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This Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a
mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There
are several potential smoking gun signatures of a departure from general relativity associated with this
process. These signatures could show up within existing LIGO-Virgo searches.
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Introduction.—General relativity (GR) has successfully
passed numerous tests [1,2] and, in the words of Ref. [3],
“occupies a well-earned place next to the standard model as
one of the two pillars of modern physics.” And yet, the
enigmatic nature of dark energy and dark matter evoked in
the explanation of cosmological and astrophysical observa-
tions [4], as well as theoretical considerations regarding the
renormalization of the theory in a quantum theory sense,
indicates that GR may ultimately need modifications in the
low- and/or high-energy regime [5].
Tests of GR have so far been almost exclusively limited

to relatively weak fields. But the recent breakthrough
detection of gravitational waves (GWs) by LIGO [6] has
opened a new observational channel towards strong-field
gravity, and tests of Einstein’s theory are a key goal of the
new field of GW physics [7,8]. Most GW-based tests either
(i) construct a phenomenological parameterization of pos-
sible deviations from the expected physics and seek to
constrain the different parameters or (ii) model the physical
system in the framework of a chosen alternative theory to
see if it can better explain the observed data.
The latter approach faces significant challenges; the

candidate theory must agree with GR in the well-tested
weak-field regime and yet lead to measurable strong-gravity
effects. Furthermore, a mathematical understanding of the
theory, in particular, its well-posedness, is necessary for fully
nonlinear simulations. One of the most popular candidate
extensions of GR are scalar tensor (ST) theories of gravity
[9,10], adding a scalar sector to thevector and tensor fields of
Maxwell GR. Scalar fields naturally arise in higher-
dimensional theories including string theory and feature
prominently in cosmology, and ST theories have a well-
posed Cauchy formulation. ST theories also give rise to the
most concrete example of a strong deviation fromGRknown
to date: the spontaneous scalarization of neutron stars [11].
The magnitude of this effect facilitates strong constraints on
the parameter space of the ST theory through binary pulsar
observations [12–14]. These bounds, as well as the impres-
sive constraints obtained from the Cassini mission [15],
however, are all based on observations of widely separated

objects and, therefore, apply only to the massless ST theory
[or theories with a scalar mass μ ≲ 10−19 eV yielding a
Compton wavelength, λc ¼ ð2πℏÞ=ðμcÞ, greater than or
comparable to the objects’ separation [3,16]].
Deviations of black-hole spacetimes from GR are limited

in ST gravity due to the no-hair theorems [17,18], although
we note that scalar radiation has been observed in black-hole
binary simulations for nontrivial scalar potentials [19] or
boundary conditions [20]. Nevertheless, the most straight-
forwardway to bypass the no-hair theorems is to depart from
the vacuum. Neutron stars and stellar core collapse thus
appear to be the most promising systems to search for
characteristic signatures; cf. [21–23], and references therein.
Here, we perform the first study of dynamic strong-field

systems in massive ST theory through exploring GW
generation in core collapse. As we will see below, the
GW signal is dominated by the rapid phase transition from
weak to strong scalarization and the ensuing dispersion of the
signal. We therefore focus in this study on spherically
symmetric models which capture the key features of the
collapse responsible for spontaneous scalarization.
The most promising range of the scalar field mass μ for

generating strong scalarization and satisfying existing binary
pulsar constraints has been identified as μ≳ 10−15 eV
[16,24]. In massive ST theory, low-frequency modes with
f < f� ¼ μ=ð2πℏÞ decay exponentially with distance rather
than radiate towards infinity. For masses μ > 10−13 eV
(f� > 24.2 Hz), the GW power detectable inside the
LIGO sensitivity window 10 Hz≲ f ≲ 103 Hz would be
considerably reduced due to this effect.We therefore study in
this work the range 10−15 eV≲ μ≲ 10−13 eV.
Formalism.—The starting point of our formulation is the

generic action for a scalar-tensor theory of gravity that
(i) involves a single scalar field nonminimally coupled to
the metric, (ii) obeys the covariance principle, (iii) results in
field equations of at most second differential order, and
(iv) satisfies the weak equivalence principle. In the Einstein
frame, the action can be written in the form (using natural
units G ¼ c ¼ 1) [5,10]
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S ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p
16π

