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ABSTRACT

We introduce a method for modeling disk galaxies designed to take full advantage of data from
integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce
the surface brightness, rotation and velocity dispersion profiles of a galaxy. The models are fully
self-consistent 6D distribution functions for a galaxy with a Sersic-profile stellar bulge, exponential
disk and parametric dark matter halo, generated by an updated version of GalactICS. By creating
realistic flux-weighted maps of the kinematic moments (flux, mean velocity and dispersion), we si-
multaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian
(MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from
the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing
parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns
broadly consistent results for shared parameters, while constraining the mass-to-light ratios of stellar
components and reproducing the H i-inferred circular velocity well beyond the limits of the SAMI
data. While the method is tailored for fitting integral field kinematic data, it can use other dynamical
constraints like central fibre dispersions and H i circular velocities, and is well-suited for modelling
galaxies with a combination of deep imaging and H i and/or optical spectra (resolved or otherwise).
Our implementation (MagRite) is computationally efficient and can generate well-resolved models and
kinematic maps in under a minute on modern processors.
Subject headings: galaxies: spiral — galaxies: structure — galaxies: fundamental parameters —

methods: data analysis

1. INTRODUCTION

The physical properties of nearby spiral galaxies are
typically derived by fitting a number of distinct com-
ponents to broadband images, either using azimuthally-
averaged 1D profiles or directly in 2D (e.g. Peng et al.
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2002; Sánchez-Janssen et al. 2016; Johnston et al. 2017).
For large surveys, common models are single Sérsic
(1968) profile fits or two-component bulge-disk decom-
positions using an exponential disk and a de Vaucouleurs
(1959) or Sérsic profile bulge (Simard et al. 2011) - appro-
priate parameterizations for galaxy disks and “classical”
dispersion-supported bulges (Gadotti 2009), respectively.
Additional features like bars, spiral arms and dust are
usually only modelled for well-resolved nearby galaxies.

Photometric bulge-disk decomposition has several ma-
jor drawbacks. Firstly, the best-fit 2D model may be
impossible to reproduce with more realistic 3D density
profiles or a 6D phase space distribution function (DF)
- a serious concern, since most nearby galaxies are dy-
namically relaxed systems close to virial equilibrium. 2D
models may be unable to produce a stable equilibrium
system, or require an unrealistic dark matter halo den-
sity profile to reproduce the rotation curve. Therefore, it
is desirable that fitting methods exclude parameter com-
binations that cannot create stable equilibrium models
consistent with the galaxy’s dynamics.

Bulge-disk decompositions can also produce ambigu-
ous results. For fits with an exponential and a Sérsic pro-
file, it is often assumed that the exponential component is
a disk, whereas the Sérsic component is a bulge; however,
the bulge can have a best-fit Sérsic index ns ≈ 1, leav-
ing only the size and ellipticity to distinguish it from the
disk. Furthermore, bulges are typically centrally concen-
trated and compact, and therefore difficult to resolve be-
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yond z > 0.05 with seeing-limited imaging (Kelvin et al.
2014).

Kinematic data can break these degeneracies, even if
spatially unresolved. A single-fibre central velocity dis-
persion can be used to infer the presence of a “clas-
sical”, dispersion-supported bulge. Similarly, an unre-
solved H i 21cm spectrum exhibiting a “double-horned”
profile traces the orbital velocity of the neutral hydrogen
gas, constraining the circular velocity at a large physical
radius and (in principle) the combination of the rotation
curve and H i surface density profile.

Integral-field spectroscopy (IFS) permits the inference
of spatially resolved rotation and dispersion profiles by
taking multiple spectra across each galaxy. Already-
completed single-target surveys include SAURON (de
Zeeuw et al. 2002), ATLAS3D (Cappellari et al. 2011),
and CALIFA (Sánchez et al. 2012, 2016) - with nearly
1,000 galaxies between them - whereas ongoing multi-
plexed surveys like SAMI (Croom et al. 2012; Bryant
et al. 2015) and MaNGa (Bundy et al. 2015) have each
observed ∼2,000 galaxies and expected to finish with
3,600/∼10,000, respectively. These datasets have enor-
mous potential to constrain fundamental galaxy proper-
ties, as illustrated in Figure 1 - particularly for multi-
component galaxies and when combined with multi-
wavelength data like deep imaging and H i spectra.

There are two major challenges in interpreting IFS
kinematic maps. First, extracting information on galaxy
kinematics requires careful modelling to account for ob-
servational and instrumental effects, particularly “beam-
smearing” - the tendency for a point-spread function
(PSF) to blur ordered rotation across a galaxy, artificially
increasing the velocity dispersion. Creating spectral dat-
acubes by stacking dithered observations has an adverse
impact on image resolution, particularly in the presence
of differential atmospheric refraction (Sharp et al. 2015;
Law et al. 2015) - an issue which can and should be
resolved by forward modelling rather than in the data
reduction process. Secondly, IFS maps may not have
sufficient spatial coverage or signal-to-noise to reach the
peak of a typical galactic rotation curve, whereas even
unresolved 21cm H i spectra can, since H i disks are typi-
cally more extended than stellar disks (e.g. Walter et al.
2008; Wang et al. 2016).

Our new modelling method is designed to resolve the
issues outlined above. We create dynamical models
from fully self-consistent phase space DFs, then gener-
ate synthetic observations of the kinematic moments to
compare with observed data. Using kinematic moment
maps allows for less ambiguous detections of dispersion-
supported bulges. Synthetic observations reproduce bi-
ases from beam smearing by the PSF/line-spread func-
tion (LSF) and pixel discretization, allowing for simul-
taneous fitting of independent datasets. Finally, since
the models are based on theoretically-motivated analytic
density profiles, they predict reasonable extrapolations
beyond the limits of the observed data - vital for es-
timating the angular momentum in extended disks (Ro-
manowsky & Fall 2012; Obreschkow & Glazebrook 2014).

Existing galaxy dynamical modelling methods include
(Schwarzschild 1979) modelling (e.g. Cappellari et al.
2006), Jeans’ modelling (as reviewed by Courteau et al.
2014), made-to-measure (Syer & Tremaine 1996) and
action-based modelling (e.g. Binney & McMillan 2011).

However, most such methods are not specifically de-
signed to perform bulge-disk decomposition (but see
Vasiliev & Athanassoula 2015) and many do not neces-
sarily produce self-consistent DFs (e.g. Trick et al. 2016,
who model the Milky Way’s disk DF including a halo
potential but no halo DF). Portail et al. (2017) fit Milky
Way data using a near-equilibrium M2M model with a
disk, halo, bulge and bar, but at a significant compu-
tational cost of 190 CPU-hours for 25 iterations. Our
method solves both problems, generating synthetic ob-
servations of near-equilibrium bulge/disk/halo models ef-
ficiently enough to fit data from large surveys like SAMI.

In §2, we describe the data sources for the sample
galaxy used in this pilot study. In §3, we describe each
step of the method in greater detail. In §4, we show
more detailed results and comparisons to 2D bulge-disk
decomposition, summarizing conclusions and outlining
future directions in §5. Three appendices detail system-
atic tests of model integration accuracy (Appendix A),
stability (Appendix B) and fit robustness (Appendix C).
Two further appendices discuss degeneracy/biases when
models fit poorly (Appendix D) and when fitting inclined
thick disks (Appendix E). Lastly, Appendix F details the
GalactICS method used to build galaxy models. Future
papers will provide fits to a larger sample of SAMI galax-
ies.

2. DATA

We choose a well-resolved, massive SAMI spiral galaxy
(G79635), with M? ≈ 1010.4M� (Taylor et al. 2011)
from broadband spectral energy distribution fits. Stel-
lar kinematics are derived using single-Gaussian, two-
moment pPXF (Cappellari & Emsellem 2004) fits to data
from the blue and red arms combined, degrading the
red arm (FWHM=1.696Å, covering the redder half of
SDSS r band) to match the blue arm’s spectral reso-
lution (2.717Å, covering the SDSS g band); see van de
Sande et al. (2017) and Fogarty et al. (2015) for details.
We create “SAMIgr” flux maps by collapsing the spec-
tral cube, masking emission and sky lines as in van de
Sande et al. (2017). Flux uncertainties include approx-
imate covariances (Sharp et al. 2015) added in quadra-
ture to the shot/read noise, along with a flat systematic
uncertainty corresponding to 10% (2.1%) of the faintest
(peak) surface brightness. The dispersion maps exclude
outliers from the best-fit radial profile. The PSF is a
Moffat (1969) ellipse with 1.83” FWHM, derived via a
ProFit (Robotham et al. 2017) fit to the reference star’s
flux map (obtained from its spectral cube exactly as for
the galaxy).
g- and r-band images are from the VST-KiDS survey

(de Jong et al. 2013, 2015), which covers GAMA (Driver
et al. 2011) and SAMI survey regions. Uncertainties are
estimated from the effective gain and local sky bright-
ness. PSFs are Moffat ellipses with 1.16” (g) and 0.54”
(r) FWHM, derived from a simultaneous ProFit fit to
39 nearby point sources. G79635 also has an H i spec-
trum from the ALFALFA (Haynes et al. 2011) α.70 data
release15.

