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Abstract

The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection
from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the
dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR)
simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show
the limitations in the model without being confused with limitations in signal-to-noise. We find that both
parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high
spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source
counts across the effective 3–79keV band of NuSTAR, and discover a strong dependence of the results on how fits
are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over
an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of
model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like log x
carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall
the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by
demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector
resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.
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1. Introduction

The modeling of the X-ray reflection spectrum is a very
important method for understanding the physics of accreting
compact objects. X-ray spectra from active galactic nuclei
(AGNs) and X-ray binaries often show evidence of interaction
between radiation emitted near the compact object and the
nearby gas, which leads to signatures imprinted on the
observed spectrum. Modeling the observed X-ray reflection
features can lead to important constraints on the ionization state
of the inner accretion disk (Ross et al. 1999; García &
Kallman 2010; García et al. 2011, 2013). The reflecting region
of the disk may be subject to relativistic effects that can blur
and distort the emission features (Fabian et al. 1989; Laor
1991), leading to measurements of inner disk radii and black
hole spin (Brenneman & Reynolds 2006; Reynolds & Fabian
2008). The most notable feature is the Fe-Kα emission
complex (e.g., Guilbert & Rees 1988; Lightman & White
1988; Fabian et al. 1989; George & Fabian 1991). An
astrophysical black hole in general relativity is completely
specified by its angular momentum J and its mass M (Kerr
1963).9 Black hole spin, defined by the dimensionless spin
parameter a cJ GM2

* = with theoretical values a 1.0* ∣ ∣ , is
arguably the most important parameter whose estimate is

affected by strong field gravity near the black hole. One of the
best-known AGN systems and the first to have observationally
confirmed broad iron line detection is the Seyfert I galaxy
MCG-6-30-15 (Tanaka et al. 1995; Iwasawa et al. 1999), for
which the Fe emission appears to be broad and skewed well
beyond the instrumental resolution. Such an X-ray reflection
spectrum has been observed from accretion disks around
numerous black holes (e.g., see Reynolds 2014).
Numerous reflection model computations have been pub-

lished over the past two decades, with the most notable
including PEXRAV (Magdziarz & Zdziarski 1995), REFLIONX
(Ross & Fabian 2005), and XILLVER (García & Kallman 2010;
García et al. 2013). These models were originally decoupled
from the relativistic smearing associated with strong gravity
and implemented in broadening kernels such as DISKLINE
(Fabian et al. 1989), LAOR (Laor 1991, extended to KDBLUR
later), KERRDISK (Brenneman & Reynolds 2006), KY
(Dovčiak et al. 2004), and RELLINE (Dauser et al.
2010, 2013). These have been applied in a great many
observational papers, (e.g., Miller et al. 2008; Steiner et al.
2011; Dauser et al. 2012; Fabian et al. 2012; Reynolds
et al. 2012).
The X-ray blurring code RELXILL presented by García et al.

(2014) is the current most advanced relativistic reflection
model, which has addressed many of the deficiencies of
previous models. It is the result of the angle-dependent
reflection code XILLVER (García et al. 2013) convoluted with
the relativistic blurring code RELLINE (Dauser et al. 2013).
XILLVER uses the atomic data of XSTAR (Bautista &
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Kallman 2001) to calculate the specific intensity of the
radiation field as a function of energy, position in the accretion
disk, and emission angle. Lamp-post geometry (Matt et al.
1991; Martocchia & Matt 1996; Frank et al. 2002; Dauser
et al. 2013), which describes an isotropically irradiating
primary X-ray source located on the rotation axis of the black
hole has been implemented as relxilllp in the RELXILL
model family. Given the progress made on reflection
computations, and the complexity of the these calculations, it
is important to test and understand how reliably, in an idealized
case, the model performs in yielding estimates of spin and other
quantities of interest.

