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Primordial non-Gaussianities enhanced at small wavevectors can induce a power spectrum of the galaxy 
overdensity that differs greatly from that of the matter overdensity at large length scales. In previous 
work, it was shown that “squeezed” three-point and “collapsed” four-point functions of the curvature 
perturbation ζ can generate these non-Gaussianities and give rise to so-called scale-dependent and 
stochastic bias in the galaxy overdensity power spectrum. We explore a third way to generate non-
Gaussianities enhanced at small wavevectors: the infrared behavior of quantum loop contributions to 
the four-point correlations of ζ . We show that these loop effects can give the largest contributions to 
the four-point function of ζ in the collapsed limit and be observable in the context of quasi-single field 
inflation.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The inflationary paradigm [1] proposes an era in the very early 
universe during which the energy density is dominated by vacuum 
energy and the universe undergoes exponential expansion. Such a 
period elegantly explains why the universe is close to flat and the 
near isotropy of the cosmic microwave background (CMB). It also 
provides a simple quantum mechanical mechanism for generating 
energy density perturbations which have an almost scale-invariant 
Harrison–Zel’dovich power spectrum.

The simplest inflation models consist of a single scalar field 
φ, called the inflaton, whose time-dependent vacuum expectation 
value drives the expansion of the universe. The quantum fluctu-
ations in the Goldstone mode π associated with the breaking of 
time translation invariance by the inflaton [2] source the energy 
density fluctuations. In the simplest of these single field models, 
the density perturbations are very nearly Gaussian [3]. One way 
to generate measurable non-Gaussianities is to introduce a second 
field s that interacts with the inflaton field during the inflation-
ary era. A simple realization of such a model is quasi-single field 
inflation (QSFI) [4].

These non-Gaussianities affect the correlation functions of bi-
ased tracers of the underlying matter distribution such as galaxies. 
It was first pointed out in [5] and [6] that the power spectrum 
of the galaxy overdensity can become greatly enhanced relative 
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to the Harrison–Zel’dovich spectrum on large scales if the primor-
dial mass density perturbations are non-Gaussian.1 These enhance-
ments are known as scale-dependent bias and stochastic bias and 
were systematically explored in the context of QSFI in [7] and [8].2

The enhancements studied in [5] and [6] result from tree-level 
contributions to the three- and four-point functions of π that are 
in their “squeezed” and “collapsed” limits. In this paper, we con-
sider quantum loop contributions to the correlation functions of π
which (in the same kinematic limits) can also give rise to these 
long-distance effects. These loops arise from virtual excitations of 
massive scalar fields that existed during inflation.3 We find that 
the infrared region of loop integrals can induce sizable stochas-
tic bias on large scales without introducing any scale-dependent 
bias. In section 2 we illustrate this loop effect using a higher di-
mension operator that would appear in a generic effective theory 
of multi-field inflation. In section 3 we show that the loop effect 
can be observable in the context of QSFI and estimate the distance 
scale at which the loop contribution to the galaxy power spectrum 
could exceed the usual Harrison–Zel’dovich one.

1 We refer to these effects as “enhancements” even though for certain model pa-
rameters they can interfere destructively with the usual Gaussian primordial density 
fluctuations.

2 By stochastic bias, we mean the difference between the collapsed trispectrum 
and the squeezed bispectrum squared; see for example Eq. (2.7) of [7]. This stochas-
tic bias can depend on the scale.

3 These quantum loop contributions are distinct from loop contributions coming 
from, for example, higher-order terms in a bias expansion (see [9]).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. One-loop contribution to the collapsed trispectrum of the primordial curva-
ture perturbation. Dashed lines represent π , and solid lines represent s.