3. METHODS

15 http://egg.astro.cornell.edu/alfalfa/data/

http://egg.astro.cornell.edu/alfalfa/data/
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Fig. 1.— An illustration of how various multi-wavelength data can constrain disk galaxy dynamics over different regions of a typical
massive spiral galaxy with an extended disk, concentrated bulge and flat rotation curve.

The method solves a non-linear optimization problem
using a parametric galaxy model, constrained by 2D
kinematic moment maps or derived quantities thereof.
First, a model phase space DF must be generated (§3.1);
second, this DF must be integrated efficiently and ac-
curately (§3.2); third, the integrated DF must be pro-
jected into a datacube (position-position-velocity) and
then into kinematic maps (§3.3). Finally, the optimiza-
tion and sampling procedure is described in §3.4. Our
implementation - dubbed MagRite - is based on C/C++
libraries with an R (R Core Team 2016) interface for
fitting.

3.1. Galaxy Models

The models are generated using an updated version
3.0 of the GalactICS (Kuijken & Dubinski 1995; Widrow
et al. 2008) galaxy initial conditions code, to be detailed
in a future paper (Dubinski et al., in prep). GalactICS
has previously been used to model surface brightness pro-
files and rotation curves of local group galaxies (Widrow
& Dubinski 2005; Widrow et al. 2008) and NGC6503
(Puglielli et al. 2010), but not 2D images/kinematic
maps. The core functions of the updated code are as de-
scribed in Widrow et al. (2008). Key differences include
the adoption of a logarithmic grid (previously linear),
and the use of GNU Scientific Library (Galassi 2009)
splines to create smooth differentiable functions for tab-
ulated DFs and multipole expansion coefficients for the
potential, both of which allow for more accurate func-
tion and derivative/integral evaluations using fewer grid
elements than in earlier versions.

GalactICS generates equilibrium DFs for galaxies with
three components:

• An exponential stellar disk with mass Md,in,

scale radius Rd and scale height zd, where ρ ∝
exp (−R/Rd)sech2(z/zd);

• A (deprojected) Sérsic profile stellar bulge with
scale velocity vb and effective radius Rb, where
ρ(r) ∝ (r/Rb)

−p exp (−bn(r/Re)
1/ns), p = 1 −

0.6097/ns + 0.05563/n2
s (Prugniel & Simien 1997),

and bn scales such that Rb is the projected half-
light radius (Graham & Driver 2005); and:

• A generalized Navarro et al. (1997, hereafter NFW)
dark matter halo with scale velocity vh, scale radius
rh, where ρ ∝ [(r/rh)α(1 + r/rh)(β−α)]−1, and α =
1, β = 3 for a “pure” NFW profile.

The minimal set of six free parameters includes a
size and mass/scale velocity per component: Rb and vb
(bulge); Rd and Md,in (disk); rh and vh (halo). Four
parameters control density profiles: ns (bulge), zd (disk
scale height), and α, β (halo); we fix β = 3 but leave
the others free. We fit the disk radial central (cylindri-
cal) radial velocity dispersion σR0, the square of which
then declines exponentially with Rd. Finally, we fix the
streaming fractions fs,b=fs,h = 0.5 (fractions of parti-
cles with positive z-axis angular momentum Lz), giving
non-rotating bulges and halos.

Any component c can be truncated at a radius rt,c with
scale length drt,c, such that ρtrunc(r) = ρnominal(r)[1 +
exp ((r − rt,c)/drt,c)]−1. Truncation is only strictly nec-
essary for the halo because the NFW profile has a di-
vergent total mass. Nonetheless, we fit the disk rt,d and
drt,d (see §4 for the implications of this choice), but fix
the bulge rt,b = 10Rb (drt,b = Rb) and halo rt,h = 50rs,h
(drt,h = 7.5rs,h). This adds an additional two free pa-
rameters to the previous nine.

GalactICS derives a DF for each spherical compo-
nent using Eddington’s formula (e.g., Binney & Tremaine
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2008) and iteratively computes corrections to an ana-
lytic DF describing the disk. GalactICS then finds a
potential/density pair for each component which is con-
sistent with these DFs. The final radial density profile
of each component only differs slightly from its original
parametrization (see Appendix F). The key differences
are that spherical components (bulge and halo) are flat-
tened slightly in response to the presence of the disk po-
tential, and that the integrated properties of components
(e.g. disk mass Md) can deviate slightly from their input
values. Although options have been recently added to
GalactICS to further correct the disk density such that
the output mass and profile match the input values more
closely, we omitted this step pending further testing of
these new features.

Despite these caveats, Appendix B shows that un-
der normal circumstances, GalactICS models begin in
near-perfect equilibrium; perturbations on the order of
a few percent result only for extreme parameter combi-
nations. More importantly, models with large Toomre
(1964) Q parameters are stable against secular evolu-
tion. While GalactICS is not restricted to generating
models with large Q - this depends mostly on the val-
ues of zd and σR0 - it can be guided to do so if neces-
sary through priors on these input parameters or on the
minimum Q value at certain radii. GalactICS also con-
verges to a near-equilibrium DF in ∼30 seconds without
expensive orbital integration - a major advantage over
Schwarzschild/made-to-measure methods and the key re-
quirement to permit Bayesian analyses of large samples
of galaxies.

3.2. Distribution Function Integration

The default GalactICS integration scheme samples the
DF using a Monte-Carlo acceptance-rejection method,
which is ideal for generating unbiased, equal-mass N-
body particle initial conditions. However, the rejection
step is inefficient unless a suitable (i.e. strictly larger
than the target distribution but only by a small margin)
approximate sampling distribution is known. Unbiased
sampling is not optimal for accurate integration over a
uniform grid, because the fractional error is not constant
but scales with density, so low-density (outer) regions
have larger relative errors than the (possibly excessively)
accurately-sampled inner regions. Lastly, stochastic in-
tegration can induce spurious variations in the likelihood
with small changes in parameter values. Evaluating the
same model with a different random sequence or even
a slightly different model with an identical random seed
can result in spurious differences in integrated quanti-
ties and the resulting model likelihoods, depending on
the number of samples. As a result, we chose to de-
velop a faster and less stochastic grid-based integration
scheme which we will now describe in greater detail. For
more detailed comparisons between these two integration
schemes, see Appendix A.

We integrate the DF in its native cylindrical coordi-
nate system and then project it rather than integrating
over projected coordinates, as is usually done for 2D sur-
face brightness profiles. For the remainder of this sec-
tion, we will use the mathematical convention where the
azimuthal angle is θ rather than the physics convention
(φ). The disk DF is parametrized as f(R, z, vR, vθ, vz).
It is independent of θ and symmetric over all axes except

vθ. The DFs of spherical components (bulge and halo)
are internally functions of energy and Lz, but are re-
parametrized as f(R, z, v) for convenience. Integrating
the model over a cylindrical grid allows for some effi-
cient optimizations, whereas integrating down the line of
sight requires repeated unique transformations at each
projected position. Rotating and projecting cylindrical
grid elements into the sky plane does present a challenge.
Doing so exactly requires computing the fraction of the
volume of a 3D tilted ring (with a fixed height) projected
within each spaxel. However, this can be roughly approx-
imated by further discretizing each annular ring into sec-
tors, and then assigning the mass within each sector to
the spaxel containing its center of mass (in projection).

The discretized disk integration grid for G79635 is
shown in Figure 2 (top-left panels). The scheme is de-
signed to create nearly equal-mass bins. The radial grid
is roughly logarithmic - each bin covers a radius con-
taining 1/NR of the total mass of an ideal, thin expo-
nential disk. The inner and outer bins are oversampled
to minimize gaps at large radii and improve accuracy
near the galactic center: 15% of the bins cover the in-
ner 0.5Rd, whereas 35% cover R > 3Rd. The bins are
staggered radially to spread them more evenly in projec-
tion. Vertically, the grid covers 0 < z < 10zd, spaced
to cover equal masses until switching to linear spacing
near the upper limit. For each R-z element, the disk DF
is integrated over all vR, vz, vθ within (〈vR〉 = 0)± 4σR,
(〈vz〉 = 0)±4σz and (〈vθ〉 ≈ vcirc)±8σθ, discretized into
equal-velocity bins. Figure 2 shows the integration grid
for a single spatial bin, including major-axis 2D projec-
tions and 1D probability distribution functions (PDFs).
Typically, the DF at most spatial coordinates in the disk
is nearly (but not exactly) a Gaussian ellipsoid.

