystems can
be reproduced by quantum mechanical computations (32–38) of
the current, and the results shown in this work are all based on
such computations for a two-level model Hamiltonian. It is,
however, important to emphasize that the I–V curves for nano-
devices have a ‘‘universal shape’’ because to lowest order, there
is a simple and common physical picture as illustrated in Fig. 1.
Charge flow is possible when a discrete electronic state lies
energetically within the ‘‘Fermi window’’ spanned by the source
and drain electrodes. (Strictly speaking, the charge flow is
determined by the respective chemical potentials; see below.)
The window is an energy window defined by the range of voltage
that is equivalent to an excess population of the single electron
states in one electrode over the other, as a function of energy.
At very low temperatures, the window is of constant height,
being unity or zero. Hence, the condition for current to flow is
that the system has at least one level lying in energy between the
source and drain potentials. In other words, the window function
is rectangular, centered at the Fermi energy of the electrode,
with a width that equals the applied eVsd, where e is the electron
charge. As the temperature increases, the sharp cutoffs at the
two edges of the window become increasingly rounded as
thermal excitation moves some electrons from energies below
the Fermi EF, to energies higher than EF. For our purpose, we
need the edge of the window function to be as sharp as practical,
and so we take it that the temperature can be made low enough
that kT �� eVsd because what determines the sharpness of the
reading of an empty vs. an occupied level of the system is whether
the level is resonant with one or another side of the Fermi
window. The high contrast ratios that are observed in practice (1,
7, 10–12, 39) demonstrate that the required lower temperatures
are quite realistic.

Charge flows when a confined level of the nanosystem is
energetically within the Fermi window and does not flow when
there is no level within the window. The position (strictly
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speaking, the chemical potential; see below) of the level with
respect to the window can be tuned in two independent ways.
One is by controlling the source–drain voltage, Vsd. This voltage
determines the span of the window function. The other is by
applying a gate voltage, Vg, to shift the energy of the levels of the
system. Either way, charge suddenly is set to move when the level
coincides with the edge of the window at EF � eVsd�2 (or at EF
� eVsd�2), and charge will continue to flow as long as this level
remains within the window. At low temperature, the window
function is rectangular, so when the level energy is within the
Fermi window the current is carried by a single level and is
constant. A plot of the current vs. the energy of the level tracks,
therefore, the plot of the Fermi window vs. Vsd. It follows that
I vs. Vsd is a staircase function, as shown in Fig. 1, so that the
differential conductance, dI�dVsd, is maximal at the energy
resonance condition between the level and either of the two
edges of the window, Elevel � EF � eVsd�2. In the limit of the
temperature going down toward zero, the differential conduc-
tance becomes a delta function of the source–drain voltage. In
general, nanodevices have more than one level. Therefore, as Vsd
increases, the window can span additional levels. Theory and
computations show that each time an additional level enters the
window, the current rises to a new plateau (see Fig. 1), and such
staircases are seen experimentally.

The logic machines that we discuss are similar in spirit to our
earlier discussions (40–42) where the inputs to the system were not
electrical but optical. The similarity comes about because in the
optical case, we change the state of the machine by adding one or
more photons. Here, we change the state by adding a discrete
number (one or more) of electrons. The other similarity is in the use
of the value of the excitation energy as a variable. In the optical case,
we represent different inputs by light of different wavelengths.

Here, we use different voltages. In practical terms, electrical
addressing is quite different, and it allows us to contemplate
solid-state devices rather than the gas-phase systems that we
discussed for optical excitation. Also, particularly for quantum wells
confined by external fields (7), carbon nanotubes (9, 12, 39), and
colloidal QDs (1, 2, 4, 8), the level structure is rich and it is possible
to think of adding more than one or two electrons to the system.

The two plateaus in the current vs. voltage curve that are labeled
in Fig. 1 are sufficient to specify a two-state logic machine. The
increase in the current between these two is due to an additional
level being within the Fermi window. In the weak coupling tun-
neling regime, the higher plateau means an additional electron on
the device. This occupancy is analogous to the optical case where
the molecule is excited (deexcited) by absorbing (emitting) a
photon. We have used this scheme to build prototypical finite state
logic machines (41, 43). We use the term finite state logic machines
in its technical meaning (44): The logic operations performed by the
machine are determined not only by the next input but also by the
present state of the machine. This response endows the machine
with memory, meaning that how it proceeds to change depends on
the state it was left in from the previous operation. Below, we
discuss a set–reset machine. Although a set–reset machine is an
elementary example of a finite state device, it does exhibit the
essential characteristic that the same input can induce a different
output depending on the present state of the machine. Further-
more, it will be clear that for such devices that can accommodate
more than one extra electron (or hole), the two-level set–reset
machine can be easily generalized to a multistate case.

