Gesztesy, Fritz and Simon, Barry (1997) m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices. Journal d'Analyse Mathématique, 73 (1). pp. 267-297. ISSN 0021-7670. doi:10.1007/BF02788147. https://resolver.caltech.edu/CaltechAUTHORS:20180110-165033558
Full text is not posted in this repository. Consult Related URLs below.
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180110-165033558
Abstract
We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H. Our results include a new proof of the central result of the inverse theory (that the spectral measure determines H). We prove an extension of the theorem of Hochstadt (who proved the result in case n = N) that n eigenvalues of an N × N Jacobi matrix H can replace the first n matrix elements in determining H uniquely. We completely solve the inverse problem for (δ_n , (H-z)^(-1) δ_n ) in the case N < ∞.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
ORCID: |
| ||||||||||||
Additional Information: | © Hebrew University of Jerusalem 1997. This material is based upon work supported by the National Science Foundation under Grant Nos. DMS-9623121 and DMS-9401491. | ||||||||||||
Funders: |
| ||||||||||||
Issue or Number: | 1 | ||||||||||||
DOI: | 10.1007/BF02788147 | ||||||||||||
Record Number: | CaltechAUTHORS:20180110-165033558 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20180110-165033558 | ||||||||||||
Official Citation: | Gesztesy, F. & Simon, B. J. Anal. Math. (1997) 73: 267. https://doi.org/10.1007/BF02788147 | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 84241 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | George Porter | ||||||||||||
Deposited On: | 11 Jan 2018 18:11 | ||||||||||||
Last Modified: | 15 Nov 2021 20:18 |
Repository Staff Only: item control page