Supporting Information: Unified Theory of Vapor-Wall Mass Transport in Teflon-Walled Environmental Chambers

Yuanlong Huang, ${ }^{\dagger}$ Ran Zhao, ${ }^{\ddagger}$ Sophia M. Charan, ${ }^{\ddagger}$ Christopher M. Kenseth, ${ }^{\ddagger}$ Xuan Zhang, ${ }^{\text {a }}$ and John H. Seinfeld ${ }^{*, \#, \S}$
\dagger Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, 91125
\ddagger Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA, 91125
【National Center for Atmospheric Research, Boulder, CO, USA, 80301
\S Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA, 91125
E-mail: seinfeld@caltech.edu
Phone: +1 626395 4635. Fax: +1 6265688743

2 This Supporting Information has 27 pages, including 5 figures and 1 long table.

Contents:

4 I. Gas-Phase Boundary Layer Transport
5 II. Activity and Accommodation Coefficients
6 III. Analytical Solution for the Kinetics of the System $G \stackrel{k_{0}}{\longrightarrow} X \underset{k_{-1}}{k_{1}} Y$
7 IV. Fresh versus Aged Teflon Chambers
s V. Humidity Effect on Teflon Inner Layer Diffusivity
9 VI. Exact and Approximate Solutions for the Kinetics of the System X $\underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{Y} \xrightarrow{\mathrm{k}_{2}} \mathrm{Z}$

I. Gas-Phase Boundary Layer Transport

The governing equation for gas-phase boundary layer mass transport of a tracer molecule of concentration C_{g}^{δ} across a layer of thickness δ on the wall of a chamber is :

$$
\begin{equation*}
\frac{\partial C_{g}^{\delta}}{\partial t}=\frac{\partial}{\partial x}\left[\left(\mathcal{D}_{g}+k_{e} x^{2}\right) \frac{\partial C_{g}^{\delta}}{\partial x}\right]=\left(\mathcal{D}_{g}+k_{e} x^{2}\right) \frac{\partial^{2} C_{g}^{\delta}}{\partial x^{2}}+2 x k_{e} \frac{\partial C_{g}^{\delta}}{\partial x} \tag{S1}
\end{equation*}
$$

where \mathcal{D}_{g} is the vapor molecular diffusivity in the gas phase, and k_{e} is the eddy diffusivity coefficient characteristic of mixing in the bulk of the chamber. ${ }^{1,2}$

The boundary condition at the outer extent of the boundary layer, $x=\delta$, is:

$$
\begin{equation*}
C_{g}^{\delta}(\delta, t)=C_{g}^{b}(t) \tag{S2}
\end{equation*}
$$

where $C_{g}^{b}(t)$ is the concentration in the bulk of the chamber.
The rate of change of $C_{g}^{b}(t)$ owing to removal from the bulk by transport to and uptake by the chamber wall is:

$$
\begin{equation*}
V \frac{d C_{g}^{b}(t)}{d t}=-\left.A\left[\left(\mathcal{D}_{g}+k_{e} x^{2}\right) \frac{\partial C_{g}^{\delta}}{\partial x}\right]\right|_{x=\delta} \tag{S3}
\end{equation*}
$$

where V and A are the volume and surface area of the chamber, respectively.
The boundary condition on C_{g}^{δ} at the wall surface, $x=0$, owing to equality of fluxes, is:

$$
\begin{equation*}
\left.\mathcal{D}_{g}\left(\frac{\partial C_{g}^{\delta}}{\partial x}\right)\right|_{x=0}=\frac{\alpha_{w} \omega}{4}\left(\left.C_{g}^{\delta}\right|_{x=0}-\frac{C_{s}}{K_{w}}\right) \tag{S4}
\end{equation*}
$$

where α_{w} is the accommodation coefficient at the wall, ω is the mean molecular velocity of the species, and $K_{w}=\frac{C_{w}}{\gamma^{\infty} c^{*}} \cdot \gamma^{\infty}$ is the activity coefficient of vapor molecules dissolved in the wall, c^{*} is the species mass saturation concentration, C_{w} is the effective organic mass concentration of the wall, by analogy to the effective aerosol mass concentration used in describing vapor-particle uptake, ${ }^{3}$ and C_{s} is the species concentration uniformly dissolved in
the wall surface layer.
Correspondingly, the rate of change of $C_{s}(t)$ is:

$$
\begin{equation*}
V \frac{d C_{s}(t)}{d t}=\left.A\left[\left(\mathcal{D}_{g}+k_{e} x^{2}\right)\left(\frac{\partial C_{g}^{\delta}}{\partial x}\right)\right]\right|_{x=0} \tag{S5}
\end{equation*}
$$