½R̄ − 2ḡμν∂μφ∂νφ − 4VðφÞ� þ Sm; ð1Þ

where φ is the scalar field, VðφÞ the potential, and R̄ and ḡ
the Ricci scalar and determinant constructed from the
conformal metric ḡμν, respectively. Sm denotes the contri-
bution due to matter fields, that couple to the physical or
Jordan-Fierz metric gμν ¼ ḡμν=FðφÞ, FðφÞ the coupling
function, and the physical energy momentum tensor is
Tμν ¼ 2ð−gÞ−1=2δSm=δgμν, assumed here to describe a
perfect fluid with baryon density ρ, pressure P, internal
energy ϵ, enthalpy H, and 4-velocity uα:

Tαβ ¼ ρHuαuβ þ Pgαβ; H ¼ 1þ ϵþ P=ρ: ð2Þ
The equations of motion are given by

Ḡαβ ¼ 2∂αφ∂βφ − ḡαβ∂μφ∂μφþ 8πT̄αβ − 2Vḡαβ;

∇̄μ∇̄μφ ¼ 2πðF;φ=FÞT̄ þ V;φ;

∇̄μT̄μα ¼ −
1

2

F;φ

F
T̄ḡαμ∂μφ; ∇μðρuμÞ ¼ 0; ð3Þ

where the conformal energy momentum tensor is
T̄αβ ¼ Tαβ=F, ∇̄ is the covariant derivative constructed
from ḡμν, the subscript ;φ denotes d=dφ, and the last
equation arises from conservation of the matter current
density in the physical frame.
Henceforth, we assume spherical symmetry, writing

ds̄2 ¼ ḡμνdxμdxν ¼ −Fα2dt2 þ FX2dr2 þ r2dΩ2; ð4Þ
where α ¼ αðt; rÞ, X ¼ Xðt; rÞ, and we also define for
convenience Φ ¼ lnð ffiffiffiffi

F
p

αÞ and the gravitational mass
m¼ r½1− ðFX2Þ−1�=2. In spherical symmetry, the4-velocity
in the Jordan frame is uμ ¼ ð1 − v2Þ−1=2½α−1; vX−1; 0; 0�,
where the velocity field v as well as the other matter
variables ρ, P, ϵ, and H are also functions of ðt; rÞ. High-
resolution shock capturing requires a flux conservative
formulation of the matter equations which is achieved by
(cf. [23]) changing from variables ðρ; v; HÞ to

D¼ ρXF−3=2ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p ; Sr ¼ ρHvF−2

ð1− v2Þ ; τ ¼ Sr

v
−

P
F2

−D:

ð5Þ
Finally, we introduce η ¼ X−1∂rφ and ψ ¼ α−1∂tφ. The
resulting system of equations is identical to Eqs. (2.21),
(2.22), (2.27), (2.28), and (2.33)–(2.39) in Ref. [23] except
for the following additional potential terms (bracketed
numbers denote right-hand sides in Ref. [23]):

∂rΦ ¼ ½2.21� − rFX2V;

∂rm ¼ ½2.22� þ r2V;

∂tψ ¼ ½2.28� − αFV;φ;

sSr ¼ ½2.38� − rVαXFðSrv − τ −Dþ F−2PÞ; ð6Þ

where sSr is the source term in the evolution of Sr. All other
equations in the above list remain unaltered.
We have implemented these equations by adding the

potential terms to the GR1D code originally developed in
Ref. [25] and extended to the massless ST theory in
Ref. [23]. As in Ref. [23], we use a phenomenological
hybrid equation of state (EOS) P ¼ Pc þ Pth, ϵ ¼ ϵc þ ϵth
with the cold part

