Supplementary information for the letter: “Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity”

Ulrich Sperhake,1,2 Christopher J. Moore,1,3 Roxana Rosca,1
Michalis Agathos,1 Davide Gerosa,2 and Christian D. Ott2

1 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
2 TAPIR 350-17, Caltech, 1200 E. California Boulevard, Pasadena, California 91125, USA
3 IST-CENTRA, Departamento de Física, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

(Dated: September 30, 2017)

Code tests – In order to test the code for stellar collapse in massive scalar-tensor (ST) theory of gravity, we have repeated the convergence analysis displayed in Fig. 3 of [1] but now using a massive scalar field with \(\mu = 10^{-14} \) eV and \(\alpha_0 = 10^{-4} \) and \(\beta_0 = -20 \). We observe the same convergence between first and second order, in agreement with the first and second order schemes used in the code.

As a further test, we have evolved the 12 \(M_\odot \) zero-age-main-sequence progenitor WH12 of the catalog of realistic pre-SN models [2] for the same \(\mu, \alpha_0 \) and \(\beta_0 \), employing a uniform grid with \(\Delta r \) inside \(r = 40 \) km and logarithmically increasing grid spacing up to the outer boundary at \(1.8 \times 10^5 \) km. Convergence of \(r \phi \) extracted at \(r_{\text{ex}} = 3 \times 10^5 \) cm is tested with three different resolutions \(\Delta r_1 = 250 \) m, \(\Delta r_2 = 125 \) m, \(\Delta r = 62.5 \) m in the interior and a total number of \(N_1 = 5 \times 10^4 \), \(N_2 = 10 \times 10^4 \), \(N_3 = 20 \times 10^4 \) grid points, respectively, so that the differences between high, medium and low resolution are expected to scale with \(Q_1 = 2 \) for first and \(Q_2 = 4 \) for second-order convergence. This expectation is borne out by Fig. 1 where we study the convergence of the strong peak signal generated at core bounce at \(t - r_{\text{ex}} \approx 38 \) ms which dominates all our wave signals. The good agreement between the solid and dotted curves demonstrates convergence close to second order and implies a discretization error of about 6 \% (3 \%) for coarse (medium) resolution. In the simulations used for our study, we use \(\Delta r = 166 \) m and extend the outer grid to \(9 \times 10^5 \) km while keeping the resolution in the extraction zone unchanged.

![Convergence of wave signal](image)

FIG. 1. Convergence of the wave signal at \(r_{\text{ex}} = 3 \times 10^4 \) km from a typical, strongly scalarized collapse of the WH12 profile with \(\Gamma_1 = 1.3 \), \(\Gamma_2 = 2.5 \), \(\Gamma_{\text{bh}} = 1.35 \), \(\alpha_0 = 10^{-4} \), \(\beta_0 = -20 \). The solid curve shows the difference of the coarse and medium resolution runs and is compared with that between medium and high resolution rescaled for first-order (dashed) and second-order (dotted curve) convergence factor. For reference, we show the signal \(r_{\text{ex}} \phi \) in the bottom panel where the vertical dotted line at \(t - r_{\text{ex}} = 38 \) ms marks the core bounce.