The concentration profile of vapors in the boundary layer will eventually relax to a quasisteady state, under which the governing equation for the gas-phase concentration reduces to:

$$
\begin{equation*}
0=\frac{\partial}{\partial x}\left[\left(\mathcal{D}_{g}+k_{e} x^{2}\right) \frac{\partial C_{g}^{\delta}}{\partial x}\right] \tag{S6}
\end{equation*}
$$

The boundary conditions on Eq. (S6) are $C_{g}^{\delta}(\delta, t)=C_{g}^{b}(t)$ and $C_{g}^{\delta}(0, t)=C_{g, 0}^{\delta}(t)$, where $C_{g, 0}^{\delta}(t)$ is the gas-phase concentration immediately above the wall surface. Note that the time t refers to that in the period after which quasi-steady state conditions have been reached. The solution to Eq. (S6) subject to its boundary conditions is:

$$
\begin{equation*}
C_{g}^{\delta}(x, t)=\left(C_{g}^{b}(t)-C_{g, 0}^{\delta}(t)\right) \arctan \left(x \sqrt{\frac{k_{e}}{\mathcal{D}_{g}}}\right) / \arctan \left(\delta \sqrt{\frac{k_{e}}{\mathcal{D}_{g}}}\right)+C_{g, 0}^{\delta}(t) \tag{S7}
\end{equation*}
$$

The rates of change of $C_{g}^{b}(t)$ and $C_{s}(t)$ over the entire chamber are:

$$
\begin{align*}
V \frac{d C_{g}^{b}(t)}{d t} & =-\left.A\left[\left(\mathcal{D}_{g}+k_{e} x^{2}\right) \frac{\partial C_{g}^{\delta}}{\partial x}\right]\right|_{x=\delta} \\
& =-\left(C_{g}^{b}(t)-C_{g, 0}^{\delta}(t)\right) \sqrt{k_{e} \mathcal{D}_{g}} / \arctan \left(\delta \sqrt{\frac{k_{e}}{\mathcal{D}_{g}}}\right)=-\frac{\alpha_{w} \omega}{4}\left(C_{g, 0}^{\delta}(t)-\frac{C_{s}(t)}{K_{w}}\right) \\
& =-\left.A \mathcal{D}_{g}\left(\frac{\partial C_{g}^{\delta}}{\partial x}\right)\right|_{x=0}=-V \frac{d C_{s}(t)}{d t} \tag{S8}
\end{align*}
$$

Since $C_{g, 0}^{\delta}(t)$ is unknown, we can rewrite Eq. (S8) as:

$$
\begin{equation*}
\frac{d C_{g}^{b}(t)}{d t}=-\left(\frac{A}{V}\right)\left(\frac{1}{v_{e}}+\frac{1}{v_{c}}\right)^{-1}\left(C_{g}^{b}(t)-\frac{C_{s}(t)}{K_{w}}\right)=-\frac{d C_{s}(t)}{d t} \tag{S9}
\end{equation*}
$$

38
where $v_{e}=\sqrt{k_{e} \mathcal{D}_{g}} / \arctan \left(\delta \sqrt{\frac{k_{e}}{\mathcal{D}_{g}}}\right)$ and $v_{c}=\frac{\alpha_{w} \omega}{4}$. Under typical chamber conditions, $\frac{\delta^{2} k_{e}}{\mathcal{D}_{g}} \gg 1, v_{e}=\frac{2}{\pi} \sqrt{k_{e} \mathcal{D}_{g}}$. The initial condition is: at $t=0, C_{g}^{b}=C_{g 0}^{b}$ and $C_{s}=0$. From Eq. (S9), we can solve for the time evolution of C_{g}^{b} and C_{s}.