ρ ≤ ρnuc∶ Pc ¼ K1ρ
Γ1 ; ϵc ¼

K1

Γ1 − 1
ρΓ1−1;

ρ > ρnuc∶ Pc ¼ K2ρ
Γ2 ; ϵc ¼

K2

Γ2 − 1
ρΓ2−1 þ E3; ð7Þ

where ρnuc ¼ 2 × 1014 g cm−3, K1 ¼ 4.9345 × 1014 ½cgs�,
and K2 and E3 follow from continuity; ϵth measures the
departure of the evolved internal energy ϵ from the cold
contribution and generates a thermal pressure component
Pth ¼ ðΓth − 1Þρϵth. We thus have three parameters to
specify the EOS. As in Ref. [23], we consider
Γ1 ¼ f1.28; 1.3; 1.32g for the subnuclear, Γ2 ¼ f2.5; 3g
for the supernuclear EOS, and Γth ¼ f1.35; 1.5g for the
thermal part describing a mixture of relativistic and non-
relativistic gases. For the conformal factor, we use the
quadratic Taylor expansion commonly employed in the
literature [11,26], and the potential endows the scalar field
with a mass μ:

F ¼ expð−2α0φ − β0φ
2Þ; V ¼ ℏ−2μ2φ2=2: ð8Þ

The discretization, grid, and boundary treatment are iden-
tical to those described in detail in Sec. 3 of Ref. [23].
Simulations.—For the simulations reported here, we

employ a uniform grid with Δr ¼ 166 m inside
r ¼ 40 km and logarithmically increasing grid spacing
up to the outer boundary at 9 × 105 km. As detailed in
Supplemental Material [27], we observe convergence
between first and second order, in agreement with the
use of first- and second-order accurate discretization
techniques in the code, resulting in a numerical uncertainty
of about 4% in the wave signals reported below.
All simulations start with the WH12 model of the catalog

of realistic pre-SN models [28] with initially vanishing
scalar field. The evolution is then characterized by six
parameters: the above-mentioned EOS parameters Γ1, Γ2,
and Γth as well as the mass μ of the scalar field and α0, β0 in
the conformal function which we vary in the ranges
0 ≤ μ ≤ 10−13 eV, 10−4 ≤ α0 ≤ 1, and −25 ≤ β0 ≤ −5.
Our observations in these simulations are summarized as
follows. (i) The collapse dynamics are similar to the
scenario displayed in the left panels in Fig. 4 in
Ref. [23]. As conjectured therein, the baryonic matter
strongly affects the scalar radiation but itself is less
sensitive to the scalar field. (ii) For sufficiently negative
β0, the scalar field reaches amplitudes of the order of unity,
independent of the EOS. Even in the massless case μ ¼ 0,
we observe this strong scalarization; the key impact of the
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massive field therefore lies in the weaker constraints on α0,
β0 rather than a direct effect of terms involving μ. For
illustration, we plot in Fig. 1 the wave signal rφ extracted at
5 × 104 km for various parameter combinations. These
waveforms are to be compared with those obtained for
present observational bounds in the core collapse in
massless ST theory as shown in Fig. 6 of Ref. [23]. The
amplitudes observed here are larger by ∼104 for neutron
star formation from less massive progenitors and even
exceed the strong signals in black hole formation from
more massive progenitors by ∼100. This hyperscalariza-
tion of the collapsing stars in massive ST theory (as
compared with the more strongly constrained massless
case) and the resulting substantially larger GW signals are
one of the key results of this work. Translating this increase
into improved observational signatures for GW detectors,
however, requires the careful consideration of the signal’s
dispersion as it propagates from the source to the detector;
this is the subject of the remainder of this Letter.
Wave extraction and propagation.—At large distances

