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I. Gas-Phase Boundary Layer Transport11

The governing equation for gas-phase boundary layer mass transport of a tracer molecule of12

concentration Cδ
g across a layer of thickness δ on the wall of a chamber is :13

∂Cδ
g

∂t
=

∂

∂x

[
(Dg + kex

2)
∂Cδ

g

∂x

]
= (Dg + kex

2)
∂2Cδ

g

∂x2
+ 2xke

∂Cδ
g

∂x
(S1)

where Dg is the vapor molecular diffusivity in the gas phase, and ke is the eddy diffusivity14

coefficient characteristic of mixing in the bulk of the chamber.1,2
15

The boundary condition at the outer extent of the boundary layer, x = δ, is:16

Cδ
g (δ, t) = Cb

g(t) (S2)

where Cb
g(t) is the concentration in the bulk of the chamber.17

The rate of change of Cb
g(t) owing to removal from the bulk by transport to and uptake18

by the chamber wall is:19

V
dCb

g(t)

dt
= −A

[
(Dg + kex

2)
∂Cδ

g

∂x

]∣∣∣∣∣
x=δ

(S3)

where V and A are the volume and surface area of the chamber, respectively.20

The boundary condition on Cδ
g at the wall surface, x = 0, owing to equality of fluxes, is:21

Dg

(
∂Cδ

g

∂x

)∣∣∣∣∣
x=0

=
αwω

4

(
Cδ
g

∣∣
x=0
− Cs
Kw

)
(S4)

where αw is the accommodation coefficient at the wall, ω is the mean molecular velocity of22

the species, and Kw =
Cw
γ∞c∗

. γ∞ is the activity coefficient of vapor molecules dissolved in23

the wall, c∗ is the species mass saturation concentration, Cw is the effective organic mass24

concentration of the wall, by analogy to the effective aerosol mass concentration used in25

describing vapor-particle uptake,3 and Cs is the species concentration uniformly dissolved in26
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the wall surface layer.27

Correspondingly, the rate of change of Cs(t) is:28

V
dCs(t)

dt
= A

[
(Dg + kex

2)

(
∂Cδ

g

∂x

)]∣∣∣∣∣
x=0

(S5)

The concentration profile of vapors in the boundary layer will eventually relax to a quasi-29

steady state, under which the governing equation for the gas-phase concentration reduces30

to:31

0 =
∂

∂x

[
(Dg + kex

2)
∂Cδ

g

∂x

]
(S6)

The boundary conditions on Eq. (S6) are Cδ
g (δ, t) = Cb

g(t) and Cδ
g (0, t) = Cδ

g,0(t), where32

Cδ
g,0(t) is the gas-phase concentration immediately above the wall surface. Note that the time33

t refers to that in the period after which quasi-steady state conditions have been reached.34

The solution to Eq. (S6) subject to its boundary conditions is:35

Cδ
g (x, t) =

(
Cb
g(t)− Cδ

g,0(t)
)

arctan

(
x

√
ke
Dg

)
/ arctan

(
δ

√
ke
Dg

)
+ Cδ

g,0(t) (S7)

The rates of change of Cb
g(t) and Cs(t) over the entire chamber are:36

V
dCb

g(t)

dt
= −A

[
(Dg + kex

2)
∂Cδ

g

∂x

]∣∣∣∣∣
x=δ

= −
(
Cb
g(t)− Cδ

g,0(t)
)√

keDg/ arctan

(
δ

√
ke
Dg

)
= −αwω

4

(
Cδ
g,0(t)− Cs(t)

Kw

)

= −A Dg

(
∂Cδ

g

∂x

)∣∣∣∣∣
x=0

= −V dCs(t)
dt

(S8)

Since Cδ
g,0(t) is unknown, we can rewrite Eq. (S8) as:37

dCb
g(t)

dt
= −

(
A

V

)(
1

ve
+

1

vc

)−1(
Cb
g(t)−

Cs(t)

Kw

)
= −dCs(t)

dt
(S9)
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where ve =
√
keDg/ arctan

(
δ

√
ke
Dg

)
and vc =

αwω

4
. Under typical chamber conditions,38

δ2ke
Dg
� 1, ve =

2

π

√
keDg. The initial condition is: at t = 0, Cb

g = Cb
g0 and Cs = 0. From39

Eq. (S9), we can solve for the time evolution of Cb
g and Cs.40

If we define ∆C(t) = Cb
g(t)−

Cs(t)