The Nuclear Spectroscopic Telescope Array (NuSTAR;
Harrison et al. 2013) mission is currently the best resource
for the study of relativistic reflection. Its broad bandpass
enables simultaneous measurements of both the iron emission
and the Compton hump. Examples of recent, high-count
reflection studies using NuSTAR data are spin measurements
for the high-mass X-ray binary CygnusX-1 (Walton et al.
2016) in the soft state, the low-mass X-ray binary (LMXB)
GS1354-645 (El-Batal et al. 2016) in the hard state, and for the
LMXB GX339-4 in the very high state along with Swift-XRT
data (Parker et al. 2016). All works show that good constraints
on spin can be achieved using NuSTAR for such bright sources,
and their results agree well with previous observations. A more
recent work with V404Cygni has established the source’s first
ever spin constraint using NuSTAR (Walton et al. 2017b). Hard
X-ray observations of accreting black holes provide a probe of
the inner regions of the accretion disk where strong gravity
prevails (Remillard & McClintock 2006; Bambi et al. 2016).

Using data with good signal and enough counts is a very
common practice for simulations in order to test a model’s
efficiency. But one also needs to be cautious of systematic
errors that may be introduced as a consequence of the
ubiquitous customs. Humphrey et al. (2009) presented a
thorough analysis and stated via Monte Carlo tests that
performing fits employing 2c -statistics at high counts can lead
to heavy bias in contrast to the popular belief that the effect is
minimal if a minimum-counts-per-bin sampling approach is
taken up at high counts, which falls in line with the expectancy
from Cash statistics (Cash 1979). The latter statistic should be
employed for analyzing Poisson-distributed data and has been
shown in their work to yield unbiased parameter estimates at
high counts. As explained in the paper, the “approximated” d

2c
test (followed as the de facto standard 2c -test on XSPEC) can
prove to underestimate values largely as counts in the spectrum
increase, and unless the number of data bins in the data set are
far less than N , where N is the number of counts in the energy
range considered in the fit, the bias with high-count data will
not cease to exist irrespective of sampling with high counts per
bin in a 2c test. In fact, the bias can be of the order of or even
higher than the statistical error, and has been shown to increase
as the number of counts increases. We will, however, show in
the next section that the kind of binning we adopt avoids this
problem for the total counts we work with.

In this paper, we aim to demonstrate how well RELXILL can
constrain spin and related spectral parameters under optimal
conditions. The work is presented as follows: Section 2
describes the model, software, and our methodology. Our
results are given in Section 3. In Section 4, we also present a
comparison of results from our fitting approach with that of a
recent paper, and in Section 4.2 we further elucidate the role of

proper data analysis techniques, which are important when
assessing subtle features in the reflection signal to infer
physical constraints. We present our conclusions in
Section 5.

2. Simulations as Proxy for Ideal Observational Data

Lamp-post geometry has been employed for explaining the
observed X-ray spectra of numerous sources in the past (e.g.,
Duro et al. 2011; Wilkins & Fabian 2011; Dauser et al. 2012;
Marin et al. 2012; Miller et al. 2015), and also in a few recent
analyses (Beuchert et al. 2017; Walton et al. 2017a, 2017b).
We use v0.4a10 of the lamp-post model of RELXILL in this
paper to carry out our analysis. Our main goal is to determine
the robustness of the model, when employing ideally for the
simplistic case of an axisymmetric, stationary source irradiating
isotropically.
For this paper, we have simulated observational data using

the fakeit routine in XSPEC (Arnaud 1996) v12.9.0i,
implemented with the Python interface PyXspec
(Arnaud 2016) v1.1.0. The simulations use the instrumental
response of the FPMA of NuSTAR in the 3–79keV energy
band. Ancillary response and background files were selected
assuming a circular extraction region with 60 radius centered
60 off-axis. All the instrumental files used here are available
on the official website of NuSTAR.11

