A Caltech Library Service

A model for decoding the life cycle of granular avalanches in a rotating drum

Marteau, Eloïse and Andrade, José E. (2018) A model for decoding the life cycle of granular avalanches in a rotating drum. Acta Geotechnica, 13 (3). pp. 549-555. ISSN 1861-1125. doi:10.1007/s11440-017-0609-2.

[img] MS Word (Supplementary material 1) - Supplemental Material
See Usage Policy.

[img] Video (MPEG) (Supplementary material 2) - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


Granular materials can behave as harmless sand dunes or as devastating landslides. A granular avalanche marks the transition between these distinct solid-like and fluid-like states. The solid-like state is typically described using plasticity models from critical state theory. In the fluid regime, granular flow is commonly captured using a visco-plastic model. However, due to our limited understanding of the mechanism governing the solid–fluid-like transition, characterizing the material behavior throughout the life cycle of an avalanche remains an open challenge. Here, we employ laboratory experiments of transient avalanches spontaneously generated by a rotating drum. We report measurements of dilatancy and grain kinematics before, during, and after each avalanche. Those measurements are directly incorporated into a rate-dependent plasticity model that quantitatively predicts the granular flow measured in experiments. Furthermore, we find that dilatancy in the solid-like state controls the triggering of granular avalanches and therefore plays a key role in the solid–fluid-like transition. With the proposed approach, we demonstrate that the life cycle of a laboratory avalanche, from triggering to run out, can be fully explained. Our results represent an important step toward a unified understanding of the physical phenomena associated with transitional behavior in granular media.

Item Type:Article
Related URLs:
URLURL TypeDescription ReadCube access
Additional Information:© 2017 Springer-Verlag GmbH Germany, part of Springer Nature. Received: 25 October 2016; Accepted: 16 November 2017; First Online: 04 December 2017. The author would like to thank Ryan Hurley for his fruitful comments. This work has been partially funded by Keck Institute for Space Studies (KISS) and the California Institute of Technology; this support is gratefully acknowledged.
Group:Keck Institute for Space Studies
Funding AgencyGrant Number
Keck Institute for Space Studies (KISS)UNSPECIFIED
Subject Keywords:Avalanches; Dilatancy; Granular materials; Plasticity; Rate dependent; Solid/fluid transition
Issue or Number:3
Record Number:CaltechAUTHORS:20171205-111425606
Persistent URL:
Official Citation:Marteau, E. & Andrade, J.E. Acta Geotech. (2018) 13: 549.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:83691
Deposited By: Tony Diaz
Deposited On:13 Dec 2017 05:01
Last Modified:15 Nov 2021 20:13

Repository Staff Only: item control page