2. Loop-induced stochastic bias

Consider a theory of inflation that consists of two fields, the 
inflaton φ and a massive scalar s. Working in the gauge where 
φ(x) = φ0(t), the Lagrangian describing the Goldstone mode π due 
to the breaking of time translational invariance and s can be writ-
ten as

L = 1

2
gμν∂μπ∂νπ + 1

2
gμν∂μs∂ν s − m2

2
s2 + 1

�2
gμν∂μπ∂νπ s2

+ . . . , (2.1)

where the action is S = ∫
d4x

√−gL. The dimension six operator in 
(2.1) induces the one-loop contribution to the four-point function 
of π depicted in Fig. 1. The complete theory includes additional 
interactions denoted by the ellipsis above [10,11],4 which will give 
rise to other one-loop contributions that are comparable to or may 
even dominate this diagram. The goal of this section is to illustrate 
the infrared behavior of loop contributions to the correlation func-
tions of π , which have interesting implications for the correlation 
functions of galaxies. For simplicity, we only consider the interac-
tion given in (2.1) and leave a more complete study to future work.

We focus on the “collapsed” limit of the diagram, which occurs 
when the external wavevectors come in pairs that are nearly equal 
and opposite, as shown in Fig. 1 with q � ki . This contribution 
to the four-point function has previously been computed in [12], 
where the role of conformal symmetry was emphasized. In this 
section, we review this calculation and describe its effect on the 
power spectrum of galaxy overdensities.

To begin, we express the quantum fields π and s in terms of 
creation and annihilation operators

π(x, τ ) =
∫

d3k

(2π)3
a(k)πk(η)eik·x + h.c. ,

s(x, τ ) =
∫

d3k

(2π)3
b(k)sk(η)eik·x + h.c. , (2.2)

where k = |k|, and η = kτ for conformal time τ < 0. The mode 
functions satisfy the equations of motion of the free theory with 
appropriate boundary conditions and are

πk(η) = H

k3/2
π(η) , π(η) = 1√

2
(1 + iη)e−iη , (2.3)

sk(η) = H

k3/2
s(η) , s(η) = −iei(2−ν) π

2

√
π

2
(−η)3/2 H (1)

3
2 −ν

(−η) ,

(2.4)

where ν = 3/2 −√
9/4 − m2/H2 and H (1)

z is the Hankel function of 
the first kind. We assume that the mass m of the field s is much 
less than the Hubble constant H during inflation, or equivalently 

4 For example, the interaction 2φ̇0∂τ π s2/�2 will also appear.
ν � 1.5 We are interested in this region of parameter space be-
cause it leads to the largest infrared enhanced contributions to the 
four-point function.

Let us now compute the contribution in Fig. 1 to the col-
lapsed trispectrum of the primordial curvature perturbation ζ =
−(H/φ̇0)π . The primordial curvature trispectrum Tζ is defined by

〈ζk1ζk2ζk3ζk4〉c = Tζ (k1,k2,k3,k4)(2π)3δ3(k1 + k2 + k3 + k4)

(2.5)

where the subscript c denotes the connected part of the four-point 
function. In Fig. 1 k3 = −k1 + q and k4 = −k2 − q. The collapsed 
configuration T coll

ζ occurs when q � ki .
Using the in-in formalism [13] and introducing the variables 

η = k1τ and η′ = k2τ
′ we find

T coll
ζ = 32

(
H

�

)4 (
H2

φ̇0

)4
1

k3
1k3

2

∫
d3 p

(2π)3

1

|p + q|3 p3

×
0∫

−∞

dη

η2

k1
k2

η∫
−∞

dη′

η′ 2
eε(η+η′)Im [F (η)]

× Im

[
F (η′)s

( |p + q|
k1

η

)
s∗

( |p + q|
k2

η′
)

s

(
p

k1
η

)

× s∗
(

p

k2
η′

)]
+ (

k1 ↔ k2
)

(2.6)

where

F (η) = π(0)2
(
[∂ηπ

∗(η)]2 − [π∗(η)]2
)

. (2.7)

In Eq. (2.6), ε is an infinitesimal positive quantity that regulates 
the time integrations in the distant past and we have expanded in 
q � ki .

