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against L/D for constant Re. The curve for turbulent
flow at the right is faired through Nikuradse’s data. . 87

2.9 The laminar flow-development parameter m as a func-
tion of Re for a square-cut entrance according to Mick-
elson’s data. The open circles show twice the intercept
of a fitted straight line in a plot of ĈfL/D against L/D
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highly disturbed entry. The data are from various
sources, using the exit-jet method, streaming bire-
fringence, hot-wire anemometry, or laser-Doppler ve-
locimetry (figure 3 of COLES 1962) . . . . . . . . . . 107



xiv LIST OF FIGURES

2.17 A least-squares fit to three successive points of a uni-
formly spaced time series for a variable u(t). . . . . . . 112

2.18 Rotta’s decomposition of a measured pipe profile in
the transition regime according to the on-off model.
The laminar and turbulent profiles do not have quite
the correct volume flow rate. . . . . . . . . . . . . . . 113

2.19 The average duration of laminar and turbulent inter-
vals far downstream in the transition regime of pipe
flow with highly disturbed entry. (Figure of COLES
(19xx)). The data are from ROTTA (1956) and VAL-
LERANI (1964). . . . . . . . . . . . . . . . . . . . . . 116

2.20 Some velocity signatures obtained by BREUER (1985)
on the centerline of a pipe flow, showing several stages
of the splitting process at Re ∼ 2400. The traces are
from different realizations of the splitting phenomenon. 117

2.21 Topology of the mean flow in a turbulent puff at Re =
2230, after WYGNANSKI et al. (1975). The observer
is moving at the celerity of the structure, so that mean
particle paths coincide with mean streamlines. The
two coordinates have equal scales. . . . . . . . . . . . 118

2.22 My original (top) and revised (bottom) cartoons sug-
gesting the topology of a turbulent puff. The top car-
toon is from COLES (1962). . . . . . . . . . . . . . . . 119

2.23 Intermittency factor (top curve) and three compo-
nents of mean velocity relative to spiral region of tur-
bulence in circular Couette flow. Components R, T, A
in radial, tangential, and axial directions are normal-
ized. Positions a, b, c, d lie along one complete circuit
at one radial position. Figure 4 of COLES and VAN
ATTA 1966 (AIAA Journal), which describes the ge-
ometry of the flow measurement. (Caption provided
by K. Coles) . . . . . . . . . . . . . . . . . . . . . . . . 122

2.24 Leading-edge and trailing-edge celerities for puffs and
plugs in pipe flow as measured by several authors. . . 124



LIST OF FIGURES xv

2.25 Diagram 2 of the paper by REYNOLDS (1883), repro-
duced with the aid of his tables III–V. The abscissa
i = dh/dx = (dp/dx)/ρg is the dimensionless local
pressure gradient. The ordinate v is the mean veloc-
ity in cm/sec. . . . . . . . . . . . . . . . . . . . . . . . 133

2.26 The previous FIGURE 2.25 made dimensionless by
following Reynolds’ instructions. Reynolds described
this figure but did not display it. . . . . . . . . . . . . 134

2.27 The raw capillary data of BOSE and BOSE (1911) in
dimensional form. The ordinate (proportional to Cf )
is the product of the pressure difference P in gm/cm2

and the square of the flow time T in seconds for a
fixed volume V of liquid. The abscissa (proportional
to Re) is the reciprocal of the flow time. From top left,
the liquids are mercury, bromoform, ethanol, water,
chloroform, benzene, toluene, and acetone. . . . . . . . 137

2.28 The data of the previous FIGURE 2.27 after reduction
to dimensionless form following KARMAN (1911). Hand-
book values have been used for density and viscosity.
The capillary tube was apparently quite short, with
L/D perhaps about 60, and the data are therefore us-
able only for relative viscometry. . . . . . . . . . . . . 139

2.29 Reynolds’ pipe data in standard dimensionless vari-
ables. The curve at the right is faired through Niku-
radse’s data. The low values of Cf for turbulent flow
may be caused by imperfect calibration of the flowmeter.142

