Supplementary information for the letter: "Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity"

Ulrich Sperhake, $^{1,\,2}$ Christopher J. Moore, $^{1,\,3}$ Roxana Rosca, 1

Michalis Agathos,¹ Davide Gerosa,² and Christian D. Ott^2

¹DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

² TAPIR 350-17, Caltech, 1200 E. California Boulevard, Pasadena, California 91125, USA

³IST-CENTRA, Departamento de Física, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

(Dated: September 30, 2017)

Code tests – In order to test the the code for stellar collapse in massive scalar-tensor (ST) theory of gravity, we have repeated the convergence analysis displayed in Fig. 3 of [1] but now using a massive scalar field with $\mu = 10^{-14}$ eV and $\alpha_0 = 10^{-4}$ and $\beta_0 = -20$. We observe the same convergence between first and second order, in agreement with the first and second order schemes used in the code.

As a further test, we have evolved the 12 M_{\odot} zeroage-main-sequence progenitor WH12 of the catalog of realistic pre-SN models [2] for the same μ , α_0 and β_0 , employing a uniform grid with Δr inside $r = 40 \,\mathrm{km}$ and logarithmically increasing grid spacing up to the outer boundary at 1.8×10^5 km. Convergence of $r\varphi$ extracted at $r_{\rm ex} = 3 \times 10^9 \, {\rm cm}$ is tested with three different resolutions $\Delta r_1 = 250 \,\mathrm{m}$, $\Delta r_2 = 125 \,\mathrm{m}$, $\Delta r = 62.5 \,\mathrm{m}$ in the interior and a total number of $N_1 = 5\,000, N_2 = 10\,000,$ $N_3 = 20\,000$ grid points, respectively, so that the differences between high, medium and low resolution are expected to scale with $Q_1 = 2$ for first and $Q_2 = 4$ for second-order convergence. This expectation is borne out by Fig. 1 where we study the convergence of the strong peak signal generated at core bounce at $t - r_{\rm ex} \approx 38 \text{ ms}$ which dominates all our wave signals. The good agreement between the solid and dotted curves demonstrates convergence close to second order and implies a discretization error of about 6% (3%) for coarse (medium) resolution. In the simulations used for our study, we use $\Delta r = 166$ m and extend the outer grid to 9×10^5 km while

FIG. 1. Convergence of the wave signal at $r_{\rm ex} = 3 \times 10^4$ km from a typical, strongly scalarized collapse of the WH12 profile with $\Gamma_1 = 1.3$, $\Gamma_2 = 2.5$, $\Gamma_{\rm th} = 1.35$, $\alpha_0 = 10^{-4}$, $\beta_0 = -20$. The solid curve shows the difference of the coarse and medium resolution runs and is compared with that between medium and high resolution rescaled for first-order (dashed) and second-order (dotted curve) convergence factor. For reference, we show the signal $r_{\rm ex}\varphi$ in the bottom panel where the vertical dotted line at $t - r_{\rm ex} = 38$ ms marks the core bounce.

[2] S. E. Woosley and A. Heger, Phys. Rept. 442, 269 (2007).

D. Gerosa, U. Sperhake, and C. D. Ott, CQG 33, 135002 (2016).