The dominant contribution of the loop integral in (2.6) comes 
from p ∼ q. Moreover, the time integrals are dominated at late 
times η , η′ ∼ −1. We can thus use the small η expansion of the s
mode function

s(η)
η→0� b1(−η)ν , |b1|2 = 21−2ν�(3/2 − ν)2/π

ν→0� 1/2
(2.8)

to find

T coll
ζ � 8

(
H

�

)4 (
H2

φ̇0

)4
1

(k1k2)3+2ν
I2ν(q) J 2 (2.9)

where

I2ν(q) =
∫

d3 p

(2π)3

1

|p + q|3−2ν p3−2ν

ν→0� 1

2π2

1

ν
q−3+4ν , (2.10)

J =
0∫

−∞

dη

η2
eεη(−η)2ν Im [F (η)] = 2−2−2ν �(2 + 2ν)

1 − 2ν

ν→0� 1

4
.

(2.11)

In (2.10) we have kept only the term singular in ν as it goes to 
zero. Note that our result is finite because we focused on the rel-
evant region p ∼ q � ki and neglected the region of large loop 
momenta which is not as important in the limit q → 0. The UV 

5 In (2.1), the mass m includes contributions from terms such as (φ̇2
0/�2)s2. Tun-

ing is required for m � H .
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divergence due to the region of large loop momentum would be 
rendered finite by a counterterm.

Our final result for the four-point function of the curvature per-
turbation for m � H and q � ki is

T coll
ζ � 1

4π2

1

ν

(
H

�

)4 (
H2

φ̇0

)4
1

k3
1k3

2q3

(
q2

k1k2

)2ν

. (2.12)

The factors of wavevector magnitudes in (2.12) essentially follow 
from the form of s(η) expanded for small η in the limit m � H , 
and from dimensional analysis. For m � H the four-point function 
is enhanced by 1/ν � 3H2/m2. This arises because for small m/H
the mode function s(η) falls off slowly as the mode k redshifts out-
side the de Sitter horizon. Note also that there is no IR divergence 
in the loop integration since the s field is massive. Three- and four-
point curvature fluctuations generated by loop effects have been 
considered in Refs. [14–17] using the δN formalism. It would be 
interesting to see if this method can reproduce (2.12).

For small q the dependence of Tζ on q in eq. (2.12) is almost 
the same as would result from a tree graph that contributes to 
it, say from iterating twice the interaction vertex that arises from 
Lint = gμν∂μπ∂νπ s/�′ in the Lagrange density. That is because 
for small m, the s propagator in de Sitter space goes roughly as 
1/q3. This is very different from flat space. To illustrate this, con-
sider the flat space equal time expectation value 〈πk1πk2πk3πk4 〉
in the kinematic limit,6 k j 
 q 
 m. At small q, the loop contribu-
tion is q-independent while the tree diagram goes as 1/q.

We now qualitatively discuss the effects of (2.12) on the galaxy 
power spectrum. To begin, the matter overdensity δR averaged over 
a spherical volume of radius R is related to the primordial curva-
ture fluctuation via

δR(k) = 2k2

5
m H2
0

T (k)W R(k)ζk (2.13)

where W R(k) is the window function, T (k) is the transfer function, 

m is the ratio of the matter density to the critical density today, 
and H0 is the Hubble constant evaluated today.

We consider an expansion for the galaxy overdensity δh in 
terms of δR of the following form

δh(x) = b1δR(x) + b2(δ
2
R(x)−σ 2

R )+ b3(δ
3
R(x)− 3δR(x)σ 2

R ) + . . . ,

(2.14)

where σ 2
R = 〈δR(x)δR(x)〉 and the constants b1, b2, and b3 are bias 

coefficients (for a more complete treatment, see [18]). The bias 
coefficients can be determined from data or computed using a 
specific model of galaxy halo formation that expresses the galaxy 
overdensity in terms of δR . The two-point function of the galaxy 
overdensity is then:

〈δh(x)δh(y)〉 = b2
1 〈δR(x)δR(y)〉 + b1b2

( 〈
(δ2

R(x) − σ 2
R )δR(y)

〉
+

〈
δR(x)(δ2

R(y) − σ 2
R )

〉 )
+ b2

2

〈
(δ2

R(x) − σ 2
R )(δ2

R(y) − σ 2
R )

〉
+ . . . (2.15)

A similar expression could be derived for the galaxy-matter cross-
correlation 〈δh(x)δR(y)〉.