from the source, the dynamics of the scalar field are
well approximated by the flat-space equation
∂2
tφ −∇2φþ ℏ−2μ2φ ¼ 0, which, in spherical symmetry,

reduces to a 1D wave equation for σ ≡ rφ. Plane-wave
solutions propagate with group and phase velocities
vg=p ¼ ½1 − ðω2�=ω2Þ��1=2 for angular frequencies above
ω� ≡ μ=ℏ but are exponentially damped for lower frequencies.
In the massless case (μ ¼ 0), the general solution for σ is

the sum of an ingoing and an outgoing pulse propagating at
the speed of light. This makes interpreting the output of core
collapse simulations particularly simple; one extracts the
scalar field σðt; rexÞ at a sufficiently large extraction radius
rex, and after imposing outgoing boundary conditions the
signal at r > rex is σðt; rÞ ¼ σ(t − ðr − rexÞ; rex).
In the massive case, the situation is complicated by the

dispersive nature of wave propagation. However, an analytic
solution for the field at large radii can still be written down,

albeit in the frequencydomain: ~σðω; rÞ≡ R
dtσðt; rÞeiωt. The

boundary conditions need to bemodified for themassive case;
frequencies jωj > ω� propagate, and we continue to impose
the outgoing condition for these; however, frequencies
jωj < ω� are exponential (growingordamped), andwe impose
that these modes decay with the radius. These conditions
determine the Fourier transform of the signal at large radii in
terms of the signal on the extraction sphere (note theω ranges):

~σðω;rÞ¼ ~σðω;rexÞ
�
e−i

ffiffiffiffiffiffiffiffiffiffi
ω2−ω2�

p
ðr−rexÞ forω<−ω�;

eþi
ffiffiffiffiffiffiffiffiffiffi
ω2−ω2�

p
ðr−rexÞ forω>−ω�:

ð9Þ

Note that the power spectrum j ~σðω; rÞj2 is unchanged during
propagation except for the exponential suppression of frequen-
cies jωj < ω�.
As signals propagate, they spread out in time, but the

frequency content above the critical frequency ω� remains
unchanged. Consequently, the number of wave cycles in the
signal increases with propagation distance; cf. Fig. 2. In the
limit of large distances (relevant for LIGO observations of
galactic supernovae), the signals are highly oscillatory; i.e.,
the phase varies much more rapidly than the frequency, and
the inverse Fourier transform of Eq. (9) may be evaluated in
the stationary phase approximation (SPA) [29]. At each
instant, the signal is quasimonochromatic with frequency

ΩðtÞ ¼ ω�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ðr − rexÞ=t�2

q
for t > r − rex: ð10Þ

This time-frequency structure sounds like an inverse chirp,
with high frequencies arriving before low ones. The origin of
this structure can be understood by noting that each fre-
quency component arrives after the travel time of the
associated group velocity. Using the SPA, the time domain
signal is given by σðt; rÞ ¼ Aðt; rÞ cosϕðt; rÞ, where

ϕðt; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2�

q
ðr − rexÞ − Ωt −

π

4
þ Arg½ ~σðΩ; rexÞ�;

Aðt; rÞ ¼
ffiffiffi
2

π

r
ðΩ2 − ω2�Þ3=4
ω�ðr − rexÞ1=2

Abs½ ~σðΩ; rexÞ�; ð11Þ

and the SPA frequency ΩðtÞ is given by Eq. (10).
The Jordan framemetric perturbation is determined by the