The set–reset machine operates by distinguishing the different
plateaus in the I–V curve. In The Logical Plane, we describe logic
circuits that require examination of the peaks of the conductance,
� � dI�dV. This requirement is because such a peak corresponds
to a resonance condition between the level and the edge of the
occupied band of states of the (left or right) electrode. These peaks
in the conductance spectra are the analogs of the resonance
conditions of optical spectroscopy. As in the optical case the energy
of a level can be (Stark) shifted by changing the voltage across the
system. Because of the narrow gaps, the shifts can be significant (34,
45–49). For the gate voltage the differential shift, � � dElevel�
edVg, is determined by the ratio of Cg�C where Cg is the gate
capacitance and C � Cg � Cs � Cd is the total capacitance of
the three-terminal device (7).

For the set–reset machine, all that we need is the conductance at
one value (can be zero) of the gate voltage. Then, in The Logical
Plane, we describe schemes where we need the conductance at two
different values of the gate voltage. To explain the principle, it is
convenient to generalize the discussion of conduction spectroscopy
by working in a plane where the two Cartesian coordinates are the
source–drain voltage as abscissa and the gate voltage as ordinate.
In this so-called logical plane, also called a conductance map, a plot
of the differential conductance of a one-level system will look like
two lines intersecting at the level energy, E1 as shown in Fig. 2 Left.
Each line represents a finite (strictly speaking, very high) differ-
ential conductance, whereas off the line the differential conduc-
tance is very much smaller. Lines defined by high differential
conductance have been experimentally observed (1, 7, 10–12, 39)
for a variety of systems where representing the scale of differential
conductance by color coding exhibits the very high contrast that is
possible for such measurements.

Even for one discrete level, there are two lines in the Vsd � Vg
plane because the line going up is for the level matching the edge
of the Fermi window of the electrode on the right, and the line
going down is the resonance condition at the left electrode. As
drawn in Fig. 2 Left, the lines are straight, and the figure has an
inversion symmetry about the energy of the unperturbed level.
The plot of current vs. source–drain voltage has an inversion
symmetry about the point Vsd � 0. This symmetry is often what
is observed, but the result is not essential. First of all, the

Fig. 1. The computed current vs. source–drain voltage and the physics that
leads to the staircase I–V plot (Inset). The source–drain voltage determines the
span (the Fermi window) between the uppermost occupied levels of the
electrodes on the left and right. As Vsd increases, additional levels can come
within the window, resulting in an increase in the current. The step in the
current is when a level just becomes resonant with the electrode (Inset). The
two states of the set–reset machine, as indicated, differ in one additional level
(as shown it is the lowest empty orbital) being within the span of the voltage.
In the level-filling regime, this difference corresponds to an extra electron on
the system.
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inversion symmetry requires that neither electrode be grounded
so that inverting the sign of the source–drain potential inverts
the relative heights of the occupied orbitals in the two electrodes
(see Fig. 1 Inset). Next, the mirror symmetry of I about the Vsd
axis depends on the barriers to electron transfer between the
system and either of the two electrodes being similar. If the two
barriers are different, then when we invert the sign of Vsd the shift
of the edge of the window is no longer from 1�2 to �1�2 but from
� to 1 � � where 0 � � � 1 (7). Detailed examination (46, 48,
50) shows that the energy of the level also can shift with the
source–drain voltage, which will also break the symmetry. All of
these refinements of the basic description can be used to
advantage because they allow a better control over the level.
However, in this first attempt, we use only the regime in which
the response of the system is linear in the applied source–drain
voltage.

Fig. 2 Right shows the logic plane for a system with two levels.
In The Adder, we show how such a plane (strictly speaking, two
horizontal lines in these planes) are sufficient to define a full
adder. We do so in two stages. First, we show how a measurement
of �IdI�dVsd� is sufficient to define a half adder. Then, the
direction of current flow, meaning that the measurement is of
IdI�dVsd, defines a full adder.