The bulge uses similar radial divisions, such that the
inner and outer 20% of the bins contain 0.1Mbulge and
0.05Mbulge, respectively, accounting for the steep slope
in the Sérsic profile at small/large radii for large/small
values of ns, respectively. The radial grid is divided into
quadrants and then subdivided in linearly-spaced cells
along the z-axis. The bulge DF is then integrated over
all v < vesc.

3.3. Synthetic Observation Pipeline

To generate synthetic images and kinematic maps,
we use an updated version of the synthetic observation
pipeline described in Taranu et al. (2013) and ironically
named “This Is Not A Pipeline” (TINAP). We assume
an exponentially-declining star formation history for the
disk: SFR ∝ exp (−(t− t0)/τ) from t0 = 2 Gyr to
12.92 Gyr (the Universe’s age at G79635’s z = 0.04 as-
suming H0 = 70 kms−1Mpc−1, Ωm = 0.3, Ωλ = 0.7),
fitting τ−1 to avoid discontinuities at τ = 0. The bulge
is modelled as a single burst with a free formation time
tb. Both bulge and disk components have free metal-
licities (Zb and Zd, respectively). We use Maraston &
Strömbäck (2011) grids to compute M?/L in the three
bands (g, r and SAMIgr), assuming no stellar popula-
tion gradients within components. We spawn a minimum
of 8 “particles” at the central R, z of each grid bin with an
evenly-spaced distribution from 0 < θ < π/4, beginning
at a random θ (the only stochastic part of the scheme)
and duplicating particles in the seven remaining octants.

The two left panels of Figure 3 show distributions of
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Fig. 2.— Densities within selected bins of a low-resolution model grid (25 radial bins and 25kms−1 velocity bins). Left panels: Density
and mass within the model integration grid. The scheme produces roughly equal-mass bins over most of the disk. Top: Mass-weighted
velocity distribution functions for the cyan-highlighted bin in the left panels. The remaining panels show pairwise (logarithmic) densities
integrated over the third velocity axis, i.e. projections of the velocity “ellipsoid” (which is not perfectly ellipsoidal) at a given position in
the disk.
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disk particles at two fixed radii but at different heights
above/below the disk midplane, colour-coded by vLOS
(top), along with particles at different radii but fixed
heights above/below the disk midplane (bottom). Af-
ter binning particles spatially and in vLOS , every spaxel
produces its own vLOS PDF (right panel inset, Fig-
ure 3). These PDFs are 2D integrals of line-of-sight pro-
jections of the 3D velocity ellipsoids, and so kinematic
moments are sensitive to the disk’s vertical structure and
anisotropy. It is worth emphasizing that Figure 2 shows
a very coarse integration grid with just 25 radial bins,
whereas for G79635 we use 100 bins, eliminating most
discreteness effects. However, the X-shaped pattern of
gaps remains even for very fine grids. This is essentially
a Moiré pattern generated by overlaying an elliptical grid
onto a rectangular one. The effect is minimized but not
eliminated by staggering radial bins. In practice, the
patterns are small enough to be virtually invisible after
PSF convolution and could be avoided entirely with more
sophisticated schemes for gridding the model DF, which
are under development.

For stellar kinematics, vLOS cubes are convolved with
the PSF and spectral line spread function (LSF), both
of which are oversampled threefold. Finally, we measure
the kinematic moments in each spaxel, subtracting the
LSF dispersion in quadrature for the second moment.
Gaussian fits to G79635’s vLOS PDFs are indistinguish-
able from direct measurements of vLOS , σ, so we use the
latter. As discussed in Appendix C, this choice may not
be suitable for galaxies with more massive and extended
bulges, so we are investigating alternatives for future ap-
plications.

Generating synthetic kinematic maps requires nine ad-
ditional free parameters - the disk inclination and posi-
tion angle, offsets for x, y, vlos, and ages and metallicities
for the bulge and disk - bringing the total to twenty one
free parameters.

3.4. Model Fitting

Wherever possible, initial parameter estimates and
prior means are obtained from 2D ProFit fits. All priors
are assumed to be normal and broad (σ ≈ 1 dex). We
first use a robust maximum-likelihood genetic algorithm,
Covariance Matrix Adaptation - Evolutionary Strategy
(CMAES; Hansen 2006). We then perform Bayesian
MCMC using the Componentwise Hit-And-Run Monte-
Carlo (CHARM) sampler of the LaplacesDemon R pack-
age16. The likelihood function is the sum of the log-
likelihoods from each map, assuming either a chi-square
distribution for image residuals, or a sum of normally-
distributed residuals for kinematic maps with less well-
defined errors. Residuals are defined as χi = (datai −
modeli)/errori and χ2 = Σi((datai −modeli)/errori)2.
Note that although we quote reduced χ2 (χ2

red) values,
they are not used in the optimization procedure, which
instead derives likelihoods from the chosen statistics’
PDF directly (i.e. by calling the “dnorm” and “dchisq”
functions in R).

Our CMAES code is based on the R cmaes package17.
We have modified both CMAES and LaplacesDemon,

16 https://cran.r-project.org/web/packages/
LaplacesDemon/

17 https://cran.r-project.org/web/packages/cmaes/

implementing runtime limits for supercomputer queues;
these versions are available on github18,19.

4. RESULTS

The best fit for G79635 using SAMI and KiDS g + r
is shown in Figure 4. The χ2

red for all of the flux maps
is significantly above unity. However, the largest r-band
residuals clearly trace non-axisymmetric features like spi-
ral arms and inter-arm gaps, and the similarity in resid-
uals across independent data sets is encouraging, given
the systematics introduced by SAMI’s cubing procedure
and single-star flux calibration. The r-band fit is worst
simply due to its higher signal-to-noise (better seeing and
longer exposures than g).

Figure 5 shows 1D profiles azimuthally averaged over
the best-fit ProFit disk ellipse, compared to a ProFit 2D
double Sérsic r-band fit with a free bulge position angle.
The dispersion map/profile is overfit and the best-fit ro-
tation curve appears to rise slightly too steeply, as can
also be seen in Figure 4 (where the velocity map residuals
show spatial coherence). Encouragingly, the predicted
rotation curve at a fiducial radius of (3–3.4)Rd (Catinella
et al. 2007) is within 10% of the independent ALFALFA
H i W50 = (347±8)kms−1 measurement, even though the
H i data was not used in the fit and the SAMI data does
not appear to reach the peak of the rotation curve. The
lower stellar velocity could be due to asymmetric drift,
as it is not unusual for stellar disks with radial disper-
sion support to have ∼ 10% lower rotation speeds than
gaseous disks (Ciardullo et al. 2004; Martinsson et al.
2013; Brooks et al. 2017). The peak stellar velocity is also
consistent with the independent Vmax sin i = 165kms−1

circular speed derived by Cecil et al. (2016).
The fact that the observed mean stellar velocity lies

well below the circular speed curve is due to a combina-
tion of factors. First, the mean velocity within Re,disk
is decreased due to beam smearing (compare the solid
blue and dashed blue lines in Figure 5). This effect is
modest beyond the peak of the rotation curve (compare
the solid and dashed rotation curves), although it con-
tinues to boost the observed velocity dispersion by about
10kms−1. Note that estimates of the mean velocity and
dispersion are unreliable beyond about 15kpc, where the
dispersion drops well below the 60kms−1 velocity grid
resolution. Also, there is some subjectivity in how 1D
apertures are defined. We measure velocities and ve-
locity dispersions using data from spaxels within 5 and
10 degrees of the major axis, respectively. The model
projected velocity without beam smearing (dashed blue
curve in Figure 5) is measured within the same apertures
as the PSF-convolved version (solid line) and does not
take into account the fact that PSF convolution modifies
isophotes as well; however, since the 1D kinematics are
measured close to the major axis, this effect is minor.