Ignoring other contributions to the non-Gaussianities of ζ be-
sides the one given in (2.12), the term proportional to b2

2 in (2.15)

6 Because of time translation invariance in flat space this expectation value is 
independent of the time the fields π are evaluated at.
yields a contribution to the galaxy power spectrum of the form 
Phh(q) ∼ 1/q3−4ν , but not to the galaxy-matter cross-correlation 
Phm(q). Hence this loop contributes to stochastic bias, but not 
to scale-dependent bias. Note that in the absence of primordial 
non-Gaussianity, Phh(q) ∼ q, so the trispectrum contribution is en-
hanced by a relative factor of q−4+4ν and dominates as q → 0.

It is worth emphasizing that we have only considered one 
particular interaction in this theory, and have ignored other in-
teractions which may give even more important contributions to 
stochastic and scale-dependent bias. We now turn to a model 
within QSFI in order to make a full prediction in a consistent the-
ory.

3. Loop-induced stochastic bias in quasi-single field inflation

In this section, we show that loop-induced non-Gaussianities 
in QSFI [4] can give rise to stochastic bias that is potentially ob-
servable given the stringent constraints from CMB data on non-
Gaussianities. The model we consider consists of an inflaton φ and 
a massive scalar s with the symmetries φ → φ + c, φ → −φ, and 
s → −s. These symmetries are broken by the potential of φ as 
well as by the lowest dimension operator that couples φ and s, 
gμν∂μφ∂νφs/�. The Lagrangian written in terms of the Goldstone 
mode π is

L = 1

2
gμν∂μπ∂νπ

(
1 + 2

�
s

)
+ 1

2
gμν∂μs∂ν s

− μHτ s∂τπ − m2

2
s2 − V (4)

4! s4 (3.1)

where the kinetic mixing term is parameterized by the coupling 
μ = 2φ̇0/� and we have ignored higher order terms in the po-
tential for s. Similar to the previous section, we focus here on the 
region where m � H and μ � H , which gives the most significant 
long wavelength enhancement to the galaxy power spectrum.

Due to the kinetic mixing, π and s share a set of creation and 
annihilation operators:

π(x, τ ) =
∫

d3k

(2π)3

(
a(1)(k)π

(1)

k (η)eik·x + a(2)(k)π
(2)

k (η)eik·x

+ h.c.) (3.2)

s(x, τ ) =
∫

d3k

(2π)3

(
a(1)(k)s(1)

k (η)eik·x + a(2)(k)s(2)

k (η)eik·x

+ h.c.) . (3.3)

The mode functions π(i)
k = (H/k3/2)π(i) and s(i)

k = (H/k3/2)s(i) are 
difficult to solve for exactly. However, analytic progress can be 
made by considering series solutions. It can easily be checked that 
the most general series solutions to the mode equations derived 
from (3.1) are

π(i)(η) =
∞∑

n=0

[
a(i)

0,2n(−η)2n + a(i)
−,2n(−η)2n+α− + a(i)

+,2n(−η)2n+α+

+ a(i)
3,2n(−η)2n+3

]
(3.4)

s(i)(η) =
∞∑

n=0

[
b(i)

0,2n(−η)2n + b(i)
−,2n(−η)2n+α− + b(i)

+,2n(−η)2n+α+

+ b(i)
3,2n(−η)2n+3

]
(3.5)

where α± = 3/2 ± √
9/4 − μ2/H2 − m2/H2 and b(i)