Kw

as the deviation from equilibrium, we can derive the41

rate of change of ∆C(t) from Eq. (S9):42

d∆C(t)

dt
=

d

[
Cb
g(t)−

Cs(t)

Kw

]
dt

= −
(
A

V

)(
1 +

1

Kw

)(
1

ve
+

1

vc

)−1

∆C(t) (S10)

So the vapor-wall equilibration time scale (τvwe)is:43

τvwe =

(
A

V

)−1(
1 +

1

Kw

)−1(
1

ve
+

1

vc

)
(S11)

The two key parameters in the vapor-wall interaction are the accommodation coefficient44

on the wall αw and the vapor-wall equilibrium constant Kw. Of interest is the extent to45

which αw and Kw impact the time for the gas-phase concentration to reach quasi-steady46

state within the boundary layer. For example, for the Caltech chamber, the eddy diffusion47

coefficient ke = 0.075 (s−1),4 and
A

V
= 2.08 (m−1); we assume Dg = 5× 10−6 (m2 s−1), and48

ω = 200 (m s−1). To satisfy the condition
δ2ke
Dg
� 1, the boundary layer thickness δ is on the49

order of 10−1 m.1 We will consider as well δ values of 10−2 and 100 m. αw and Kw are varied50

to estimate the time scale for the gas-phase concentration to reach 95% of its quasi-steady51

state profile with the boundary layer thickness δ = 10−1, 10−2, and 100 m, respectively.52

The time scales are shown in Fig. S1, indicating that for a wide range of boundary layer53

thickness δ, the gas-phase boundary layer reaches quasi-steady state within ∼ 10 s. Based54

on this conclusion, it is reasonable to use the quasi-steady-state flux directly in calculations.55
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Figure S1: Time scale for gas-phase concentration to reach 95% of the quasi-steady state in
a boundary layer of thickness of (A) δ = 0.1 m, (B) δ = 0.01 m, and (C) δ = 1 m.
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II. Activity and Accommodation Coefficients56

This section addresses the information used to calculate γ∞ and αw based on data from the57

literature.5–8
58

The activity coefficient γ∞ in Teflon film can be calculated by the following equation:59

γ∞ =
MWvoc

MWw

· Cw
c∗ · Cs/Cg

(S12)

where MWvoc and MWw are the molecular weight of the compound (varies, listed in the60

following table) and the wall (assumed 200 g mol−1),5 Cw is the equivalent wall mass con-61

centration (e.g., 32.2 mg m−3 for the chambers used by Krechmer et al. 8 and Ziemann et62

al.6,7), c∗ is the saturation concentration (µg m−3, estimated by EVAPORATION9), and63

Cs/Cg is the ratio of vapor concentration dissolved in the wall surface layer to that in the64

gas phase at equilibrium (data from the literature5–8). See the caption of Fig. S2 for details.65

The characteristic equilibration timescale τvwe for gas-wall partitioning is:66

τvwe =
1

kg→w + kg←w
=

1

kg→w

1

1 + 1/Keq

(S13)

where kg→w =

(
A

V

)(
4

αwω
+
π

2

1√
keDg

)−1

, Keq =
kg→w
kg←w

=

(
Cs
Cg

)
eq

, and ω =

√
8RT

πMWvoc

,67

R is the gas constant, and T is temperature. Both the gas-to-wall transfer constant kg→w68

and the equilibrium constant Keq determine the characteristic timescale τvwe. kg→w is de-69

termined by both the surface accommodation coefficient αw and the eddy diffusivity ke in70

the chamber. For either monofunctional or multifunctional compounds, Krechmer et al. 8
71

recommended constant timescales (1800 s and 600 s) in the same chamber simulation, even72

though the equilibrium constants are different. Such an assumption (τvwe is fixed, but Keq73

varies) requires that the accommodation coefficient αw is compound-dependent.74

We can calculate the surface accommodation coefficient αw with the following equation75
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derived from EQ. (S13):76

αw =
4

ω

[
τvwe

(
A

V

)(
1 +

1

Cs/Cg

)
− π

2

1√
keDg

]−1

(S14)