The resolution of the NuSTAR detectors is 0.4/0.9keV at
6/60keV. Based on this, we approximate the detector
resolution as scaling as E2 5 with a constant offset, and use
the FTOOLS subroutine GRPPHA to bin our spectra so that the
energy resolution is oversampled by a factor of 3. Approxi-
mately 90% of the grouped bins had 50> ctsbin−1, with the
typical number of counts per bin even higher in harder input
spectra compared to softer ones. Readers may refer to Kaastra
& Bleeker (2016) for a more operationally crafty optimal
binning method laid down for X-ray data analysis. This
concerns both signal-to-noise and binning according to detector
resolution. It adopts a variable binning scheme, thereby greatly
reducing response matrix size and the number of model bins to
save a lot of storage and computational time. This is, however,
a much more sophisticated method than the one we have
employed here. Nevertheless, we find that our approach serves
well the main goals of the present paper.
To study the relativistic effects on incoming photons from

the lamp-post source, we simulate our observations for a bright
X-ray corona positioned at each of two lamp heights: h R3 g=
and h R5 g= . We simulated NuSTAR observations of a bright
X-ray source (at z= 0) with a discrete sample space for all
parameters of interest. Each observation generated was
analogous to a 100ks long exposure to ensure sufficiently
high counts at all energies, and Poisson noise was included in
the simulations. After grouping with our adopted method, we
were left to fit 301 PHA bins in the desired energy range of
3–79keV for each spectrum. This number is very small
compared to the range of counts we work with here
( 10 106 7~ – ). Thus, we overcome the possibility of a fitting
bias that using 2c -statistics could have imposed as per
Humphrey et al. (2009). We used nine representative values

10 Newer versions of RELXILL were made available during the course of this
project. But our results are still applicable because of our source constraints and
methodology adopted.
11 Point-source simulation files, http://www.nustar.caltech.edu/page/response_
files.

2

The Astrophysical Journal, 851:57 (8pp), 2017 December 10 Choudhury et al.

http://www.nustar.caltech.edu/page/response_files
http://www.nustar.caltech.edu/page/response_files


across the allowed parameter space for spin: ±0.998, ±0.9,
±0.8, ±0.5, and 0.0, and used values shown in Table 1 for the
other relxilllp parameters. We explored all combinations
in our sampling grid, creating ∼5800 distinct simulations,
representing a unique source condition in each. For the
parameters Γ, log x , and AFe, the input values have been
chosen to represent the physical conditions in most observed
systems, as mentioned in García et al. (2013). While the range
for Γ in AGNs is generally narrower, that for binaries span a
wider stretch with very low/hard 1.4 1.5G ~ – to very high/
soft 2.5 2.6G ~ – (e.g., Remillard & McClintock 2006).
Similarly, AGN disks tend to be less hotter than those in
binaries. Not only do spectra with ionization profiles with

1 20x ~ – appear similar, but also those with 104x tend to
be featureless (closely representing the incident power-law
continuum). Iron abundances here are kept at solar and super-
solar levels to have prominent Fe emission line features, also
considering that a sub-solar abundance would not be enough to
compensate against the stripping of most of the iron available at

higher ξ. Over-abundance of iron for explaining X-ray
reflection spectra is not uncommon (e.g., Fabian 2006;
Reynolds et al. 2012, etc.). The inner disk inclination (i) space
has been selected to represent systems from being oriented
almost face-on to having high relativistic smearing at an almost
edge-on view, bearing in mind that the majority of the observed
sources can be represented on average between the chosen
extremes here.
We let the reflection fraction fit independently of the lamp-

post-prescribed value (i.e., we set fixReflFrac = 0 in
relxilllp). The fitting procedure was designed such that
the parameters in each fit initialized at random values that were
required to lie beyond X 3 Xs , assuming a Gaussian
distribution based on the fit covariance around the true value
X of each parameter, and where Xs was estimated from
preliminary fits. This approach was adopted to avoid fits
becoming stuck in local minima, while at the same time
allowing the model to explore the parameter space. We
examine this procedure’s effect on the overall results in
Section 4.