In the inner few kpc, the mean velocity is suppressed
both because of the presence of a non-rotating bulge and
because the disk has a finite thickness, so that a large
fraction of disk stars are a significant distance away from
the disk midplane. Beyond this inner region, asymmetric
drift and the non-zero radial and vertical velocity disper-
sion of the disk continue to lower the mean velocity. Ob-

18 https://github.com/taranu/LaplacesDemon
19 https://github.com/taranu/cmaeshpc

https://cran.r-project.org/web/packages/LaplacesDemon/
https://cran.r-project.org/web/packages/LaplacesDemon/
https://cran.r-project.org/web/packages/cmaes/
https://github.com/taranu/LaplacesDemon
https://github.com/taranu/cmaeshpc
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servations suggest that it is not unusual for stellar disks
with radial dispersion support to have ∼ 10% lower ro-
tation speeds than gaseous disks (Ciardullo et al. 2004;
Martinsson et al. 2013; Brooks et al. 2017).

Despite also fitting the g-band image and SAMI kine-
matics, the MagRite best-fit model is a better fit to the
KiDS r-band image than a single-band, exponential disk
ProFit fit; ProFit only fits slightly better with a free ns
disk.

Table 1 lists best-fit values and uncertainties for
MagRite model parameters and several key derived
quantities. Posterior distributions for selected common
parameters of the MagRite and ProFit fits are shown in
Figure 6. We find that direct fits to the data yield un-
reasonably narrow PDFs, listed as σobs. in Table 1. To
test whether MagRite is the cause of this effect, we gen-
erate and fit noisy mock maps of the best-fit model (see
Appendix C for a full description of the procedure). We
find no evidence for significant bias in the best-fit param-
eter values. This form of “noise bias” can be significant
in low signal-to-noise image, as is the case in weak lens-
ing studies (e.g Bernstein & Jarvis 2002; Refregier et al.
2012). However, the parameter PDFs for fits to the mock
maps are significantly broader (Table 1) than when fit-
ting the actual data - in some cases by over two orders
of magnitude - and ProFit exhibits similar behaviour.

As Figure 4 shows, an axisymmetric disk is not a good
fit to the flux maps and cannot reproduce the spiral arm
structure evident in the KiDS images (especially in r).
In general, models that fit data poorly underestimate
uncertainties significantly, although the degree to which
this occurs does depend on the model and fit statistic.

This result is not immediately obvious and we discuss
it further in Appendix D. Our solution of fitting mock
images to obtain more realistic parameter uncertainties
is necessary but likely insufficient. That is, the σmock in
Table 1 should be interpreted as a lower bound on the
uncertainty on each parameter in the highly idealized
scenario that the galaxy is perfectly described by the
model. There is no obvious prescription for estimating
or adjusting parameter uncertainties for models that do
not fit data well.

Table 1 also lists ∆, the difference between the ProFit
and MagRite best-fit values for common parameters
(whether derived or fit directly). This can be consid-
ered as an estimate of systematic uncertainties from us-
ing two different (but still similar) modelling methods.
In all cases, |∆| is larger than sigmamock - sometimes
by more than an order of magnitude. This suggests that
systematic uncertainties dominate over statistical uncer-
tainties. Unfortunately, we are unaware of any robust
methods for incorporating systematic uncertainties into
our likelihood functions, so the only obvious solution to
this issue remains increasing the model’s flexibility until
it can reproduce the data.

Our testing demonstrates that MagRite will recover in-
put parameters correctly from idealized mock data, but
this does not guarantee realistic parameter values when
fitting real galaxies. For example, the MagRite model
has an unrealistically large disk scale height zd = 1.67kpc
and a small truncation radius rt,d = 14.0kpc as com-
pared to the scale length Rd = 6.52kpc. These values
seem to compensate for features in the data not oth-
erwise described by the model. G79635’s disk appears
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Fig. 5.— Data and 1D profiles for G79635. Clockwise from bottom-left: the SAMI dispersion and velocity maps, with a 2” diameter
aperture (green); the SAMI spectrum within this aperture, with emission lines excluded from the fit shaded in gray; the ALFALFA H i
spectrum; RGB image using KiDS g- and r-band images, overlaid with SAMI coverage (green). Center: azimuthally-averaged, spline-fit
1D profiles (dotted lines) for the first three kinematic moments (KiDS r-band surface brightness - gray/black; velocity - blue; velocity
dispersion - red), along with 1-σ uncertainties (shaded). Also shown are best-fit MagRite (thick solid lines) and ProFit 2D double Sérsic
r-band fits (dotted lines), split between bulge (orange), disk (green), and total (purple). Note that velocities are as observed and not
inclination-corrected, i.e. v ≈ vcirc sin (i), where vcirc is the circular velocity and i is the disk inclination. The best-fit MagRite model
vcirc sin (i) (dot-dashed dark blue line) lies well above the observed rotation curve, illustrating the combined effects of beam smearing,
asymmetric drift and a thick disk.

steeper than exponential, and the best-fit ProFit disk
ns ≈ 0.8 (Figure 5). The small truncation radius steep-
ens the MagRite surface brightness profile at large radii,
whereas the large scale height lowers the surface bright-
ness along the minor axis from the galaxy center - pre-
cisely where there are two under-dense inter-arm gaps.
A model with azimuthal variations and a more general
Sérsic or broken-exponential disk profile might prefer a
thinner, non-truncated disk. Having said that, Muñoz-
Mateos et al. (2013) fit broken exponential profiles to
Spitzer 3.6µm imaging of nearly face-on disks and found
a typical break radius at 2.3± 0.9 inner scale lengths, so
the truncation radius is not unreasonable for a Type II
(Freeman 1970, truncated, as per) disk.

The disk mass is also considerably higher than the total
stellar mass estimated by Taylor et al. (2011) from fits to
photometry alone. G79635 has a rather large estimated
H i mass of 1010.22M�, so it is possible that our larger
disk mass is compensating for the contribution of the
gas disk to the rotation curve. This could also be the
cause of the slight under-prediction of the rotation curve
at large radii, if it is not due to asymmetric drift. In
practice, a more flexible and better-fitting stellar mass
model would likely allow the halo parameters to vary
more to compensate for such inconsistencies.

The best-fit disk metallicity is quite low

(log 10(Zd/Z�) < −0.5) for such a massive disk,
whereas the bulge metallicity reaches the ceiling
of the Maraston & Strömbäck (2011) model grids
(log 10(Zb/Z�) = 0.3). By contrast, the disk is fairly
old, with a short τ = 2.06 Gyr, while the bulge has a
moderate age of 5.92 Gyr. The observed galaxy colours
cannot be reproduced by such a relatively simple model;
in particular, the galaxy center is redder than the model,
and the outskirts are significantly bluer, both by about
0.2 in g − r and with a fairly sharp transition rather
than a smooth gradient. Additional model complexity
(especially dust reddening and stellar population gradi-
ents) is necessary to fully reproduce galaxy colours, and
full spectral modelling would be ideal. However, it is
worth noting that systematic differences in the inferred
stellar masses of GAMA galaxies (including the SAMI
sample) can be as large as 0.2 dex depending largely
on the treatment of star formation histories and dust
(Wright et al. 2017), even neglecting possible variations
in the initial mass function. There are also significant
differences between stellar population models, stellar
spectral libraries and isochrones which preclude making
accurate estimates of stellar mass-to-light ratios even
given a star formation history and it is unclear how one
might estimate the magnitude of such effects for a given
galaxy.
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TABLE 1
Best-fit G79635 MagRite Parameters

Fitted Parameters

Name unit 1log mean σobs. σmock
2∆

Md,in
3Msim Y 1.604 8.76e-5 1.33e-3

Rd kpc Y 8.141e-1 2.62e-5 9.85e-4
zd kpc Y 2.224e-1 1.83e-4 8.08e-3
rt,d kpc Y 1.146 2.07e-4 1.67e-3
drt,d kpc Y 7.065e-1 3.56e-4 5.26e-3
σR0

4vsim Y -1.281e-1 2.93e-4 2.44e-2
vb

√
vsim N 1.020e-2 1.80e-4 1.92e-3

Rb kpc N -2.899e-1 1.01e-4 7.35e-3 -3.62e-2
ns N/A Y -9.970e-2 9.79e-4 2.45e-2 1.82e-1
vh

√
vsim Y 2.693e-1 6.41e-5 1.82e-3

rh kpc Y 8.051e-1 3.17e-4 1.47e-2
α N/A N 9.845e-1 1.57e-4 2.31e-2
τ−1 Gyr−1 N 4.851e-1 1.36e-3 6.62e-3
tb Gyr Y 8.450e-1 1.19e-3 8.55e-3
Zd Z/Z� Y -5.170e-1 1.75e-3 7.19e-3
Zb Z/Z� N 3.000e-1 8.17e-5 8.83e-3