scalar fieldφ (the tensorial GWdegrees of freedom vanish in
spherical symmetry). Any GW detector, small compared to
the GW wavelength λ ¼ 2π=ω, measures the electric com-
ponents of the Riemann tensor R0i0j [2]. In the massless ST
theory, this 3-tensor is transverse to the GW wave vector,
R0i0j ∝ δij − kikj, with strain amplitude hB ¼ 2α0φ (this is
called a breathing mode). In massive ST theory, there is an
additional longitudinal mode, R0i0j ∝ kikj, with suppressed
amplitude hL ¼ ðω�=ωÞ2hB. AGW interferometer responds
identically (up to a sign) to both of these polarizations,
meaning they cannot be distinguished [2]; henceforth, we
refer to the overall measurable scalar signal with amplitude
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FIG. 1. Waveforms extracted at5 × 104 km.The legend lists devi-
ations from the fiducial parameters μ ¼ 10−14 eV, α0 ¼ 10−2,
β0 ¼ −20, Γ1 ¼ 1.3, Γ2 ¼ 2.5, and Γth ¼ 1.35.
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hS ¼ hB − hL ¼ 2α0½1 − ðω�=ωÞ2�φ. In practice, this factor
reduces the strain only by at most a few percent at t≲ 1010 s.
LIGO observations.—GW signals from stellar collapse

in ST theory may show up in several ways in existing
LIGO-Virgo searches. In each case, there is, in principle, a
smoking gun which allows the signal to be distinguished
from other types of sources. Here, it is argued that a new
dedicated program to search for ST core collapse signals is
not needed; however, the results of this work should be kept
in mind in analyzing results from existing searches.
Monochromatic searches.—The highly dispersed signal

[described by Eq. (11); see right panels in Fig. 2] at large
distances can last for many years and is nearly monochro-
matic on time scales of ≲1 month. Quasimonochromatic
GWs with slowly evolving frequency may also be generated
by rapidly rotating nonaxisymmetric neutron stars; the scalar
signals described in this Letter can be distinguished from
neutron stars by the scalar polarization content and the highly
characteristic frequency evolution described in Eq. (10).
These signals may be detected by existing monochro-

matic searches and allow for the determination of the scalar
mass from the frequency change _f. The signals may show
up in all-sky searches; however, greater sensitivities can be
achieved via directed searches at known nearby supernovae
(all-sky searches achieved sensitivities that constrain
h≲ 9.7 × 10−25 [30], whereas model-based, directed
searches at a supernova remnant have achieved sensitivities
of h≲ 2.3 × 10−25 [31] at frequencies ∼150 Hz). Methods
to detect signals of any polarization content have recently
been presented in Ref. [32]; note that interferometers are a
factor ∼2 less sensitive to scalar than tensor GWs. A
directed search should begin within a few months to years
of the supernova observation and may last for decades with
sensitivity improving as time−1=2 (see the amplitude as a
function of time in Fig. 2). In fact, the amplitude can remain
at detectable levels for so long that directed searches aimed

at historical nearby supernovae (e.g., SN1987A) may be
worthwhile; a nondetection from such a search can place
the most stringent constraints to date on certain regions of
the massive ST parameter space, ðμ; α0; β0Þ. [For
μ ¼ 10−14 eV, for example, we obtain for SN1987A a
frequency Ω=ð2πÞ ≈ 128 Hz and rate of change
_Ω=ð2πÞ≈2Hz=yr, using distance D≔ r− rex ¼ 51.2 kpc
and time t −D ¼ 30 yr.]
In any monochromatic search there would be two

smoking gun features indicating an origin of hyperscalar-
ized core collapse in the massive ST theory: the scalar
polarization content and the long signal duration with
gradual frequency evolution according to Eq. (10). Our
simulations suggest that the intrinsic amplitude of the scalar
field is insensitive to α0, β0, and μ over wide parameter
ranges. However, the GW strain scales linearly with the
coupling; h ∝ α0φ. Extrapolating the results in Fig. 2
suggests that if a supernova at 10 kpc were to be observed
and followed up by a directed monochromatic search by
aLIGO at design sensitivity, the coupling could be con-
strained to α0 ≲ 3 × 10−4 (assuming no signal was in fact
observed), which compares favorably with the impressive
Cassini bound in the massless case [15].
Stochastic searches.—As shown above, stellar core

collapse in massive ST theory can generate large amplitude
signals, allowing them to be detected at greater distances.
However, the signals propagate dispersively, spreading out
in time and developing a sharp spectral cutoff at the
frequency of the scalar mass. The long duration signals
from distant sources can overlap to form a stochastic
background of scalar GWs with a characteristic spectral
shape around this frequency. A detailed analysis of this
stochastic signal covering a wider range of ST parameters
and progenitor models will be presented in Ref. [33].
Burst searches.—If the scalar field is light