2.30 Some measurements before 1932 of friction in smooth
pipes. The solid line for turbulent flow is faired through
the data of NIKURADSE (1932). A few obviously
sour points have been discarded. . . . . . . . . . . . . 151



xvi LIST OF FIGURES

2.31 Three interpolation formulas for the transition region
between the linear and logarithmic forms of the law of
the wall. Note the displaced scales. The top display is
a superposition of the other three. I recommend the
formula proposed by Musker. . . . . . . . . . . . . . . 171

2.32 Placement in complex wall coordinates of the three
singularities in Musker’s formula (2.166) for the law
of the wall. The radius of convergence of a power
series for u+(y+) is R+ = 9.29. . . . . . . . . . . . . . 175

2.33 Use of the single-parameter equations (2.176) and (2.180)
to round the logarithmic mean-velocity profile near
the pipe axis for the case R+ = Ruτ/ν = 2000. . . . . 178

2.34 Raw velocity-profile data from the superpipe measure-
ments by ZAGAROLA (1996). Thirteen of the 26
measured profiles are shown. The logarithmic law of
the wall and the velocity-defect law are solidly sup-
ported by these data. . . . . . . . . . . . . . . . . . . . 186

2.35 Centerline data and log-region data from the super-
pipe measurements by ZAGAROLA (1966). The fit-
ted lines have the same slope. The constants in the
logarithmic law of the wall are κ = 0.435, c = 6.10. . . 187

2.36 Various measurements in wall coordinates of centerline
velocity in smooth pipes. Note the displaced origins.
The lower curve shows good agreement between the
data of ZAGAROLA (1996; circles) and other mea-
surements from the literature (crosses), absent Niku-
radse. The middle curve shows good agreement be-
tween Zagarola’s centerline data and NIKURADSE’s
centerline data from his table 8 (1932), except for
Reynolds numbers R+ below about 1500. The up-
per curve shows that the centerline points from Niku-
radse’s 16 profiles in his table 3 do not agree with any
of the other measurements, including his own. . . . . . 189



LIST OF FIGURES xvii

4.1 The displacement effect in the free stream for the Bla-
sius boundary layer in rectangular coordinates. The
hatched area extends to y = δ∗ . . . . . . . . . . . . . 220

4.2 Potential flow past a wedge of total angle πβ. . . . . . 222

4.3 Morphology of the Falkner-Skan boundary layers in
terms of the parameters (β, m). The various icons
depict channel flows with channel heights proportional
to 1/u∞. . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4.4 (Figures from A.M.O. Smith) . . . . . . . . . . . . . . 227

4.5 Saddle structure at Y =∞ of the Falkner-Skan bound-
ary layer for β = ∞ (sink flow, F ′′(0) = 1.154701).
The integral curves are drawn for C = 0, 2/3, 4/3 in
equation (4.83). . . . . . . . . . . . . . . . . . . . . . . 232

4.6 Pseudo-saddle structure at Y = ∞ of the Falkner-
Skan boundary layer for β = 5. The conventional
integral curves are drawn for f ′′(0) = 1.11981, 1.16981,
1.19981. Two other integral curves begin at (f, f ′, f ′′)
= (5, 1.5,−1.2) and (10, 1.6,−1.1). . . . . . . . . . . . 233

4.7 Some oscillating solutions of the Falkner-Skan bound-
ary layer equation for β = 5. The integral curves are
drawn for F ′′(0) = 1.11430, 1.11447, 1.16981. The last
of these is the classical solution. . . . . . . . . . . . . . 235

4.8 Pseudo-saddle structure at η =∞ of the Falkner-Skan
boundary layer for β = 1. The conventional integral
curves are drawn for f ′′(0) = 1.18259, 1.23259, 1.28259.
Two other integral curves begin at (f, f ′, f ′′) = (5, 1.48,
−1.2) and (1, 1.48,−1.9). . . . . . . . . . . . . . . . . 236

4.9 Neutral structure at η = ∞, showing Töpfer map-
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Preface

AUTHOR’S DRAFT PREFACE

This section was found in an early draft of this monograph. While
it was not revised after the author added much of the content of this
work, we include it as it conveys his motivation and approach.
– K. Coles

Even limited exposure to industrial problems involving fluid mechan-
ics shows that there is a pervasive need for a comprehensive, critical
compilation of empirical knowledge in the field of turbulent shear
flow. The enormous experimental literature published during the
last fifty years, literally thousands of papers, is still mostly undi-
gested. This literature is generated in governmental and industrial
research laboratories and in university departments of aeronautical,
chemical, civil, environmental, and mechanical engineering at insti-
tutions all over the world. There are also important applications in
ocean engineering, vehicle and building aerodynamics, dynamic me-
teorology and physical oceanography, and even in planetary physics
and astrophysics.