P.A. rad. N 8.059e-1 2.72e-4 2.08e-3 -3.26e-3
sin (i) rad. N 8.160e-1 1.55e-4 1.65e-3 2.09e-2
Xoff kpc N 3.732e-2 4.32e-4 5.81e-3 5.11e-2
Yoff kpc N 1.513e-2 9.68e-4 5.89e-3 5.91e-2
Vz,off kms−1 Y -1.547e-1 3.47e-1 3.55e-1

Derived Parameters

Name unit 1log mean σobs. σmock
2∆

5Md M� N 10.72 1.43e-4 1.38e-3
Mb M� N 9.126 6.93e-4 1.07e-2

(M/Lg)d (M/Lg)� N 2.726 1.47e-3 1.18e-2
(M/Lr)d (M/Lr)� Y 2.213 8.60e-4 7.42e-3
(M/Lg)b (M/Lg)� N 3.745 1.18e-2 8.79e-2
(M/Lr)b (M/Lr)� N 2.581 7.44e-3 5.42e-2

Ld L�,r Y 10.38 1.54e-4 8.76e-4 4.46e-3
Lb L�,r Y 8.715 9.91e-4 7.58e-3 2.99e-2

4Re,d kpc Y 0.9365 8.82e-5 1.10e-3 7.10e-3
Mh M� Y 11.81 3.03e-4 3.33e-2

Note. — Fitted parameters are listed as fit internally by
MagRite, whereas derived parameters are measured during or after
model generation.
1 Values listed as log 10(value unit−1)
2∆: MagRite value less ProFit value (where applicable), where the
ProFit model has a thin Sérsic disk sharing its position angle with
the bulge.
3 Msim=2.3245e9 M�
4 vsim=100 kms−1

5 Directly measured model half-light radius, accounting for trun-
cation

One potential general solution to limit parameter bias
is to introduce stricter priors on model parameters based
on external data. Disk scale height distributions can
be constrained from independent observations of edge-on
disks, and dust extinction can be estimated from Balmer
line decrements. Ultimately, the best solution is to im-
prove the model itself, which would permit quantifica-
tion of such biases. Such improvements are planned for
MagRite but are not necessary to implement the method
itself. For the moment, we advise caution when inter-
preting uncertainties from models that do not adequately
reproduce known or clearly visible features in the data.
This particular galaxy is well-resolved compared to aver-
age SAMI galaxies (although not uniquely so); these is-
sues are less pronounced when fitting lower-quality data.
However, as the recent public release of Subaru Hyper
Suprime-Cam data (Aihara et al. 2017) shows, high-
quality, deep ground-based imaging is rapidly becoming
available for large galaxy surveys - even in the south-
ern sky (Keller et al. 2007) - and so this issue cannot be

ignored for much longer.

5. CONCLUSIONS

We have outlined a method for kinematic bulge-disk
decomposition using self-consistent, DF-based dynamical
models. The method can be used to model any combina-
tion of data, including deep optimal images and 1D/2D
kinematic constraints. Our GalactICS-based implemen-
tation (MagRite) is efficient enough (∼1-2 minutes per
model on modern CPUs) to fit deep KiDS images and
SAMI kinematic maps (Figure 5), exactly as conceptu-
alized in Figure 1.

We have fit a well-resolved SAMI/GAMA galaxy
G79635, showing that the best-fit parameters and pos-
teriors are largely consistent with ProFit 2D decomposi-
tions and with the independent H i W50 constraint. This
suggests that MagRite can extrapolate reasonable rota-
tion curves even without IFS data reaching the peak of a
galaxy’s rotation curve - a crucial requirement for accu-
rate stellar mass and angular momentum estimates. In
the provided appendices, we demonstrate that MagRite
can fit synthetic model data with minimal biases. How-
ever, we caution that fits to real data are not immune
to biases, particularly in the presence of significant non-
axisymmetric features. Furthermore, we showed that
poorly-fitting models can seriously underestimate param-
eter uncertainties by yielding artificially narrow poste-
rior PDFs. This can be mitigated but not corrected by
estimating uncertainties from mock observations of the
best-fit model.

Our example galaxy was selected as a well-resolved,
fairly passive spiral galaxy with an HI detection, but
there are many more SAMI galaxies with similar quality
data. The KiDS images are good enough to constrain the
bulge fraction in G79635 to at most a few percent and
clearly show deviations from our idealized models, which
assume axisymmetric, exponential disks and simple star
formation histories for each component. We therefore
demonstrate that data quality is not the main impedi-
ment to improved, physical modelling of galaxies, but the
models themselves. G79635’s azimuthally-averaged disk
profile can be reproduced with a combination of an un-
usually thick and smoothly-truncated exponential disk,
but would be better fit with a Sérsic or non-parametric
profile disk including perturbations from spiral arms.

One shortcoming of the method using kinematic mo-
ment maps is that these must be derived independently;
nonetheless, the method can be generalized to fit spec-
tral datacubes directly (e.g. Tabor et al. 2017) and we
plan to implement this functionality within MagRite.
Additional model features like spiral arms, dust at-
tenuation/scattering (Pastrav et al. 2013) and more
flexible/non-parametric density profiles are longer-term
ambitions. MagRite is under active development and
will be released in the near future, alongside early re-
sults from a larger SAMI sample. Parties interested in
testing the code or contributing to future development
are encouraged to contact the authors.

6. ACKNOWLEDGEMENTS

This research was conducted by the Australian
Research Council Centre of Excellence for All-sky
Astrophysics (CAASTRO), through project number



Self-consistent IFS galaxy modelling 11

CE110001020. This work was supported by the Flag-
ship Allocation Scheme of the NCI National Facility
at the ANU. The SAMI Galaxy Survey is based on
observations made at the Anglo-Australian Telescope.
The Sydney-AAO Multi-object Integral field spectro-
graph (SAMI) was developed jointly by the University
of Sydney and the Australian Astronomical Observa-
tory. The SAMI input catalogue is based on data taken
from the Sloan Digital Sky Survey, the GAMA Sur-
vey and the VST-ATLAS Survey. The SAMI Galaxy
Survey is funded by CAASTRO and other participat-
ing institutions. The SAMI Galaxy Survey website is
http://sami-survey.org/. DST acknowledges sup-
port from a 2016 University of Western Australia Re-
search Collaboration Award. BC acknowledges support
from the Australian Research Council’s Future Fellow-
ship (FT120100660) funding scheme.

APPENDIX

A. INTEGRATION SCHEME COMPARISON

To test the accuracy and speed of the DF integra-
tion scheme described in §3.2 and §3.3, we generate syn-
thetic maps using our method and also from a high-
resolution GalactICS model with 20M/0.4M disk/bulge
particles, respectively. Figure 7 shows maps and resid-
uals generated using the best-fit model parameters for
G79635 with both of these integration schemes. De-
spite the large number of particles, the MC (N-body)
maps are still shot-noise limited near the outskirts of the
disk. Furthermore, sampling this many particles takes
nearly 10 minutes on freq a modern test machine (In-
tel i5-4690 at 3.50GHz). Each accepted particle requires
just over three proposal on average, meaning that nearly
70% of the computing time is effectively wasted eval-
uating rejected proposals. By contrast, the grid-based
integration method takes under a minute and generates
smoother, noise-free maps which are virtually indistin-
guishable from the unbiased N-body maps near the well-
sampled galaxy center. This is accomplished mainly by
making fewer calls to the expensive DF evaluation meth-
ods, effectively spawning dozens to hundreds of particles
per DF sample.

As discussed in §3.3, our grid-based integration scheme
is not entirely ideal. Placing evenly-distributed samples
at the center of each bin is computationally efficient, but
requires a random angular offset in θ to generate smooth
maps - otherwise, the model images would have bright
“spokes” at the sampled angles θ and artificial gaps be-
tween them. Similarly, binning evenly-spaced ellipses
onto a rectangular grid creates Moiré-like artifacts, ap-
parent as an X-shaped residual in Figure 7. These issues
could be resolved by distributing DF samples over the
projected areas of elliptical rings, rather than as points
binned onto a rectangular grid. In principle, this would
also need to be done in 3D, i.e. by generating rings
corresponding to the top of one bin and the bottom of
the next. These would be fairly inexpensive calculations
compared to the other steps in model integration, but
are somewhat complex and would be unlikely to change
the PSF-convolved model maps significantly, so they are
left to future revisions of MagRite.

One measurable impact of the integration scheme is
the change in model likelihoods through stochasticity.

To test this, we generate a series of maps for the best-fit
model, varying only the random seed used to generate
the angular offsets in θ. For the r-band KiDS image, the
χ2 value varies by about 40 from different seeds. This
is an insignificant difference for a well-fitting model but
highly significant for one with a large χ2

red, as discussed
in Appendix D. To minimize the impact of this issue, we
keep the random seed fixed for all fits.