0,0 = 0. For ease 
of notation we denote a(i) and b(i) as a(i)

r and b(i)
r . In Ref. [8], it 
r,0 r,0



M. McAneny et al. / Physics Letters B 785 (2018) 332–337 335
Fig. 2. One-loop contribution to the collapsed trispectrum of the primordial curva-
ture perturbation in QSFI. Dashed lines represent π , and solid lines represent s.

was shown that the non-Gaussianities can be well approximated 
by a finite set of combinations of the power series coefficients 
when μ, m � H . The combinations of power series coefficients 
needed to compute the loop in Fig. 2 are

Re
[
a(i)

0 b∗(i)
−

]
� −3μH

2(μ2 + m2)
, Im

[
a(i)

0 b∗(i)
3

]
= μH

2(μ2 + m2)
,

∣∣b(i)
−

∣∣2 � 1

2
, (3.6)

Im
[
a(i)

0 b∗(i)
−

]
= Im

[
a(i)

0 b∗(i)
0,2

]
= Im

[
a(i)

0 b∗(i)
−,2

]
= Im

[
a(i)

0 b∗(i)
+

]
= 0 ,

(3.7)

which were determined in [8]. The repeated superscripts (i) are 
summed over i = 1, 2. The above expressions are valid for μ/H , 
m/H � 1.

We can now compute the loop contribution to the collapsed 
limit of the curvature perturbation trispectrum shown in Fig. 2. 
Again, using the in-in formalism and the variables η = k1τ and 
η′ = k2τ

′ , we find

T coll
ζ = 2V (4)2

(
H2

φ̇0

)4
1

k3
1k3

2

∫
d3 p

(2π)3

1

|p + q|3 p3

×
0∫

−∞

dη

η4

k1
k2

η∫
−∞

dη′

η′ 4
Im

[
(π(i)(0)s∗(i)(η))2

]

× Im

[
[π( j)(0)s∗( j)(η′)]2s(k)

( |p + q|
k1

η

)

× s∗(k)

( |p + q|
k2

η′
)

s(l)
(

p

k1
η

)
s∗(l)

(
p

k2
η′

)]

+ (
k1 ↔ k2

)
. (3.8)

Similar to before, the dominant contribution to the loop integral 
occurs for loop momenta p ∼ q � ki and the time integrals are 
dominated by late times. We can immediately expand the s mode 
functions to find

T coll
ζ � 1

2
V (4)2

(
H2

φ̇0

)4
1

(k1k2)3+2α− I2α−(q)K (μ,m)2 , (3.9)

where Iν(q) is given in (2.10) and

K (μ,m) =
0∫

−∞
dη(−η)−4+2α− Im

[
(π(i1)(0)s∗(i1)(η))2

]
. (3.10)

It was shown in [8] that the most important contribution to (3.10)
is obtained by cutting off the lower bound of the integral at η0

wh
pan

K (

wh
wh
mo
res
m ,

T co
ζ

In 
int
I2ν

fec
hig
sup
cou

gal
dia
sim
at 
thr
�H

D(a
los
den
to 
δh(

the

b1

b3

wh

tion
tion
R =
σR

spe

Pm

7

ich is around horizon crossing. Inserting the power series ex-
sions of the mode functions in (3.4) and (3.5), we find

μ,m) � 2 Im
[
a(i)

0 b∗(i)
3

]
Re

[
a( j)

0 b∗( j)
−

] 0∫
η0

dη(−η)−1+3α−

� −2

3

(3μ/2)2 H4

(μ2 + m2)3
, (3.11)

ere we have neglected contributions from higher powers of η
ich are suppressed in the limit α− � 1. Note that this piece 
st singular in α− is insensitive to the choice of η0. Our final 
ult for the four-point function of the curvature perturbation for 
 μ � H and q � ki is then

ll � 1

3π2
V (4)2

(
H2

φ̇0

)4
1

k3
1k3

2q3

(
q2

k1k2

)2α−
(3μ/2)4 H10

(μ2 + m2)7
.