3. Results

In Figure 1, we show the fitted versus inputted values of
spin. Colored regions depict 1.645s (90%) intervals showing
the dispersion of the simulation fit dispersion about the average
value for spin grid point. All simulations were fitted employing
the 2c -statistic. We present a parallel set of results showing the
fitted values of the ionization parameter for the three input
values from Table 1 in Figure 2. The reported 2cn is the reduced

2c , where ν stands for the degrees of freedom in the fit.
Figure 1 shows that the input values are recovered in the fits

on the whole. At a weak reflection signal of Rf=0.5 and a
corona located farther from (h R5 g= ) the compact object, the
confidence, for example, on an intermediate spin a 0.5* = is
weaker by a factor of 2 compared to when the corona is at low
h. Larger reflection fraction and larger spin values both lead to
tighter parameter constraints. Tighter constraints are likewise
achieved at the lower source height. This can be understood as
each effect separately produces an increase in the amount of
relativistic reflection signal. We find that at sufficiently large
values of Rf ( 5 ), there is negligible change in the confidence
interval. This is because the simulations depict a fixed number

Table 1
Parameter Values Used in RELXILLLP in Combination

with Nine Input a* Values

Parameter Input Values Fit Parameter Units

Source height (h) 3, 5 No Rg
GM

c2=( )
Inclination (i) 15, 45, 75 Yes deg
Inner disk radius (Rin) 1 No RISCO

Outer disk radius (Rout) 400 No Rg

Redshift (z) 0.0 No L
Photon index (Γ) 1.4, 2.0, 2.6 Yes L
Log ionization (log x) 1.0, 2.3, 3.6 Yes L
Iron abundance (AFe) 1, 5, 10 Yes solar
High-energy cutoff (Ecut) 300 No keV
Reflection fraction (Rf) 0.5, 1.0, 5.0, 10.0 Yesa L

Note.Inner and outer disk radii, source redshift, and high-energy cutoff were
kept at default values. Except source height, the remaining were used as fit
parameters.
a We checked the estimates on Rf based on the dispersion in best-fit data. Not
only are the error bars on Rf low, but also there is no significant difference in
recovering all Rf values between both h. The 90% confidence is very narrow,
and thus, Rf can be assumed to be a noncontributing fit parameter in terms of
underlying physics rather than the statistics involved.

Figure 1. Spectral fit results for our simulated data measuring spin a* from all 5832 simulations of a bright X-ray source, each with an exposure of 100ks. The fit
parameters are summarized in Table 1. Each panel shows results for a different lamp-post height. The solid-colored intervals depict the 90% dispersion among the
simulations for a given value of input parameter, centered around the mean. The typical fit statistic for each simulation shown has 1.012 cn . The dashed line depicts
the simulation input value for spin.

3

The Astrophysical Journal, 851:57 (8pp), 2017 December 10 Choudhury et al.



of counts, and the proportion of the signal that is conveyed in
the reflection component is approximately

R

R 1
f

f +
. For any large

value of Rf, the reflection signal is essentially the same.
Similar conclusions can be drawn for the ionization

parameter from examination of Figure 2. For instance, the
ionization constraints between h R5 g= and h R3 g= degrade
with a ratio of ∼1.1–1.7 (progressing from low to high ξ, in
logarithm scale) at Rf=0.5. It is interesting that higher
dispersion seems to occur at low ionization (log 2x ). This is
explained by García et al. (2013), where it can be seen that the
difference between reflection spectra in the NuSTAR band are
quite minor at such low values of ionization. By contrast, at
high ionization, the spectra are more readily distinguished, as
reflected in the fits. It is, however, harder to recover a hotter
disk at a higher source height at a weak reflection signal (wider
relative confidence region for hotter disk) compared to when
the primary source is closer because of a lesser reflection signal
received from the inner disk as the point source moves higher
up and away. In general, for the model parameter the dispersion
intervals here, again, are slightly narrower for lower h, and they
reduce appreciably with growing log x or increasing Rf.