B. MODEL STABILITY TEST

To test the long-term stability of the model, we gen-
erated N-body initial conditions with GalactICS, sam-
pling the disk/bulge/halo with 5M/0.1M/5M particles
and using softening lengths of 50/50/150 pc, respectively.
We ran the model for 1 Gyr with PARTREE (Dubinski
1996), using a fixed 0.196Myr timestep and opening an-
gle of 0.8. Figure 8 shows the resulting maps from the
evolved galaxy compared to the initial conditions. There
is evidence of relaxation of the system, with the evolved
model having lower central density and velocity disper-
sion and a shallower rotation curve.

The evolution of this model is not representative of
typical GalactICS model. As discussed in §4, the best-fit
model has an unusually large disk scale height and small
truncation radius. The initial virial ratio q = −2T/W ,
where T and W are the total kinetic and potential en-
ergy, respectively, is q = 1.00275. While the deviation
from unity is not large, the total energy of the system is
dominated by the dark matter halo (with nearly 90% of
the mass), so the stellar component is likely out of equi-
librium by a few percent. Accordingly, the virial ratio
drops below unity by a similar factor and shows damped
oscillations before reaching a new equilibrium.

We adjust the model to have a thinner disk (zd = 1kpc)
and much larger truncation radius (rt,d = 8rd) with the
same disk mass. This model shows virtually no evolu-
tion outside of the inner 200 pc, where there is a modest
depression in the central density and velocity dispersion.
We conclude that while the disk truncation parameters
and scale height can in principle mimic a non-exponential
(ns < 1) disk, adjusting them beyond GalactICS lim-
its can produce unstable models and should be avoided.
This could be accomplished without running simulations
simply by placing stronger priors model parameters or
on output diagnostics like the virial ratio, but further
testing is needed to determine guidelines for these limits.

C. MODEL FITTING TEST

We test the code’s ability to recover model parameters
by fitting synthetic maps generated by MagRite, a pro-
cess that is . We assume shot noise-dominated errors for
the flux maps, given a gain and mean sky brightness in
counts per pixel. The higher-order SAMI moment maps
require some simplifying assumptions. Kinematic con-
straints originate mainly from stellar absorption lines,
which only cover a small fraction of typical spectra. We
parameterize this effect with a simple “kinematic gain”
ratio gk,eff , which is roughly the ratio of the sum of the
equivalent widths of all absorption lines to the full wave-
length range. We generate a noisy flux-weighted vLOS
DF for each spaxel, where the counts in each bin are
multiplied by gk,eff , and fit a Gaussian to extract the
mean velocity and dispersion. Finally, we re-use the ex-

http://sami-survey.org/
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Fig. 7.— Comparison between maps from grid-based and Monte Carlo integration using 20M/0.4M disk/bulge particles, respectively.
The residuals are shown on an absolute scale (MagRite - N-body) and as a ratio relative to the smoother MagRite map. The large relative
velocity residuals along the minor axis are due to the small absolute value of the velocity; absolute differences are small.
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isting masks and also the velocity and dispersion error
maps for consistency with the original fits. We also ad-
just gk,eff until the noise in the velocity/dispersion maps
is roughly consistent with the original errors.

Figure 9 shows synthetic noisy maps for G79635 us-
ing gk,eff = 0.02. As expected, the flux maps are com-
pletely consistent with (nearly) Normal shot noise and
have χ2

red ≈ 1. However, the noise in the vLOS and σ
maps is not entirely identical to that from the original
SAMI maps, being slightly over- and under-estimated,
respectively. This not surprising, given the non-linear
nature of kinematic fits, but the mock kinematics still
appear consistent with random noise without any obvi-
ous systematic bias and are usable as data for a mock
fit. The possibly conservative choice of gk,eff = 0.02 is
motivated by the need to keep this noise consistent with
the SAMI error maps; larger values lead to excessively
smooth kinematic maps. When fitting, we continue to
use directly-measured velocity moments in the model,
rather than the Gaussian fits used for both the mock and
real data. This is because fitting vLOS requires some es-
timate of the uncertainty of the vLOS DF in each spaxel,
and it is not clear what this uncertainty should be in a
noiseless model. Since G79635 has a very modest bulge,
there is little difference between the two measurements;
however, this may not be the case in galaxies with more
massive and extended bulges, where this issue would be
worth revisiting.

Figure 10 shows posterior distributions for a MagRite
fit to the mock data shown in Figure 9. Reassuringly,
the best-fit parameters are close to the inputs, with small
deviations well within the 1σ uncertainties. Small offsets
are expected given the noise and the difference between
directly measured and fitted kinematics, but there are
no significant systematic biases. This is not to say that
fits to real data will be devoid of biases - this simply
verifies that MagRite recovers unbiased parameters when
the data are perfectly described by the model.

One possible concern is that there is still some noise
in the model probabilities themselves - when colored by
log probability, the points do not show smooth gradi-
ents in posterior probability from the maximum likeli-
hood solution. This is especially true for the fits to the
observed data, which is unfortunately not clearly visible
in Figure 10 because the posteriors are so narrow. This is
likely due to the issues with model integration outlined
in Appendix A. The main practical effect of a slightly
stochastic model likelihood is that convergence to the
best-fit solution can be slow, as the solution wanders be-
tween entirely artificial local maxima. This problem is
exacerbated when the best-fit model is a poor fit, since
even extremely small changes in input parameters can
cause spurious changes in the model likelihood. Fortu-
nately, since the actual changes in parameter values tend
to be small, the impact on the posteriors from mock fits
is minimal.

Since poorly-fitting models tend to vastly underpre-
dict parameter uncertainties (for reasons detailed in Ap-
pendix D below), we suggest that uncertainties from
mock fits should be considered lower bounds on the
“true” parameter uncertainties. Again, this does not
guarantee that there are no biases in the best-fit param-
eters themselves, so caution must be taken in defining
priors and interpreting best-fit values in such cases. Sim-

ilarly, since the mock data are idealized, they should only
be interpreted as lower limits until further testing is done
to quantify the impact of deviations from the assumed
model parameterizations, which are necessarily present
in all galaxies.

D. PARAMETER UNCERTAINTIES FROM
POORLY-FITTING MODELS

It is not necessarily intuitive that poorly-fitting models
can or should yield systematically smaller uncertainties
than good models. Nonetheless, it is a natural conse-
quence of the shape of some common statistical distribu-
tions. The difference in log-likelihood (∆LL) between an
n- and (n+ 1)-σ deviation from a univariate Normal dis-
tribution is −(n + 0.5). The difference between 10- and
11-σ deviations is then much more significant than that
between 2- and 3-σ deviations, simply because the log of
the PDF of a Normal distribution declines as x−2/2σ.

For a more practical example, the KiDS r-band im-
age for G79635 has 25961 usable data points (unmasked
pixels). Using the chi-square distribution with 25961
degrees of freedom as the fit statistic20, the maximum
likelihood solution for an ideal model has χ2=25959.
A three-σ deviation from a univariate Normal distri-
bution (i.e. for a Gaussian parameter posterior) has
a log-likelihood 4.5 lower than the peak. The equiva-
lent range of likelihoods for the given χ2 distribution is
χ2 = [25281.4, 26648.6], i.e. ∆χ2 = [−677.6,−689.6] or
χ2
red = 0.974, 1.026. However, the best-fit model was

only able to achieve χ2 = 1.677e3 for the r-band image,
or χ2

red = 6.46. An increase in χ2 of just 10.6 produces
a ∆LL = −4.5, so the range of acceptable χ2 shrinks
by a factor of approximately χ2

red. Accordingly, the pos-
terior parameter PDFs shrink by a comparable margin,
depending on the linearity of the model. For a large num-
ber of degrees of freedom, this behaviour approaches that
of a Normal distribution.

Finally, we note that overfitting is strongly disfavoured
by the χ2 statistic - a desirable feature for data with reli-
able errors, as in images dominated by shot noise from a
large number of counts. For lower signal-to-noise and/or
where other terms like read noise are important, Poisson
statistics or the so-called Cash (1979) statistic should be
used.

E. THICK DISK SURFACE BRIGHTNESS
PROFILE FITS

As discussed in §4, the best-fit MagRite model has an
unusually large disk scale height of 1.67 kpc. We have run
a number of tests by modifying ProFit to fit a thick disk
with a sech2 vertical profile using a similar integration
scheme as described in §3.2. We superpose thirty Sérsic
disks above and below the disk midplane by shifting the
profile center along the minor axis, weighting each disk
by the total mass within each vertical bin. This is not
the most efficient integration method for a 3D density
profile and has limited accuracy for highly inclined thick
disks, but it is analogous to the MagRite method and
ideal for model comparisons.