With industrial problems in mind, Anatol Roshko and I have
developed over the past 20 years a graduate course in aeronautics
at Caltech called “Technical Fluid Mechanics.” The emphasis is
strongly on turbulent shear flow. The course is normally given every
year and is well attended. It draws graduate students from several
engineering options other than aeronautics and is also open to se-

xxv
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lected undergraduates who have had at least a first course in fluid
mechanics.

For various reasons, none of the existing monographs that
might be consulted by engineers or used as textbooks in advanced
engineering courses on turbulent flow is a satisfactory reference for
such a course. The most common defect is a lack of adequate ex-
perimental content. When I took the decision in 1986 to write this
monograph, much of the lecture material for the course had already
been laboriously collected from the experimental literature, although
without much critical compilation or comparison of data from differ-
ent sources. Nevertheless, a large part of the necessary bibliographi-
cal preparation and interpretation of data had been carried out, and
a solid foundation for a monograph on technical fluid mechanics did
exist. To produce this book has involved a substantial commitment
for several years, once adequate support was obtained for assembling
and collating experimental data.

The fundamental premise for the book is that the only reliable
information about turbulent flow is experimental information. This
varies greatly in quality and completeness, and needs to be carefully
screened. Some additional premises will be self-evident in the text.
First, it is advisable to understand thoroughly the laminar version
of a particular flow, because some conceptual problems are not pe-
culiar to turbulent flow; e.g., the third boundary condition for the
mixing layer, or the integral invariant for the wall jet. Second, the
most powerful organizing principle so far available for both laminar
and turbulent flow is the principle of similarity. Third, the most
important phenomenological concept for many turbulent flows is the
concept of entrainment. The need of the user is often likely to be for
hard numbers and practical insights, rather than for elegance. I have
therefore made some use of mixing-length and eddy-viscosity ideas,
and even power-law methods, as primitive links between fundamental
and technical problems.

Each chapter of the book deals with one of the classical shear
flows (mixing layers, jets, plumes, wakes, boundary layers, pipe flow,
and so on ) and with its ramifications, or with an important technical
problem such as flow management. Wherever possible, the presen-
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tation is intended to suggest how various flow problems might be
connected analytically and experimentally one to another, using as
far as possible a consistent notation and a consistent level of rigor
and detail.

In practically all cases, I have organized and presented the data
in the language of the Reynolds-averaged equations of motion, since
there is general agreement that these equations, although incomplete,
are at least correct. The important areas of turbulence modeling and
numerical simulation are served indirectly, by extensive documenta-
tion of the experimental facts that modeling and simulation attempt
to reproduce. I have made every effort to ensure that the mate-
rial of the monograph will not quickly become dated. The rapidly
evolving subject of coherent structure is therefore discussed only in
cases where the Reynolds-averaged equations clearly do not suffice
for describing the phenomenology of particular turbulent flows. An
example is the sublayer of a turbulent flow near a smooth wall.

Finally, I found it essential to limit the objectives of the book.
Combustion is not discussed. Neither is the very large subject of
compressibility, including aerodynamic noise. Transition is viewed
primarily from the turbulent side, with the elements of randomness
and three-dimensionality already present. Effects of body forces as-
sociated with buoyancy or curvature are discussed, but not in the
context of the classical Benard or Couette flows. Grid turbulence is
mentioned mainly in connection with flow management. Instrumen-
tation and experimental techniques are discussed mainly in connec-
tion with questions of good experimental practice.