4. Discussion

A similar investigation to ours was recently presented by
Bonson & Gallo (2016; BG16 hereafter). BG16 analyzed over
4000 simulated spectra of AGN using RELXILL, with
3.5 10 105 3´  net counts, each between 2.5 and 10 keV
with XMM Newton (EPIC-pn; Strüder et al. 2001) and
10–70keV with NuSTAR. They determined the effects on
estimates of relativistic reflection parameters with Fe-line
fitting in AGN X-ray astronomy and concluded that measuring
such parameters accurately can be a great challenge, especially
the spin (a*) parameter, which they found can be decisively
recovered for a 0.8* > with an accuracy of±0.1.
Like us, BG16 explored RELXILL behavior over a wide range

of parameter space by simulating high-signal observations.
However, unlike us, they initialized all their model fits at a
single starting set of conditions (which could be arbitrarily far
from or really close to the inputs). This type of fitting could be
interpreted as what a particular user would do when there is no
information regarding the parameters that characterize the
system. On the contrary, our approach tries to simulate the
other extreme possibility, in which the user has a good rough
estimate of the parameters, based on previous analyses or
measurements performed with other techniques. They report to
have performed error checks on all fit parameters for one set as
a verification step in the 2.5–70keV band and that there were
no significant differences found from their published results
that were obtained only by running the fit. The effect of doing
so without enforcing rigorous exploration of parameter space
(e.g., via ERROR, STEPPAR, or MCMC approaches) can lead to
erroneous results because the fit procedure can easily become
trapped in a local minimum, which BG16 mention as well.
Indeed, this shortcoming is not unique to BG16ʼs approach, but
is a caution that should be marked by observers to ensure that
parameter space is explored intensively and sufficiently. In
Section 2, we also used small step sizes (equal to or smaller
than the predetermined Xs ) for the parameters of interest so that
the fit can explore the parameter spaces better, although leading
to the code running comparatively slower. We have attempted
to elucidate the differences, with lamp-post geometry, between
results employing our fitting approach and those from
replicating the BG16procedure as a representation of what is
being done in day-to-day X-ray data analyses.
We chose to use our well-recovered set with Rf=5.0 and

h R3 g= for reference, and adopt all nine of our values of spin
parameter. We simulated and fitted the same number of
observations as in Section 2 for a single Rf and h combination
with our source counts. The primary difference between this
examination and BG16ʼs is that we kept the input spin values
discretized, whereas they selected values at random (but from
the same range we adopt). When fitting, all parameters were
initialized according to the BG16 approach (i.e., their “Test A”
set: a 0.5* = , i=30°, 2.0G = , 75x = erg cm s−1, and
A 3Fe = ). We again binned the simulated data to three-times
oversample the detector energy resolution. We ran errors on all
fit parameters.
Figure 3 shows the results for recovering black hole spin

with the representational fitting approach above. We show the
1.12 cn good fits separate from the color-coded scatter. We

can clearly see here that only a minority (≈35%) are actually
good fits in the high-signal sample considered, and those that
we further inspected are not stuck in the local minimum beyond
a representational 10σ statistical significance over all fit

Figure 2. Spectral fit results for our simulated data measuring log x from all
5832 simulations of a bright X-ray source, each with an exposure of 100ks.
The fit parameters are summarized in Table 1 with nine values of a*. Each
panel shows results for a different lamp-post height. The solid-colored intervals
depict the 90% dispersion among the simulations for a given value of input
parameter, centered around the mean. The typical fit statistic for each
simulation shown has 1.012 cn . The dashed line depicts the simulation input
value for ionization.
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parameters. Here, error checks push to span the parameter
space better and are able to converge to good best-fit statistics.
However, evidently, there is a much larger scatter of fits with

1.12c >n and many spurious results appear to muddy the
determination of a*. We find that it is much more likely for the
fit to miss entirely and when it does to overestimate the spin.
These are the larger share of bad fits stuck in local minima, and
can be compared for a contrast with results from our fitting
approach with similar parameter combination in Figure 1.
Figure 4 shows the scatter in the other parameters, and we can
see that both Γ and log x have large scatter similar to that
shown by BG16. The good fits show no under/overestimation
in the photon index, the iron abundance and the inner disk
inclination parameters. We can also see a few good fits with
input log 2.0x < being underestimated, but it can be explained
because of the spectral similarity at low ionization mentioned
in Section 3.