The Set–Reset Machine
The set–reset machine uses two distinct charge states of the device,
which we call the N–1 and the N electron states. We use the two
charge states as the two possible states of the machine. There are
many devices, based either on molecules or on quantum wells, that
can accept or lose more than just one electron. So one can imagine
many-state machines ,but the principle will be the same. In this
machine, the gate voltage is fixed, say at the value A. The only
variable for the two-level set–reset machine is the value of Vsd. We
use two values. One, d, is in the region of N–1 electrons, and the
other, D, is in the region of N electrons (see Fig. 1). Logic state 0
is a point in the N–1 electron region, a point defined by the two
voltages A and d. Logic state 1 is a point in the N electron region,
a point defined by the two voltages A and D.

The operation of the machine is shown in Table 1 and Fig. 3. The
operations in successive rows of the table correspond to successive
columns of the figure. The input is the value of Vsd. The ‘‘set’’ input
is assigned the value 1 when the source–drain voltage has the value
D and is zero otherwise. The ‘‘reset’’ input has the value 1 when the
source–drain voltage is d and is zero otherwise. To change the

input, we reduce the voltage to zero and then raise it to the desired
value as shown in Fig. 3. The entire time interval required to lower
and increase the voltage is one cycle time of the machine. The states
of the machine are its being in one of the two possible plateaus as
indicated in Fig. 1. As shown, the next state of the machine is
determined by both the input and by the present state and not by
the input (nor by the present state) alone.

Fig. 3 shows how the set, S(t), and the reset, R(t), inputs vary as
a function of the physical time t. Note that the cycle of a machine
is, on the physical timescale, a finite time interval. This character-
istic is equally true for optically addressed machines (41) and also
for transistor-based computer circuits (44). Referring to Fig. 3 and
Table 1, if the state of the machine is 0 and in the next cycle the
source–drain voltage is increased to the value D, the new state is 1.
But if the state of the machine is 0 and in the next cycle the
source–drain voltage is kept at the value d, the new state is 0, the
same as before the application of the input. This result shows that
the final state depends on the input. But now use either one of these
two inputs when the state of the machine is 1. The results (Table 1)
are the opposite of what they were. This response shows that the
final state depends not only on the input but also on the state of the
machine. For a set–reset machine, the (Boolean) condition that
S(t)R(t) � 1 is not allowed (51), which is how the value of the

Fig. 2. The logic plane for a one-level (Left) and a two-level (Right) system.
Regions of different numbers of electrons on the nanosystem can be reached
by varying the gate potential, Vg, and the source–drain potential, Vsd. The
level energy E1 is defined such that the gate voltage E1�e� brings the level of
the system to coincide with the Fermi level of the electrodes. The lines are the
curves of maximal differential conductance and occur when a level is resonant
with the edge of the Fermi window (see Fig. 1). Solid lines, the lines with a
positive slope, are the resonant condition for the right electrode (Eq. 4).
Dashed lines are the resonant condition for the left electrode (Eq. 6).

Table 1. The set–reset machine

Present
state Set input Reset input Name of action Next state

0 0 0 No change 0
0 1 0 Set 1
1 1 0 Set 1
1 0 0 No change 1
1 0 1 Reset 0
0 0 1 Reset 0

Fig. 3. A set–reset machine. (Upper) The operation of a set–reset machine in
physical time. Each logic cycle requires the finite time interval �t. During that
time the voltage is or is not ramped up or down to its new value. The state is
read at the end of the interval. The order of operations is the same as in Table
1. (Lower) A logic circuit representation of the set–reset machine. S and R are
the set and reset inputs, and Q is the state. The feedback loop informs the
machine about the current state. The half-moon is the standard notation for
the OR gate. The open dot negates the output so that each of the two gates
shown is a NOR gate. The filled dot shows a connection.
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source–drain voltage can code for both states. In terms of the
logical plane discussed in The Adder, the robustness of the machine
is due to the observation that during the set (or the reset) opera-
tions, the next state is 1 (or 0) whether the present state is 0 or
anywhere else in the N–1 electron region or whether the present
state is 1 or anywhere else in the N electron region.

The principle that the output depends not only on the input
but also on the state of the machine is why for some time (e.g.,
ref. 43) we advocate that molecules can be used not merely as
switches but as a platform for an entire logic machine.