Estimates of the characteristic timescale τvwe and the ratio Cs/Cg at equilibrium can be77

obtained from measurements in the literature.5–8 Krechmer et al. 8 suggested the eddy dif-78

fusivity ke could be calculated by:79

ke = 0.004 + 5.6× 10−3V 0.74 (S15)

With a chamber volume of V = 8 m3, ke = 0.03 s−1. The gas-phase diffusivity Dg is set80

as a constant 5 × 10−6 m2 s−1 for all compounds. The calculated values of αw are listed in81

Table. S1 and shown in Fig. S3. An empirical equation fitted to the data clearly indicates a82

negative dependence of αw on the vapor saturation concentration, which is consistent with83

the expectation that less volatile compounds are more “sticky”. Note that when ke = 0.0384

s−1, negative values of αw result from the NO–
3 -CIMS data,8 suggesting that under their85

chamber conditions, the limiting step is gas-phase boundary layer diffusion (Fig. S3, left86

upper grean area), which was verified by turning on the fan inside the chamber (so that ke87

increases) leading to a much faster decay rate. For the Caltech chamber, ke = 0.075 s−1,88

calculated based on the particle-wall deposition rate,4 yields a critical αw = 7.80 × 10−6
89

(ω = 200 m s−1), corresponding to c∗ = 4 × 103 µg m−3 from the fitting expression (Fig.90

S3). The range of saturation concentration c∗ of the compounds studied by Zhang et al. 10
91

is 10−1 − 106 µg m−3. We apply this fitting expression (Fig. S3) to predict αw.92
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Figure S2: Panel (A) Activity coefficients γ∞ in FEP film calculated from the literature5–8

as a function of vapor saturation concentration (c∗) estimated by EVAPORATION.9,11 Raw
data used to calculate γ∞ are provided in Table S1. n-alkanes and 1-alkenes (green) are
from Matsunaga and Ziemann.5 2-ketones, 2-alcohols, monoacids, and 1,2-diols (magenta)
are from Yeh and Ziemann.7 Alkylnitrates (cyan) are from Yeh and Ziemann.6 I– -CIMS
(red) and NO3

– -CIMS (blue) are from Krechmer et al..8 SIMPOL.112 predicts vapor pres-
sure by summation of group contributions, and EVAPORATION considers group position
effect for multifunctional isomers. The difference in vapor pressure estimated by these two
methods is within a factor of 2 ∼ 3. For multifunctional isomers, all HNs8 (hydroxynitrates)
are 1-OH-5-alkylnitrates, DHNs (dihydroxynitrates) are 1,5-OH-2-alkylnitrates, THNs (tri-
hydroxynitrates) are 1,2,5-OH-6-alkylnitrates, and DHCNs (dihydroxycarbonylnitrates) are
1,2-OH-5-carbonyl-6-alkylnitrates. Measurements by I– -CIMS8 are thought to be biased by
“memory” effects arising from sampling tube and instrument inlet; thus, they are excluded
in the fitting. Panel (B) Fraction Fg at vapor-wall equilibrium remaining in the gas phase8

as a function of γ∞c∗. Fg =
1

1 + Cw/(γ∞c∗)
, where Cw = 32.2 mg m−3 corresponding to

Le = 5 nm and surface-to-volume ratio
A

V
= 3 m−1.
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Figure S3: Accommodation coefficient of vapor molecules on the Teflon wall αw versus
saturation concentration c∗. Data are from the Ziemann group.5–7 An empirical relationship
is fitted to the data points. The critical αw point13 (5.12× 10−6, corresponding to ke = 0.03
s−1, marked by an arrow) is that at which the rate of mass transport to the wall shifts from
the gas-phase boundary layer diffusion regime (green area) to the interfacial accommodation
regime (blue area). The fitted line indicates that the compounds studied by Krechmer et al. 8

(c∗ in the range of 10−2 − 104 µg m−3) lie in the gas-phase boundary layer diffusion regime.
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III. Analytical Solution for the Kinetics of the System93

G
k0−−−→ X

k1−−−⇀↽−−−
k–1

Y94

The system dynamics are described by the set of linear ODEs:95

d

dt
W = A ·W (S16)

where W =


G

X

Y

, A =


−k0 0 0

k0 −k1 k−1

0 k1 −k−1

. The initial condition is W0 =


G0

0

0

. The96

eigenvalues of A are λ1 = −k0, λ2 = 0, and λ3 = −(k1 + k−1).97

When k0 6= k1 +k−1, the analytical solution for the concentrations of the three species is:98