(μ ≲ 10−20 eV), then signals originating within the galaxy
will not be significantly dispersed [e.g., the spread in arrival

FIG. 2. Left panel: The frequency-domain power spectrum of the scalar field σ ≡ rφ at the extraction sphere and 1 light second further
out; the exponential decay of frequencies f < ω�=ð2πÞ can be clearly seen. This simulation was performed for a 12 M⊙ star with
μ ¼ 10−14 eV, α0 ¼ 10−4, and β0 ¼ −20. Center panel: The time-domain scalar field profiles for the two curves shown in the left panel;
during the 1s of propagation, the signal becomes increasingly oscillatory, and the long-lived memory effect is exponentially suppressed.
Right panels: The amplitude (top) and frequency (bottom) as functions of time for the scalar field φ from the same simulation as the
other panels but at a distance of 10 kpc (it is not practical to plot the long, highly oscillatory time-domain signals at large distances). Also
shown by the dotted and dashed curves are the amplitude profiles from other simulations using α0 ¼ 10−2 and α0 ¼ 100; the amplitude
of the scalar field depends relatively weakly on α0. For the simulations shown here, the energy radiated in scalar GWs is ∼10−3 M⊙.
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times across the LIGO bandwidth, ð10–103Þ Hz, for a
source at 10 kpc is ≲1 s]. These short-duration, burstlike
scalar GW signals may be detected using strategies similar
to those used to search for standard core collapse super-
novae in GR. However, for these light scalar fields the
observational constraints on the coupling constants α0 and
β0 rule out the hyperscalarized signals shown in Fig. 1, and
the amplitudes are similar to those reported in Ref. [23].
Discussion.—The main results of our work are the

following points. (i) Weaker constraints on the coupling
parameters α0, β0 in ST theory with scalar masses μ ≳
10−15 eV allow for scalarization in stellar core collapse
orders of magnitude above what has been found in massless
ST theory. The scalar signature is rather insensitive to the
EOS parameters and varies only weakly with the ST
parameters α0 and β0 for sufficiently negative β0.
(ii) The strong scalar GW signal disperses as it propagates
over astrophysical distances, turning it into an inverse chirp
signal spread out over years with a near monochromatic
signature on time scales of ∼1 month. (iii) We identify
three existing GW search strategies (continuous wave,
stochastic, and burst searches) that have the capacity to
observe these signals for galactic sources or infer unprec-
edented bounds on the massive ST theory’s parameter
space through nondetection.
The dispersion of the signal has two significant conse-

quences. (i) While the number of individually observable
events may not change significantly from pure GR expect-
ations (a few per century, largely in the Milky Way and
Magellanic Clouds), each event remains visible for years or
even centuries, vastly increasing the number of sources
visible now. (ii) The signal to be detected is largely
insensitive to details of the original source. Instead, it is
mainly characterized by the overall magnitude of the
scalarization and the ST parameters, most notably the mass
μ.We tentatively conjecture that other prominent astrophysi-
cal sources, such as a NS binary inspiral and merger, may
result in a similar inverse-chirp imprint on the GW signal in
themassive ST theory. A natural extension of ourwork is the
exploration of other theories of gravitywithmassive degrees
of freedom (e.g., [34]), but the results reported here already
demonstrate the qualitatively new range of opportunities
offered in this regard by the dawn of GW astronomy.
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