As apparent in Figure 4, and confirmed by exploration of the
data, the primary problem in question with the fits in local
minima arises due to incorrect measurements of log x pushing
spin toward poor estimates. The nonlinear behavior exhibited
by ionization can well be a problem in effectively analyzing
data without a sound fitting procedure. To test this hypothesis,
we performed a qualitative examination on all four parameters
shown in Figure 4. We excluded all fits 2 s∣ ∣ confidence
around an ideal recovery (i.e., fit=input) for each input value
for a*, and mapped the remainder (outliers all) to the Figure 4
fit parameters. The results confirmed that the worst spin fits
were associated with very large mismatches in the ionization
parameter. Iron abundance, followed by Γ and i, were
minimally associated with causing outliers in spin. This is
likely because the spectral changes associated with evolving
ionization are not necessarily smooth and continuous, unlike,
e.g., changes associated with i or AFe (see, e.g., García
et al. 2013).

4.1. Line and Continuum Features Trading Off

Having noticed that Γʼs distribution of spurious fits in
Figure 4 is strongly skewed to fitting larger values of Γ, and
revealing surprisingly large discrepancies up to 0.1 (far larger
than statistical errors), we explore the relationship between Γ
and the nonlinear parameter log x from our results with the
representational fitting approach.

To examine this behavior, in Figure 5, we have color-coded
the relationships of log x and Γ from Figure 4. Blue depicts
cases with 0.01DG > , green shows 0.01DG < - , and red
gives the remaining cases (all good fits) in which the fit is close
to the input value. Note that fits that greatly underestimate log x
correspond to fits that overestimate Γ, and vice versa.
This correlation can be understood again from the reflection

principles outlined in García et al. (2013). Low values of log x
emit less at soft X-rays and so produce harder X-ray spectra. In
order for the fit to compensate for the harder signal in the
reflection, Γ is increased. In this way, there is correlated trade-
off between the parameters describing narrow reflection
features (i.e., log x), and the X-ray continuum (Γ).
In order to see how the results fare at lower counts, we

reproduced the dispersion shown in Figures 1 and 2 for the set
with Rf=5.0 and h R3 g= , the scatter in Figures 3 and 4, and
the mapping in Figure 5—all at BG16ʼs total counts. As
expected, the dispersion in spin and ionization increased at all
input values of a* and log x with our fitting approach, although
not deviating anywhere from the input line but having
noticeably wider confidence at lower input values. The trend
in the scatter plots with the representational fitting approach at
lower counts was similar to those shown in this work at higher
counts. The percentage of good fits not stuck in local minima
increased (to ≈48%) but had much larger deviations from the
input lines. We observed that most of the good fits sticking
around the input line in this case could be attributed to well-
recovered i and Γ, while log x again remained the primary
culprit in creating spurious results with a higher number of
good ξ fits being underestimated. This ascertains the need to
adopt a proper fitting approach when testing model parameters
at any range of total counts.

4.2. Bias, Binning, and Statistical Methods

As seen from Section 4.1, Γ seems to be overestimated in the
case of assessing blurred reflection using RELXILL over a broad
range of counts with the representational fitting approach.
While we described above the way in which an offset in log x
can introduce a correlated shift in the continuum Γ, this effect
(also reported by BG16 for Γ at 1.12 cn ) is more subtle and is
rooted in the data treatment because in our case it shows up, for
both ranges of counts, only at 1.12c >n . In this section, we
illustrate how the use of 2c rather than Poisson statistics can
fully account for this reported bias.
To demonstrate the problem, we have produced 1000

simulations using a pure power-law model for the same
NuSTAR FPMA response to look into the photon index
independently, with randomly sampled values of Γ ranging
between 1.4 and 2.6. Each spectrum contains 3.5 105´ counts
(within Poisson limits) across the useful 3–79keV band.
These simple simulations were then binned using two

approaches: (1) the data were binned according to our default
procedure, oversampling the detector resolution by a factor of 3,
or (2) the data were grouped to achieve a minimum of 25 counts
per bin, and the detector resolution was not taken into
consideration. We also test the importance of the Gaussian
approximation inherent in 2c fitting, in both cases, by comparing
results achieved by 2c minimization with parallel results achieved
using the proper Cash statistic (Cash 1979; termed “cstat” in
XSPEC), which is appropriate for Poisson-distributed data.
Figure 6 illustrates our results. The leftmost pair of panels