20 We neglect model parameters in the effective degrees of free-
dom, as the number of model parameters in non-linear models is
poorly defined (Andrae et al. 2010).
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Fig. 9.— Mock G79635 maps with realistic shot noise. The kinematic maps are derived from Gaussian fits to noisy vlos DFs and therefore
do not necessarily follow Poisson or (approximately) Normal statistics.

The results of fitting thick disk profiles to G79635’s
r-band image are shown in Figure 11. Firstly, fitting a
thick exponential disk (second row/column) significantly
improves the residuals over a thin exponential. The im-
provement is seen largely in the two under-dense regions
between the galaxy center and spiral arms (roughly NNE
and SSW from the galaxy center). However, the thin
Sérsic disk achieves similar improvements without sig-
nificantly worsening the residuals anywhere else in the
disk. Thus, it is clear that a thick disk can compensate
for deviations from a pure exponential disk, but not nec-
essarily as well as by simply modifying the radial profile.
Unfortunately, the best-fit ProFit disk thicknesses are
unrealistically large - 4.83 kpc for the exponential disk
and 2.35 for the Sérsic disk.

Figure 12 shows posterior distribution from ProFit r-
band fits to mock data using the same input parameters.
The “Thick” model shows the same chains as in Figure 6,
where the mock data was generated with a more plau-
sible scale height zd = 0.1Re,d/1.67835 (equivalent to
0.1Rd for an exponential disk), and with the other best-
fit parameters taken from the best thin disk fit. A second
fit was run on mock data with clipped residuals added
back in. Specifically, after generating the PSF-convolved
model image, we add χσtanh(abs(χ/1.25))30, where σ
is the per-pixel uncertainty. The tanh scaling smoothly
truncates residuals below 2σ, so the disk more closely
follows a Sérsic profile. Because overdensities like spiral
arms and star-forming regions tend to be more signifi-
cant than underdensities, the residuals have a small net
positive flux of slightly under one percent of the disk lu-
minosity, which is reflected in a small positive bias in disk

luminosity in Figure 12 compared to the input parame-
ters. The size and Sérsic index are somewhat biased, but
the scale height and axis ratio are significantly over- and
under-estimated, respectively, indicating that structured
residuals with a small net flux can severely bias poorly-
constrained and/or degenerate parameters even when the
model is a reasonable approximation to the data.

The fact that scale height and inclination are highly
degenerate is not surprising - if the disk’s vertical den-
sity profile is the same as its radial profile, then the
scale height and inclination will be completely degen-
erate. Using a sech2 vertical density profile rather than
exponential limits but does not prevent this degeneracy.
MagRite achieves a tighter constraint on the inclination
by fitting the velocity map. Of course, the mass model
also modifies the rotation curve, but the stellar mass is
independently constrained by the flux maps. Unfortu-
nately, the kinematic constraints on the disk scale height
itself are weak. In principle, the disk dispersion is re-
lated to the disk’s vertical structure, but this is (mostly)
independently parameterized in GalactICS by σR0, and
SAMI’s spectral resolution is not fine enough to measure
typical disk dispersions anyway. Thus, there is insuffi-
cient data to guarantee an accurate best-fit scale height,
and a strong prior based on observations of edge-on disks
should be used in practice.

F. SUMMARY OF THE GALACTICS METHOD

We provide a brief description of the methods used by
GalactICS to generate DFs for composite galaxy models
containing any number of disk-like and spherical compo-
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Fig. 12.— Triangle plot showing joint posterior parameter distributions (L ≡ log 10(Lr/L�), Re ≡ log 10(Re/kpc), n ≡ log 10(ns),
zs ≡ log 10(zd/kpc), and where q is the disk axis ratio) for ProFit r-band Sérsic disk fits to mock data, with and without including clipped
residuals from the best-fit model. Panels are structured as in Figure 6. The fit to the mock data with clipped residuals (“Thick+Resid.”)
has smaller uncertainties and is also significantly biased, particularly for the scale height and inclination. The magnitude bias is due to the
small net positive flux of the residuals. For clarity, points in the upper-left quadrant are thinned by a factor of 5 and 10 for the “Thick
Mock” and “Thick+Resid.” samples, respectively.
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nents composed of stars, dark matter and gas (Kuijken &
Dubinski 1995; Widrow & Dubinski 2005; Widrow et al.
2008). We use the Binney & Tremaine (2008) conven-
tion for defining the cylindrical radius as uppercase R
and spherical radius as lowercase r below, as well as the
physics/ISO 80000 convention of θ for the polar angle
and ψ for the azimuthal angle (in contrast with §3.2. We
also use the relative binding energy E ≡ E and relative
potential Ψ ≡ −Φ where E = Ψ − v2/2 and v is the
velocity (such that v2/2 is the specific kinetic energy).

A galaxy model is defined parametrically by mass pro-
files for each collisionless component. Stellar bulges and
dark matter halos are defined by spherical models de-
scribed by a radial profile ρ(r). For example, we use the
3D deprojected Sersic profile (Prugniel & Simien 1997)
to describe the bulge, given by:

ρb(r) = ρ0

(
r

Re

)−p
exp[−bn(r/Re)

1/ns ], (F1)

where the parameter are a characteristic density ρ0, the
projected half-mass radius Re, and the the Sersic index
ns. The two parameters bn and p are structural quan-
tities depending on ns. They are well-approximated by
the formulae:

p= 1− 0.6097/ns + 0.05563/n2
s (F2)

b= 2ns − 1/3 + 0.009876/ns (F3)

for 0.6 < ns < 10 and 10−2 < R/Re < 103 (Terzić &
Graham 2005).

There are numerous options for halo profiles depending
on one’s theoretical bias, including profiles with constant
density cores or power-law cusps (Merritt et al. 2006). In
this paper, we use a double power-law model to describe
the halo:

ρh(r) = ρs

(
r

rs

)−α(
1 +

r

rs

)α−β
(F4)

where (α, β) = (1, 3) is the NFW profile and (α, β) =
(1, 4) is the Hernquist (1990) profile; such double power-
law models are sometimes referred to as generalized
NFW or Hernquist profiles.

Disks are flat axisymmetric models and are approxi-
mated by the density law:

ρd(R, z) =
Md

4πR2
dzd

exp(−R/Rd)sech2(z/zd) (F5)

(van der Kruit & Searle 1981). We emphasize that this is
not the exact disk density but rather a close approxima-
tion to the final density law derived in the computation
of the disk distribution function defined below.

Finally, we force the density of each component to
smoothly approach zero by multiplying each profile by
a truncation function. We truncate density laws using a
logistic function defined by:

T (t) = (1 + et)−1, (F6)

with
t =

r − rt
δrt

, (F7)

where rt is the truncation radius and δrt is the radial
width of the truncation interval. Equation F6 is a simple
representation of a smooth step function chosen for its
computational efficiency and continuous derivatives.

The method computes an axisymmetric DF for the sys-
tem of the form:

f(E , Lz, Ez) = fd(E , Lz, Ez) + fb(E) + fh(E) (F8)

where E is the relative binding energy E ≡ −E, Lz is
the z-component of angular momentum and Ez is the z
energy defined below. The bulge and halo are functions
of energy alone and so are modelled as spherical isotropic
systems. The disk DF is defined as a function of three
integrals of motion. The first two are the usual energy
and z-component of angular momentum for axisymmet-
ric systems but we introduce a third approximate integral
Ez = Ψz−v2

z/2 where Ψz is the vertical potential defined
as Ψz ≡ Ψ(R, z) − Ψ(R, z = 0), where Ψ is the relative
gravitational potential of the system Ψ = −Φ.

With these various definitions in hand, we can de-
scribe a numerical procedure for computing the compo-
nent DFs. First consider a purely spherical system com-
posed of multiple components – we will consider modifi-
cations when including a thin disk component later. The
construction of an isotropic DF f(E) from a potential-
density pair can be accomplished using Eddington’s for-
mula (e.g., Binney & Tremaine 2008)

f(E) =
1√
8π2

[∫ E
0

dΨ√
E −Ψ

d2ρ

dΨ2
+

1√
E

(
dρ

dΨ

)
Ψ=0

]
.