The list of references cited in this monograph is extensive but
not exhaustive. The list is most complete when my objective is to
assemble and compare the experimental evidence on some special
topic. In the face of a large volume of material, my task has been
made easier by the evolution of the scientific literature from archival
journals to abstract journals to survey and review volumes. I have
made heavy use of Science Citation Index and of the surveys that
are a common component of Ph.D. theses. I have also used the series
of unpublished reports prepared by various groups of experts for the
second (1980-1981) Stanford conference on computation of turbulent
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flow. Finally, I have taken the time to study most of the original
papers that have laid the foundations of fluid mechanics since the
middle of the 19th century. This study changed my ideas about the
way that classical contributions to mechanics have been introduced
and developed. It also influenced this monograph in a way that I
hope will be seen as respect for the uses of the past.

In a real sense, the part of fluid mechanics treated in this mono-
graph is a mature subject. A histogram in time constructed for the
references cited here shows that paper production is level or decreas-
ing. A reasonable inference is that the classical turbulent shear flows
are thought, rightly or wrongly, to be under good control. Activity
is shifting to study of coherent structure and to exploitation of the
power of large computing machines. Another area developing slowly
but promising important contributions is the relationship of turbu-
lence to dynamical systems theory. I hope that this monograph will
be useful in support of these efforts as well as in solution of engineer-
ing problems.

D.C.
(July 1995)

EDITOR’S NOTE

The pages that follow represent an attempt to reconstruct the un-
finished book left by Donald Coles at his death in May of 2013.
Combining a large number of computer files, drafts and printouts
of figures, and various scraps of manuscript and lecture notes has
proven challenging. In places internal clues indicate the intent of the
author the last time he reviewed or revised a section. The editing
was done between late 2013 and the present by myself and Betsy
Coles, who also assembled and updated the computer files.

Don Coles often said he wanted to write this work, and over
twenty years ago he began writing to colleagues requesting original
experimental data so he could replot them in a uniform way. The
task of creating the plots for figures, with the help of assistants he
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hired, occupied the great majority of time and effort in the author’s
later years. His intention to complete the figures before turning his
attention to revising the respective chapters accounts for the frag-
mentary state of parts of the text.

The working title was “Topics in turbulent shear flow.” We
shortened this title at the suggestion of Prof. Anatol Roshko, who
pointed out that the author treats laminar flow, typically at length,
before considering corresponding turbulent flows. We did not track
down many of the references to unspecified sections or figures else-
where in the work; some were never created or have not been found.

The manuscript used arbitrary chapter numbers. Some refer-
ences (e.g., to missing figures) use these old numbers rather than
the consecutive chapter numbers of this edition. The author’s typo-
graphic conventions, which we have followed where possible, include:

CAPITALS: Names of cited or referenced authors; numbered figures
and tables; cited sections of this work.
Boldface: Notes to self, such as items to check or add.
Italic: Early draft or tentative material; longer notes about topics to
be covered or material to be included.

Clearly the work is incomplete. Some figures and text may yet
turn up in paper files, amounting to 50 to 75 cubic feet, that survive.
While it is my intent to survey these, it does not make sense to delay
publication of this work in the name of what will be a lengthy process
that may add little. Similarly, we have not attempted to reconstruct
a bibliography of the numerous literature references. We would be
happy to hear from anyone who cares to compile any of these or who
can suggest errors, omissions, or possible alternate readings of the
text to include in a future edition. In the words of Anatol Roshko, “It
pained [Don] to see anything not done absolutely as well as it could
possibly be done.” He would be frustrated that this work appears in
less than complete and correct form. Nevertheless, we suspect it still
contains much that may be useful and chose to share what we have.
It is time for others to pursue the ideas that lie herein. We simply
ask that those who make use of this work credit it by citation in the
usual and customary manner of scholars.
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We owe thanks to many. Over the years Don Coles was as-
sisted by a number of people. We do not have all their names, but
they included Dr. Paul Schatzle, Dr. Misha Pesenson, Dr. Gregory
Cardell, Jim Edberg, and Evan Coles-Harris. Prof. Emeritus Ana-
tol Roshko (Caltech) and Prof. Hassan Nagib (Illinois Tech) gave
helpful input and suggestions. While no dedication survives, we do
not need that evidence to know to whom Don Coles would have ded-
icated this book: Ellen Coles, the lifelong companion who assisted
him with everything he wrote.

Ken Coles
Indiana, Pennsylvania
November 2017