depicts two sets of 2c fits using the two binning options,

Figure 3. Spin fitting results following the approach of BG16 at our total
counts. We show the fitted spin (a*) vs. its input for model settings of Rf=5.0
and h R3 g= . Each data point is color-coded according to the logarithm of its
reduced 2c . Good fits with 1.12 cn have been shown separately to compare
with BG16’s work.
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presenting the difference between fitted and inputted Γ. A strong
bias in Γ is clearly evident in the “minimum binning” panel,
which relates to the aforementioned binning option (2). In this
instance, one infers that Γ is generally too high, by a factor of
∼0.005. The precise value of this offset turns out to be a function
of the binning and also of the total signal in the spectrum, with
the bias becoming worse when the signal is sparser and the
counts per bin fewer. As can be seen, nearly all fits in the
minimum binning case have good converging statistics. How-
ever, the majority appear to be stuck in local minima, largely
showing overestimate in Γ owing to the sampling performed.
Importantly, our adopted resolution binning appears compara-
tively immune to this bias and is clearly preferable.

However, the rightmost pair of panels show that when taking
a more careful look, as revealed here by scaling the difference
in Γ by the statistical error, even the resolution-binning case
suffers from a small bias when employing the approximate (but
most widely used) 2c -statistic compared to the furthest right
panel, which shows the same using the Cash statistic. Note
the Cash-statistic distribution is centered on zero with good
converging statistics, while the 2c case is very slightly offset to
larger fitted Γ (a minor shift of order 0.2s~ ). Given the very
minor scale of the bias associated with our adopted approach,
our earlier results from Section 3 are quite acceptable.
We further illustrate the dependence of the bias in Γ on the

total counts and degree of binning in Figure 7. Here, we select a

Figure 5. Left upper and lower panels of Figure 4 color-coded based on the difference fit inputDG º G - G . There is clear correspondence between the differences in Γ,
and in log x .

Figure 4. Results using the approach of BG16, as in Figure 3, but showing Γ, AFe, log x , and i. Although the color-coding indicates overestimation in Γ and i and
underestimation of log x , we find that none of the good fits of these parameters, other than a few log 2.0inpx = underestimations, are under/overestimated at our
signal and with our grouping approach.
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single representative value of 2.0G = as a fiducial value and
have varied the counts per spectrum by an order of magnitude in
either direction in a smaller set of simulations that depict
different data groupings, where the minimum number of counts
per bin is 9, 25, or 100. Using a fit with the Cash statistic as our
reference point, we show the resulting bias in Γ in the left panels
and compare that to its significance in the right panels. We
present the results for our adopted resolution-binning as well.

This minimum binning approach is commonly adopted for the
analyses of observational X-ray data in order to have ample
counts in each data bin, and overlooks the detector resolution.
The overestimation found in Γ can be evidently seen due to this.
Apart from insufficient binning of data, using the Gaussian-
assuming 2c -statistic to model Poisson-distributed data could
also be a cause. Accordingly, we recommend using the Cash
statistic when possible, and suggest further that it is advisable to
bin the data according to the detector resolution (refer to page 2
for references on the choice of statistics and data binning).

5. Conclusions

We have simulated NuSTAR data of a bright X-ray source to
determine how well RELXILL can practically determine spin
and ionization parameters. We have adopted the simplest case
of lamp-post geometry. Our results are summarized below.

We find that all model parameters are well-recovered in the
fits to our reflection simulations, and that the precision is
improved at higher Rf, higher spin, and lower h, because each
increases the signal-to-noise in relativistic reflection features.
Recovering retrograde spin is more difficult compared to their
prograde counterparts owing to the lower reflection signal
received because of the position of the inner disk radius Rin,
which we have fixed at the innermost stable circular orbit
(ISCO). RISCO for a counter-rotating black hole tends to
increase outwards with more retrograde values, thereby limit-
ing reflection from the inner regions of the disk. Further
complications may arise because of lowered relativistic
bending at higher source heights.
We carried out an examination of adopting fitting methods

while analyzing X-ray data based on results from a similar
work done by Bonson & Gallo (2016), across our selected
10 106 7– range of total counts for testing the estimates in
NuSTARʼs effective energy range. BG16 show that the model
RELXILL yields poor estimates for the relativistic and disk
parameters when a representational fitting approach like they
adopt is employed. We also performed the examination at
lower ( 105~ ) counts and, to our expectations, obtained similar
results. We find that the intrinsic bias imposed by such a fitting
approach, extended to any range of detected counts, can be
minimized by instead adopting to fit data with some