(F9)
For a system of total density ρ(r), we can compute the
total potential using the integral expression:

Ψ(r) = 4πG

[
1

r

∫ r

0

dr′r′2ρ(r′) +

∫ ∞
r

dr′r′ρ(r′)

]
(F10)

To use the Eddington formula, one needs to determine
the function ρ(Ψ) and its derivatives up to second order.
In general, it is difficult to find an analytic solution so
we use the following numerical method. We first define a
grid with n radial positions equally spaced in logarithmic
space defined by:

ui = log ri/r0 (F11)

where r0 is a reference radius and ri is the grid point
radius for i = 1..n. With this transformation, we can
compute the potential at the grid positions ui as:

Ψ(ui) = 4πGr2
0×[

e−ui

∫ ui

−∞
du′e3u′

ρ(u′) +

∫ ∞
ui

du′e2u′
ρ(u′)

]
. (F12)

In practice, the infinite limits for the inner and outer in-
tegrals can be replaced with the initial and final points of
the logarithmic grid u1 and un without loss of accuracy.
The inner integral is just the mass versus radius and this
becomes insignificant if the inner most radius is suffi-
ciently small. For the outer integral, since the density
drops to zero at a finite radius defined by the truncation
function there is no need to integrate beyond this point.
Accurate and stable numerical solutions are achievable
with 200 grid spacings per dex, making the new method
much faster.

The integral in Eddington’s formula can be solved nu-
merically by creating a tabulated function of density ρ
for each of the model functions versus the total Ψ on
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the logarithmic radial grid. We use the interpolation
modules in the GNU science library (GSL) to create a
splined function for ρ(Ψ) and its first and second deriva-
tives. We can then solve the integral in the Eddington’s
formula numerically to determine a DF for each spherical
component independently. The DF is also determined as
tabulated function by finding f for each value of E = Ψ
on the radial grid.

To incorporate the disk component in this scheme, we
use the ad hoc method introduced by Widrow & Dubinski
(2005). The disk density law of equation is spherically
averaged to create an additional spherical density com-
ponent that is part of the total potential. The individual
DF’s computed from the scheme above then include a
good approximation of the disk potential in their deriva-
tion. We see below that when we include the flattened
disk, the spherical density profiles of the bulge and halo
that are consistent with their DF’s are modified slightly
from the ideal spherical case but remain close to the orig-
inal definition.

We now consider the construction of the disk DF. Kui-
jken & Dubinski (1995, ,hereafter KD95) introduced this
DF to describe the disk:

fd(Ep, Lz, Ez) =
Ω(Rc)

(2π)3/2κ(Rc)

ρ̃d(Rc)

σ̃2
R(Rc)σ̃z(Rc)

×

exp

[
−Ep − Ec(Rc)

σ̃2
R(Rc)

− Ez
σ̃2
z(Rc)

]
(F13)

where Ep = E−Ez is the energy in planar motions, Lz is
the z-component of angular momentum, Rc and Ec are
the radius and energy of the circular orbit with angular
momentum Lz, and Ω and κ are the circular orbital and
radial frequencies derived from the total potential. As
shown in KD95, one can obtain the density by integrating
over velocities and the resulting density in the plane is
ρ̃d(R) with fractional errors O(σ̃2

R/v
2
c ).

The disk density can be obtained by integrating the
disk DF over the velocities and the result generates a
midplane disk density equal to ρ̃d(R) plus fractional
terms of O(σ̃2

R/v
2
c ). By construction, this disk DF works

best for cool, thin disks where the epicyclic approxi-
mation is valid for disk star orbits though warmer and
thicker disks are still good equilibria in practice (see Ap-
pendix B).

The goal is to find a set of “tilde” functions in the
disk DF ρ̃, σ̃R and σ̃z that closely approximate the disk
density in equation F5. To this end, we use the density
law:

ρd(R, z) =
Md

4πR2
dzd

e−R/Rd×

exp

[
C1

Ψz(R, z)

Ψz(R,C0zd)

]
T

(
r − rt
δrt

)
. (F14)

The constants C0 and C1 = ln sech2(C0) are chosen so
that the run of vertical density of the disk at a given
radius R approximates sech2(z/zd). In practice, a good
choice is C0 = 3 corresponding to equivalence of the ver-
tical density at 3 scale-heights for the target density of
equation F5 and this disk density.

At this point, we have built a DF for each component
with the density defined in terms of the total potential

Ψ(R, z). To achieve self-consistency, one needs to solve
for the total potential:

∇2Ψ(R, z) = −4πG[ρd(R,Ψ,Ψz) + ρb(Ψ) + ρh(Ψ)]
(F15)

As in KD95, we use the iterative method of Prender-
gast & Tomer (1970) to find a numerical solution. The
method proceeds by making an initial guess of the po-
tential Ψ, computing the densities on the right side of
equation F15 and then re-solving for Ψ. This process is
iterated until Ψ relaxes to a solution. In practice, we
use a multipole expansion of Ψ in spherical coordinates
(r, cos θ) with the radius defined on the logarithmic grid.
For an axisymmetric system, we can write the potential
on the logarithmic radial grid as the multipole expansion:

Ψ(r, θ) = 4πGr2
0

∞∑
l=0

Pl(cos θ)

2l + 1
×(

e−(l+1)u

∫ u

−∞
du e(l+3)ual(u) + elu

∫ ∞
u

du e(2−l)ual(u)

)
(F16)

where u = log(r/r0) and the functions al(u) are given by

al(u) =

∫
sin θ dθPl(cos θ)ρ(u, θ) (F17)

(e.g., Binney & Tremaine 2008). We can replace the infi-
nite limits by the end points of the grid as before without
losing accuracy. We use convergence of the “tidal” radius
of the total density within some error tolerance to stop
the iteration. The tidal radius is just the finite radius
where the total density drops to zero for the model. The
series is truncated for some l sufficiently large to approx-
imate the flattened potential.

We describe some modifications to this procedure that
speed up convergence and overall accuracy. The initial
guess to the total potential is the composite spherical
potential derived in the first stage. We first perform an
iterative sequence to monopole order until convergence.
In a second phase, we restart the iteration with this solu-
tion gradually adding the terms for higher order expan-
sions. Furthermore, the new potential derived at each it-
eration is determined as a weighted average of the newly
determined potential and the previous one. In general,
convergence to a high order in l can be reached in a few
tens of iterations.

Following KD95, we also use an analytic “high har-
monics” disk potential to improve the accuracy of the
multipole expansion at lower order in l. This analytic
potential is:

Ψ†d =
GMdzd

2R2
d

ln cosh(z/zd)e
−r/RdT

(
r − rt
δrt

)
(F18)

where one notes that the radial parameter is the spherical
radius. One can use the identity:

∇2f(r) ln cosh(z) = f ′′(r) ln cosh(z)+

2f ′(r)

r
[ztanh(z) + ln cosh(z)] + f(r)sech2(z) (F19)

to derive an analytic disk density ρ†d from Ψ†d. The
last term reproduces a sech2(z) disk to O(z/R)2 while
the other terms are generally small for thin disks and
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tend to zero at the origin. In the iterative method de-
scribed above, we replace the disk density with the resid-
ual δρd = ρd − ρ†d when determining the total potential
from the multipole expansion. The total final potential
is computed as the sum of the multipole expansion plus
Ψ†d. In practice, this method allows an accurate repre-
sentation of the thin disk model for expansion orders of
l < 10 greatly speeding up the overall procedure.

The final step involves the finding “tilde” functions in
the disk DF that match the disk density in equation F14.
The first function σ̃2

R(R) can be set arbitrarily but fol-
lowing KD95 we use the observationally inspired profile
σ̃2
R = σ2

R,0 exp(−R/Rd) where the central radial velocity
dispersion σ2

R,0 is a free parameter for the disk. Nor-
mally, this parameter is chosen so that the disk is stable
i.e. Toomre Q > 1 across the radial extent of the disk.
The remaining functions – the midplane density ρ̃d(R)
and the vertical velocity dispersion σ̃2

z – are iteratively
adjusted for each radius on the grid such that the mid-
plane density and the density at z = zd are the same as

that in equation F14. Finally, the tilde functions can be
represented numerically with splines and thus the disk
DF is fully specified.

In summary, the final products of this moderately com-
plex procedure are full specified potentials and densities
for each component defined by multipole expansions with
modifications for the thin disk to improve accuracy for
lower order l. Each component also has a well-defined DF
determined by Eddington’s method for spherical compo-
nents and the constructed disk DF from equation F13.
The multipole coefficients of the potential expansion are
tabulated on the logarithmic grid and represented as
splined functions in the code, allowing rapid evaluation
of the potential and density at any point. The spherical
DFs as f(E) and the tilde functions are computed at the
predefined grid coordinates. The code takes tens of sec-
onds on current hardware to tabulate these functions -
depending on the maximum multipole order - making it
practical to use for fitting galaxy observations.
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