(3.12)

(3.12), the factors of wavevector magnitudes and α−1− from the 
egral I2α− are the same as those in (2.12) from the integral 
. These features are characteristic of quantum mechanical ef-
ts from the exchange of a massive particle [12,19]. In principle 
her loop contributions have q scaling similar to (3.12), but are 
pressed because they also have additional factors of the small 
pling constant V (4) .
We now consider the long wavelength enhancement to the 
axy power spectrum resulting from this collapsed primor-
l trispectrum. In our numerical evaluation, we make the 
plifying assumption that galaxies form at points in space 
which the smoothed matter overdensity is greater than a 
eshold density at the time of collapse δc(acoll), i.e. nh(x) ∝
(δR(x,acoll) − δc(acoll)) = �H (δR(x) − δc), where δc ≡ δc(acoll)/

coll).7 We further assume that δc(acoll) = 1.686 [20], all ha-
 collapse instantaneously at redshift z = 1.5, and their number 
sity does not evolve in time after collapse. This corresponds 
a value of δc = 4.215. The galaxy overdensity is defined by 
x) = (nh(x) − 〈nh〉)/〈nh〉. With this threshold collapse model, 
 bias coefficients are given by (see e.g. [21])

= e
− δ2

c
2σ2

R√
2πσR〈nh〉

, b2 = δc

σR

e
− δ2

c
2σ2

R

2!√2πσ 2
R 〈nh〉

,

=
(

δ2
c

σ 2
R

− 1

)
e
− δ2

c
2σ2

R

3!√2πσ 3
R 〈nh〉 (3.13)

ere 〈nh〉 = erfc
(
δc/(

√
2σR)

)
/2. We use the BBKS approxima-

 to the transfer function [22] and the top-hat window func-
 W R(k) = 3(sin(kR) − kR cos(kR))/(kR)3. Moreover, we take 
1.9 Mpc/h as the smoothing scale, and numerically we find 

= 3.62.
The Fourier transform of 〈δR(x)δR(y)〉 gives the matter power 
ctrum Pmm(q):

m(q) =
(

2

5
m H2
0

)2 (
H2

φ̇0

)2

C2(μ,m)T (q)2q , (3.14)

δR (x) is the linearly evolved matter overdensity today.
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Fig. 3. These two tree-level diagrams involving the V (4) interaction can also contribute to scale-dependent and stochastic bias. However, these contributions are small 
compared to the loop contribution in Fig. 2 due a suppression arising from the integration over additional hard external wavevectors.
Fig. 4. The ratio Phh(q)/b2
1 Pmm(q) is plotted for τ 2σ

N L = 2800 (Planck 2013) in black, 
and τ 2σ

N L /2 = 1400 in red. In blue, we plot the power spectrum ignoring the loop 
contribution and considering only the tree diagrams in Fig. 3, using the τ 2σ

N L bound. 
Note that the enhanced behavior begins around (200 Mpc/h)−1 for the black curve, 
and around (300 Mpc/h)−1 for the red curve. Moreover, note that the tree con-
tributions in blue are very small compared to the loop contribution in black. We 
plot for μ/H = m/H = 0.274, corresponding to α− = 0.05. Moreover we take 
R = 1.9 Mpc/h and δc = 4.215 (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.).

where C2(μ, m) = 1/2 + 2(3μ/2)2 H2/(μ2 + m2)2 [8]. It then fol-
lows from (2.15) that the ratio of the galaxy power spectrum to 
the matter power spectrum normalized by b2

1 is

Phh(q)

b2
1 Pmm(q)

= 1 + b2
2

b2
1

(
2

5
m H2
0 R2

)2 (
H2

φ̇0

)2
V (4)2J 2

3π2

× (qR)−4+4α−

T (q)2

(3μ/2)4 H10

(μ2 + m2)7C2(μ,m)
(3.15)

where

J = 1

2π2

∞∫
0

du T (u/R)2 W R (u/R)2 u3. (3.16)

The V (4) interaction in (3.1) also gives rise to the tree-level di-
agrams shown in Fig. 3 which contribute to the long wavelength 
enhancement of the galaxy power spectrum. However, these terms 
contain integrals with three transfer functions rather than two like 
in (3.16). This integral then gives ∼ J 3/2 rather than J . Numer-
ically we find J ≈ 3.1 × 10−5 so the contributions from these 
tree-level diagrams are suppressed, as can be seen in Fig. 4.