To write the operation of the two-state machine in Boolean
notation we recall the identity X � Y � �X �Y, where X and Y
denote Boolean variables and the bar denotes the logical com-
plement. Then the state of the machine in the next cycle, denoted
Q�, is given by

Q� � R� 	S � Q
. [1]

By rewriting this equation as

Q� � R � S� Q� , [2]

we can exhibit a logic circuit built from feedback-coupled NOR
gates (Fig. 3 Lower). To make the construction recall that a NOR
gate whose input Boolean variables are X and Y has the output
X � Y � �X �Y. So a NOR gate has the output 0 unless both inputs
have the value 0, when it has the value 1. The feedback coupling
as shown in Fig. 3 ensures that the next state of the machine also
depends on the present state and not only on the input.

The Logical Plane
We represent the state of the system as a point in the Vsd � Vg
plane. The logical operations that constitute ‘‘the computation’’
will be represented by changes that we can induce in the location
of the system point within the Vsd � Vg plane. Consider first a
single quantum level, which, for convenience, we take to be the
lowest empty level of our system. The zero of energy for the
system is taken as a state with N–1 electrons. The chemical
potential of the N electron system is

�system(N) � E	N
 � e�Vg, [3]

where � is the differential shift of the level due to the gate
voltage, and we here take it to be constant, and E(N) is the
energy of the unperturbed system. In the more general case
where the level may be half-occupied, the effect of the charging
energy is included in E(N). The chemical potential of the right
electrode, which is depressed when the source–drain potential is
positive (Fig. 1 Inset), is

�right � EF � e�V sd. [4]

In Fig. 2, we use the special case of symmetric barriers on the
right and the left so that � � 1�2. The resonance condition for
the right electrode, �right � �system(N), gives rise to the equation
of the ‘‘bright’’ line in the Vsd � Vg plane, the line along which
the differential conductance is maximal, which is

Vg � [(E	N
 � EF)�e�] � 	���
V sd, 1st quadrant. [5]

Now reverse the sign of the source–drain potential but keep the
same value of the gate potential. Eq. 3 is unchanged, whereas in
Eq. 4 the sign change means that the resonance condition is at
the right electrode is not valid. But, if � � 1�2 we have that the
left electrode is now resonant with the level of the system. If � �
1�2, the left hand potential is

�left(N) � EF � e	1 � �
V sd, [6]

and so Eq. 5 reads for negative source–drain voltage but positive
gate voltage,

Vg�[(E	N
 � EF)�e�] � 		1 � �
��
V sd, 4th quadrant.

[7]

The lines shown in Fig. 2 Right are the � � 1�2 case where the
slopes are equal. To conclude, the resonance condition with the
right electrode gives rise to the line with a positive slope. The line
sloping down is the resonance condition for the left electrode.
When the tunneling barriers are symmetric, the two slopes are
equal in magnitude.

Next we enlarge the voltage range spanned by the gate so that
we can include in the description another, higher-energy level,
into which it is also possible to place an electron. One also can
think of the higher energy as another electron in the previous
level but being at a higher energy due to Coulomb repulsion. In
this two-level system, each level gives rise to a pair of intersecting
lines. The two sets of intersecting lines are shown in Fig. 2 Right.

Level filling spectroscopy of electric field confined QDs or of C60
or of colloidal QDs can place more than two electrons on the
system, thereby giving rise to richer level structures than shown in
Fig. 2. The building block is a pair of intersecting lines, and this
motif is repeated at different heights along the ordinate (the gate
voltage) at voltages corresponding to the addition of successive
electrons to the systems. For our purpose, each level allows the
computation of one Boolean function of two variables. So already
two sets of intersecting lines, meaning a two-level structure, are

Fig. 4. Two views of the operation of a half adder. (Left) Measurement of the
differential conductance at two values, A (Upper) and B (Lower), of the gate
voltage, each one for two values of the source–drain voltage. These measure-
ments provide four alternative points, which code for the four inputs of the
binary adder. (Right) The four points shown in the logic plane. The half adder
has two outputs, the sum and the carry digit. These outputs are provided by
the following two Boolean questions: (i) Does level 1 satisfy a resonance
condition? (Answer yes if you are along the lowest line on the right.) (ii) Does
level 2 satisfy a resonance condition? (See Table 2.)