Figure 6. Color-coded fits from 1000 Seyfert 1 spectra simulated with the POWERLAW model with NuSTAR. Left: scatter plot for the difference fit inputG - G =DG( ) for
two sets, one with data oversampled according to our resolution-binning method (left pane), and the other with a minimum grouping of 25ctsbin−1 (right pane).
Right: scatter plot for the difference DG in terms of σ for the same set of resolution-binned data, fit one time each using 2c statistic and cstat. avgs refers to the
average statistical error bar for each point in each scatter plot. The scatter 2s>∣ ∣ is negligible. The color-bar represents 2cn and reduced-cstat.

Figure 7. Results from pure power-law simulations illustrating the effect of varying the total signal and the grouping. Each point is obtained from a 2c -minimizing fit,
and the results are compared to a reference analysis using the Cash statistic. The left panel shows the absolute offset in Γ ( fit, fit,cstat2DG¢ º G - Gc( ) ( )), and the right
panel depicts the bias in terms of its statistical significance.
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predetermined estimates around the true parameter configura-
tion, owing to the complexity of the model itself. This points to
the efficiency of the fitting method we adopt in Section 2, and
also stands to support the concern expressed by BG16 over
such common X-ray fitting methods. Furthermore, parameters
like log x , which has a nonlinear impact on spectra, require
thorough stepping through their parameter spaces in order to
avoid internal subtle adjustments among parameters that can
easily make the user believe in misleading good fits.

On top of the fitting method chosen, picking the data binning
scheme also seems to impact results when using the Gaussian-
assuming 2c -statistic, which can be seen from the affect on the
global parameter Γ in Section 4.2. In the case of data being
Poisson-distributed, it is crucial to employ a sound binning
methodology. Then again, using the Cash statistic is preferably
the better choice as it is suitable for treating Poissonian data.
We therefore advise that data should be binned according to the
detector resolution and the Cash statistic employed when
possible (ensuring at least 1 count per bin at very faint
detections when the noise is purely Poissonian).

The results put forth in this work have been determined in the
most ideal case: using one module and the broad bandpass of
NuSTAR with Poissonian background, devoid of effects like inter-
stellar medium absorption 2 keV< , to assess blurred reflection
data using lamp-post irradiation. While the results depict the
efficiency of RELXILL in being able to constrain spin and
ionization very well, the conditions can be conservative not only
because of the geometry adopted but also in the added sense that
there is no unique “correct” method when adopting a fitting
approach in order to probe a model’s efficacy. In addition to the
selection of a sound fitting methodology, the extent to which the
user can avoid local minima relies on the fitting algorithm, data
sampling, and the degrees of freedom in the fit that may
complicate the situation altogether. The user, however, needs to be
cautious since results obtained may in fact shadow the true nature
of parameter constraints and degeneracies (which we have not
probed into for the current work) involved intrinsically, a common
problem while analyzing real data.

Simultaneous fitting with simulations from instruments
operating at lower energies, like XMM Newton or Suzaku,
can significantly improve our constraints, and may serve as an
extension to the current work. Similar work in García et al.
(2015) showed that the constraints in Ecut in RELXILL improved
with the use of a broader waveband encompassing soft
energies. An alternative in the case of data analyzed from
observations could be “pgstat,” which reads Gaussian back-
ground with Poissonian detection (see Appendix B in XSPEC
manual). The implementation effect of this fit statistic can be
tested with real data or a simulated Gaussian noise since
background can definitely be not just Poisson-distributed in
reality. But this is beyond the goals and scope of this work.
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