1

G0

W =


1

−k0 + k−1

k0 − k1 − k−1
k1

k0 − k1 − k−1

 e−k0t +


0

k−1

k1 + k−1
k1

k1 + k−1

+


0

k0k1/(k1 + k−1)

k0 − k1 − k−1

− k0k1/(k1k−1)

k0 − k1 − k−1

 e−(k1+k−1)t (S17)

When k0 = k1 + k−1, the solution is:99

1

G0

W =


1

− k−1

k1 + k−1

− k1

k1 + k−1

 e−k0t +


0

k−1

k1 + k−1
k1

k1 + k−1

+


0

k0k1

k1 + k−1

− k0k1

k1 + k−1

 te−(k1+k−1)t (S18)

After the oxidation period of duration t0, during which G is oxidized to X, X(t0)+Y (t0) =100

Xe + Ye = 1− e−k0t0 , where Xe and Ye are equilibrium concentrations of X and Y and have101

S17



a relationship of
Ye
Xe

= K =
k1

k−1

. Thus the derivation from equilibrium ε(t0, K) is102

ε(t0, K) =
X(t0)−Xe

Ye
=
X(t0)− (1− e−k0t0)

1

1 +K

(1− e−k0t0)
K

1 +K

(S19)
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IV. Fresh versus Aged Teflon Chambers103

Ratios of the inferred molecular diffusivities in fresh vs. aged Teflon as a function of c∗ are104

shown in Fig. S4, based on the measurements of Zhang et al. 10 It is found that the inferred105

diffusivity in fresh Teflon chambers is ∼ 1 order of magnitude lower than that in an aged106

chamber. No apparent trend for high-NOx and low-NOx conditions is evident. Over 330107

experiments were carried out in the “aged” Caltech chambers from 2012 to 2014, whereas108

the “fresh” data were obtained immediately after installation of new chambers. A change109

in polymer diffusivity over time has been reported,14 attributed to unrecoverable inter-chain110

bonds, such that subsequent diffusion events are characterized by internal stress relaxation.15
111

Differences in measured vapor-wall deposition rates between fresh and aged Teflon cham-112

bers are consistent with the observations by Loza et al. 16 that the first-order vapor-wall loss113

rate is essentially negligible in new chambers but increases as more and more experiments114

are performed. However, this observation is not in conflict with that by Matsunaga and115

Ziemann 5 of a lack of chamber age dependence for surface layer absorption,15 since the sur-116

face layer, i.e. the sharp and swollen boundary interface, is the same in either fresh or aged117

Teflon chambers.118

The effect of temperature on vapor-wall deposition was studied at 45◦C and 20◦C for three119

relatively volatile species (isoprene, MACR, and MVK, Fig. S4). The data indicate that at120

higher temperature, these three species exhibit a slower wall deposition rate. The reason is121

unclear; it could be a result of decreased surface accommodation at higher temperature, as122

parameterized by αw.123
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Figure S4: Ratio of inferred diffusivity in fresh to aged Teflon film as well as that at 45◦C to
20◦C as a function of saturation concentration c∗. Since the wall accommodation coefficient,
αw, at 45◦C is assumed the same as that at 20◦C, the smaller inferred diffusivity at 45◦C
could also be caused by lower αw at higher temperature.
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V. Humidity Effect on Teflon Inner Layer Diffusivity124

Figure S5: Inferred Diffusivity Deff (m2 s−1) in FEP Teflon film as a function of saturation
concentration c∗ (µg m−3) at different relative humidities for alcohols (C6-C12 1-alcohols),
alkanes (C12-C14 n-alkanes and n-octylcyclohexane), aromatics (toluene, m-, o-xylene, and
1,3,5-trimethylbenzene), and biogenic compounds (isoprene, MACR, MVK, and α-pinene).
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VI. Exact and Approximate Solutions for the Kinetics125

of the System X
k1−−−⇀↽−−−

k–1

Y
k2−−−→ Z126

The system dynamics are described by the set of linear ODEs:127

d

dt
W = A ·W (S20)

where W =

X
Y

, and A =

−k1 k−1

k1 −k−1 − k2

. It is assumed that X and Y rapidly come128

to equilibrium. The initial condition is W0 = X0

 1

k1/k−1

.129

The eigenvalues of A are:130

λ1 =
−(k1 + k−1 + k2)−

√
(k1 + k−1 + k2)2 − 4k1k2

2

λ2 =
−(k1 + k−1 + k2) +

√
(k1 + k−1 + k2)2 − 4k1k2

2

(S21)