One could also consider the contribution of the (∂π)2s/� inter-
action in (3.1) to Phh(q). However, estimating f N L = 5Bζ (k, k, k)/

18Pζ (k)2 from this interaction numerically, we find that f N L �
10−2 for μ/H , m/H � 0.4. This small f N L has a negligible con-
tribution to Phh(q) compared to the loop contribution we have 
considered.

We can constrain V (4) using the bounds on τN L and gN L from 
Planck 2013 and 2015 [23,24]. The bound due to τN L is estimated 
using (3.12), with factors of (q/k)α− set to 1 in order to match 
the τN L shape. The bound due to gN L is estimated using the tree-
level four-point diagram with a single V (4) vertex, with factors of 
(ki/k j)

α− set to 1 to match the gN L shape. We take τ 2σ
N L = 2.8 ×103

and g2σ = −2.44 ×105 as the maximum allowed values of τN L and 
N L
gN L at a 2σ confidence level. We find that for most of the (μ, m)

parameter space τ 2σ
N L gives the stronger constraints on V (4) . For 

μ/H = m/H = 0.274 (so that α− = 0.05), we find that the τ 2σ
N L

constraint yields V (4) ≤ 0.014.
In Fig. 4, we plot the ratio Phh(q)/b2

1 Pmm(q). The enhanced be-
havior begins at around q ∼ (200 Mpc/h)−1 and q ∼ (300 Mpc/h)−1

for the values of V (4) that saturate the τ 2σ
N L (black curve) and 

τ 2σ
N L /2 (red curve) bounds. Moreover, the blue curve is the con-

tribution due solely to the tree-level diagrams in Fig. 3 using the 
τ 2σ

N L bound, and is significantly smaller than the loop contribution 
shown in black.

Finally we briefly comment on how our results depend on the 
parameters R and δc . The loop contribution to Phh(q)/b2

1 Pmm(q)

is insensitive to the choice of smoothing radius R . The tree-level 
contributions in Fig. 3 increase as R increases, yet even for R =
2.7 Mpc/h, we find that the loop contribution remains an order of 
magnitude larger than the tree-level contributions. Furthermore, 
since b2/b1 ∼ δc , the second term in (3.15) goes like δ2

c /q4−4α− . 
This implies that the characteristic scale q0 at which the long-
wavelength enhancements become significant depends on δc like 
q0 ∼ δ

1/2
c .

4. Concluding remarks

Using a particular QSFI model, we have shown that one loop 
contributions to the four-point function of the curvature perturba-
tion ζ in the collapsed limit can be even larger than the tree-level 
ones. In such cases the dominant contribution to stochastic bias at 
long wavelengths comes from primordial quantum loops. In this 
model, the one-loop contribution to the four-point function of pri-
mordial curvature perturbations induces a non-Gaussian contribu-
tion to the galaxy power spectrum Phh(q) that is five times larger 
than the Gaussian one at q ∼ h/(500 Mpc) for values of τN L and 
gN L at only half their current 2σ bounds. These non-Gaussianities 
could be observed in upcoming large-scale surveys [26,27,25].

It would be interesting to study the effects of these loop con-
tributions to the bias within the framework of the effective field 
theory of inflation. At a minimum, this would require the compu-
tation of the one-loop diagram presented in section 2 and the ones 
due to the interaction LI ∼ π̇ s2.
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