Correction: Modal Analysis of Fluid Flows: An Overview

Kunihiko Taira
Florida State University, Tallahassee, Florida 32310
Steven L. Brunton
University of Washington, Seattle, Washington 98195
Scott T. M. Dawson and Clarence W. Rowley
Princeton University, Princeton, New Jersey 08544
Tim Colonius, Beverley J. McKeon, and Oliver T. Schmidt
California Institute of Technology, Pasadena, California 91125
Stanislav Gordeyev
University of Notre Dame, Notre Dame, Indiana 46556
Vassilios Theofilis
University of Liverpool, Brownlow Hill, England L69 3GH, United Kingdom
Lawrence S. Ukeiley
University of Florida, Gainesville, Florida 32611

DOI: 10.2514/1.J056060.c1

Correction Notice
This correction pertains to two errors in the original article when it was first published online [https://arc.aiaa.org/doi/pdf/10.2514/1.J056060]. The first correction is concerned with the mathematical expression preceding equation (39) in Section IV, A. Description, 1. Algorithm. The expression $\Psi W_c \Phi = \Phi W_o \Phi^* = \Sigma$ should read $\Psi W_c \Phi = \Phi W_o \Phi = \Sigma$. The authors regret the inclusion of this error in the original manuscript.

The second correction pertains to the missing # exponent in various equations (45, 46, 47, 48) in Section V A. Description, 1. Algorithm on page 4026. This error was introduced after the authors reviewed the proof and the journals staff regrets the confusion this error has caused. The correct sentence before equation 45 is “We begin by collecting snapshots of data and arranging them as columns of matrices X and X^*,” followed by corrected equation 45:

Corrected equation 45:

$X = [x(t_1) x(t_2) \ldots x(t_m)] \in \mathbb{R}^{n \times m}$ and

$X^* = [x(t_1) x(t_2) \ldots x(t_m)] \in \mathbb{R}^{n \times m}$

Corrected equation 46:

$X^* = AX$

Followed by the sentence “The matrix A may be defined by $A = X^* X^+$, where X^+ denotes the pseudoinverse of X.”

Corrected equation 47:

$\tilde{A} = U_f^T A U_r = U_f^T X^* V_r \Sigma^{-1}_r \in \mathbb{R}^{r \times r}$

Correction equation 48:

$\tilde{u}_i = \mu_i^{-1} X^* V_r \Sigma^{-1}_r \tilde{a}_i$