The solution of Eq. (S20) is131

1

X0

W =
1

X0

X(t)

Y (t)

 = − λ2

λ1 − λ2

 1

k1 + λ1

k−1

 eλ1t +
λ1

λ1 − λ2

 1

k1 + λ2

k−1

 eλ2t (S22)

And by mass balance:132

Z(t) = X0

(
1−X(t) +

k1

k−1

(1− Y (t)

)
(S23)

Under conditions that k2 � k1 + k−1, that is, rapid equilibrium established by X and Y,133

we can derive approximate solutions.134
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First, the eigenvalues can be simplified as:135

λ1 = −(k1 + k−1)− k−1

k1 + k−1

k2

λ2 = − k1

k1 + k−1

k2

(S24)

We note that
λ2

λ1

� 1. If the equilibrium constant Keq =
k1

k−1

� 1, λ1 = −k1 − k−1 and136

λ2 = −k2. If Keq � 1, λ1 = −k1 − k−1 − k2 and λ2 = − k1

k−1

k2.137

Second, the slow change of X owing to the slow conversion of Y to Z is usually described138

in terms of a first-order rate constant kXw , in the units of time−1:139

kXw =
1

X

dX

dt
=

λ1λ2

λ1 − λ2

eλ1t
(
e(λ2−λ1)t − 1

)
λ1

λ1 − λ2

eλ1t
(

e(λ2−λ1)t − λ2

λ1

) = λ2
e

(
λ2

λ1

−1)λ1t

− 1

e
(
λ2

λ1

−1)λ1t

− λ2

λ1

∼ λ2
e−λ1t − 1

e−λ1t

= λ2

(
1− eλ1t

)
(S25)

EQ. (S25) indicates that at the outset when t is small, the rate of change of X is kXw ∼ −λ2λ1t,140

which results in a relatively flat profile of X. As t→∞, kXw ∼ −λ2, suggesting that, X and141

Y can be viewed as a group, for which the net loss rate is λ2.142
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VII. Application in Chamber Simulations143

This two-layer model can be readily incorporated into models of vapor and particle dynamics144

in chambers, since only the fates of vapor molecules in gas phase and in the surface layer145

have to be tracked. The scheme X
k1−−⇀↽−−

k–1

Y
k2−−→ Z can simplify this incorporation, where146

X is the gas-phase concentration of concern and Y corresponds to its concentration in the147

surface. Thus the ordinary differential equations for X and Y are:148

149

dX

dt
= −k1X + k−1Y +

∑
PiX −

∑
LiX (S26)

150

dY

dt
= k1Y − k−1Y − k2Y (S27)

where
∑
PiX and

∑
LiX are the production and loss processes for gas-phase species X in the151

chamber, respectively, e.g. chemical reactions or interaction with particles.17 Expressions for152

k1, k–1, and k2 can be found in Table 1.153

Initial conditions are required to apply this model. We suggest that: if Compound X is154

introduced into the chamber through injection, the initial conditions for EQs. (S26) and155

(S27) are X = X0 and Y = X0
k1

k−1

; if Compound X is generated in-situ chemically, the156

initial conditions are X = Y = 0.157

Another key aspect is the value of k2. From Table 1, k2 can be found through Deff, while Deff158

can be predicted based on the molecular volume (θ) and the vapor saturation concentration159

(c∗). If one wants to account for the history of use of the chamber, a rough expression for the160

corrected diffusivity is Dcorreff =
0.015n

330
Deff, where n is the number of experiments performed161

in that chamber, and we assume the diffusivity increases by ∼ 1.5% per experiment based on162

the finding in Section IV. However, the semi-empirical expression for k2 applies only to dry163

conditions at room temperature and a chamber constructed of 50 µm Teflon film. For other164

conditions, e.g. different RH or temperature, we suggest that k2 be determined experimen-165

tally. One has to find the “apparent” first-order decay rate kXw by exponentially fitting the166
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experimental data, similar to the GC measurement in this study, and apply kXw =
k1

k1 + k−1

k2167

to find k2.168

169
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