Supporting Information for

“Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO₂ Injections”

Jadwiga H. Richter¹, Simone Tilmes¹,², Michael J. Mills², Joseph J. Tribbia¹, Ben Kravitz³,
Douglas G. MacMartin⁴,⁵, Francis Vitt², Jean-Francois Lamarque⁴

¹Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO, USA
²Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO, USA
³Pacific Northwest National Laboratory, Richland, WA, USA
⁴Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
⁵Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

Figures

Corresponding author: Jadwiga H. Richter, jrichter@ucar.edu
Figure 1. Temperature differences between the 12 Tg yr$^{-1}$ Equatorial 25 km injection simulations with interactive chemistry (IC) and specified chemistry (SC). Contour interval is 1.0 K. The zero contour is omitted. Areas not statistically significant at the 95% level based on a student’s t-test are stippled. The green solid contour depicts an SO$_4$ mass mixing ratio of 40 µg S kg$^{-1}$ air, and the dashed contour depicts a mixing ratio of 12 µg S kg$^{-1}$ air.
Figure 2. Change of total oxygen chemical ozone loss rates between various 12 Tg single injection simulations and control simulation, averaged between 2042 and 2049: a) Equatorial 25 km, b) Equatorial with specified chemistry 25 km, c) 15°S 25 km, d) 15°N 25 km, e) 30°S 23 km, and f) 30°N 23 km. Contour interval is 5×10^4 molec cm$^{-3}$ s$^{-1}$. The zero contour is omitted. Areas not statistically significant at the 95% level based on a student's t-test are stippled.