Table 2. The half adder

Input Vg Vsd f(E1) f(E2)

0,0 A d 0 0
0,1 A D 1 0
1,0 B d 1 0
1,1 B D 0 1
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sufficient to perform such operations as a binary addition where
there are two outputs, the sum and the digit carried to the next
addition.

The Adder
Our purpose is to design a sequential adder, namely a circuit that
accepts as input two binary numbers and, if any, a carry digit
from a previous addition. It provides as output the sum and a
carry digit for the next addition. By the end of this logical cycle,
it is ready to accept the next input. Our discussion breaks the
operation of the adder into three stages. First it adds the two
input numbers and provides intermediate values of the sum and
a carry digit for the next addition. This logic operation is called
a half adder. Then we take account of the carry bit from the
previous addition to obtain the final value of the sum and of the
carry bit to be used next. The third stage is to restore the system
to a state where it is ready for the next cycle.

The operation of the half adder is shown in Fig. 4. There are
four possible inputs (0,0; 1,0; 0,1; and 1,1), and these inputs are
coded by representing the value of each binary number by
either one or another value of voltage. So the four inputs are
coded as four distinct points in the logical plane as shown in
Fig. 4. The values of the source–drain and the gate voltages
that are used are chosen such that each input is coded as a
point that can be read with high contrast. The source–drain
voltage D needs to be larger than d, but in practice it should
not be so much larger that achieving the resonance condition
brings the level too much down in energy. The gate voltage
difference A � B needs to be equal to the excitation energy E2
� E1 (see Fig. 2 Right). Table 2 is a summary of the half adder
action that makes use only of the right-hand side of the logic
plane

The two Boolean functions [f(E1) and f(E2)] shown as output
are the answers to the following questions. (i) Does level 1
satisfy a resonance condition? (ii) Does level 2 satisfy a
resonance condition? They are seen to compute a XOR and an
AND operation on the binary inputs that correspond to the
intermediate values of the binary sum and the carry digit of
this stage.

To operate as a full adder, we need to bring in the carry from
the previous addition. We propose to do so by using the value
of that digit, 0 or 1, to specify the sign of the source–drain
voltage. This code is equivalent to specifying which half of the
logical plane is to be used for the computation (Fig. 5).
Thereby we have the truth table of a full adder, Table 3, with
three inputs (two binary digits and a carry-in) and two outputs
(a sum and the next carry that is to be the carry in for the next
addition).

A cycle of addition is now complete. Depending on the input,
there can be an extra electron in level 1 or 2 or in both. To reset
the machine, it is necessary to wait for the extra electron(s) to
tunnel out.

Concluding Remarks
Recent progress in the understanding of the conduction of
nanodevices (32–37, 52, 53) has led to the introduction of
conduction spectroscopy of single nanoscale systems (QDs,
molecules, etc.). Currently, this spectroscopy is being imple-
mented both experimentally and theoretically. In certain ways,
conduction spectroscopy is turning out already to be as rich in
detail as optical electronic spectroscopy. This work requires only
an elementary experimental observation: Have we or have we
not achieved a resonance condition between the electrodes and
the device? The two alternatives are taken to be two values of
a Boolean variable. Thereby already a two-level system can
implement logic well beyond a single switch. Much more can be
done because most devices have a far richer level structure, and
more than two levels can be accessed. In addition to performing
Boolean operations, conduction spectroscopy, as does its ven-
erable optical aunt, implies a response that depends not only on
the input but also on the present state of the device. This feature
allows the design of finite state logic machines.
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Fig. 5. The full adder. It is the same as the half adder shown in Fig. 4 except
that the sign of the voltage (sign of the current) also plays a role, meaning that
we measure IdI�dV rather than �IdI�dV�of Fig. 4. There are three binary inputs
(two numbers to be added and a carry bit from the previous addition), and
these are coded by the eight points in the logical plane as shown. The four
distinct outputs are shown in Table 3 and are coded by the following two
questions. (i) Is level 1 resonant? (ii) Is level 2 resonant? The open and filled
dots have opposite logical codes.

Table 3. The full adder

Input Carry-in Vg Vsd Sum Carry-out

0,0 0 A d 0 0
0,1 0 A D 1 0
1,0 0 B d 1 0
1,1 0 B D 0 1
0,0 1 A �d 1 0
0,1 1 A �D 0 1
1,0 1 B �d 0 1
1,1 1 B �D 1 1
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