If we define $\Delta C(t)=C_{g}^{b}(t)-\frac{C_{s}(t)}{K_{w}}$ as the deviation from equilibrium, we can derive the rate of change of $\Delta C(t)$ from Eq. (S9):

$$
\begin{equation*}
\frac{d \Delta C(t)}{d t}=\frac{d\left[C_{g}^{b}(t)-\frac{C_{s}(t)}{K_{w}}\right]}{d t}=-\left(\frac{A}{V}\right)\left(1+\frac{1}{K_{w}}\right)\left(\frac{1}{v_{e}}+\frac{1}{v_{c}}\right)^{-1} \Delta C(t) \tag{S10}
\end{equation*}
$$

So the vapor-wall equilibration time scale $\left(\tau_{v w e}\right)$ is:

$$
\begin{equation*}
\tau_{v w e}=\left(\frac{A}{V}\right)^{-1}\left(1+\frac{1}{K_{w}}\right)^{-1}\left(\frac{1}{v_{e}}+\frac{1}{v_{c}}\right) \tag{S11}
\end{equation*}
$$

The two key parameters in the vapor-wall interaction are the accommodation coefficient on the wall α_{w} and the vapor-wall equilibrium constant K_{w}. Of interest is the extent to which α_{w} and K_{w} impact the time for the gas-phase concentration to reach quasi-steady state within the boundary layer. For example, for the Caltech chamber, the eddy diffusion coefficient $k_{e}=0.075\left(\mathrm{~s}^{-1}\right),{ }^{4}$ and $\frac{A}{V}=2.08\left(\mathrm{~m}^{-1}\right)$; we assume $\mathcal{D}_{g}=5 \times 10^{-6}\left(\mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$, and $\omega=200\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$. To satisfy the condition $\frac{\delta^{2} k_{e}}{\mathcal{D}_{g}} \gg 1$, the boundary layer thickness δ is on the order of $10^{-1} \mathrm{~m} .{ }^{1}$ We will consider as well δ values of 10^{-2} and $10^{0} \mathrm{~m} . \alpha_{w}$ and K_{w} are varied to estimate the time scale for the gas-phase concentration to reach 95% of its quasi-steady state profile with the boundary layer thickness $\delta=10^{-1}, 10^{-2}$, and $10^{0} \mathrm{~m}$, respectively.

The time scales are shown in Fig. S1, indicating that for a wide range of boundary layer thickness δ, the gas-phase boundary layer reaches quasi-steady state within $\sim 10 \mathrm{~s}$. Based on this conclusion, it is reasonable to use the quasi-steady-state flux directly in calculations.

Figure S1: Time scale for gas-phase concentration to reach 95% of the quasi-steady state in a boundary layer of thickness of (A) $\delta=0.1 \mathrm{~m},(\mathrm{~B}) \delta=0.01 \mathrm{~m}$, and (C) $\delta=1 \mathrm{~m}$.

II. Activity and Accommodation Coefficients

This section addresses the information used to calculate γ^{∞} and α_{w} based on data from the literature. ${ }^{5-8}$

The activity coefficient γ^{∞} in Teflon film can be calculated by the following equation:

$$
\begin{equation*}
\gamma^{\infty}=\frac{M W_{v o c}}{M W_{w}} \cdot \frac{C_{w}}{c^{*} \cdot C_{s} / C_{g}} \tag{S12}
\end{equation*}
$$

where $M W_{v o c}$ and $M W_{w}$ are the molecular weight of the compound (varies, listed in the following table) and the wall (assumed $200 \mathrm{~g} \mathrm{~mol}^{-1}$), ${ }^{5} C_{w}$ is the equivalent wall mass concentration (e.g., $32.2 \mathrm{mg} \mathrm{m}^{-3}$ for the chambers used by Krechmer et al. ${ }^{8}$ and Ziemann et al. $\left.{ }^{6,7}\right), c^{*}$ is the saturation concentration $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right.$, estimated by EVAPORATION $\left.{ }^{9}\right)$, and C_{s} / C_{g} is the ratio of vapor concentration dissolved in the wall surface layer to that in the gas phase at equilibrium (data from the literature ${ }^{5-8}$). See the caption of Fig. S2 for details. The characteristic equilibration timescale $\tau_{v w e}$ for gas-wall partitioning is:

$$
\begin{equation*}
\tau_{v w e}=\frac{1}{k_{g \rightarrow w}+k_{g \leftarrow w}}=\frac{1}{k_{g \rightarrow w}} \frac{1}{1+1 / K_{e q}} \tag{S13}
\end{equation*}
$$

where $k_{g \rightarrow w}=\left(\frac{A}{V}\right)\left(\frac{4}{\alpha_{w} \omega}+\frac{\pi}{2} \frac{1}{\sqrt{k_{e} \mathcal{D}_{g}}}\right)^{-1}, K_{e q}=\frac{k_{g \rightarrow w}}{k_{g \leftarrow w}}=\left(\frac{C_{s}}{C_{g}}\right)_{e q}$, and $\omega=\sqrt{\frac{8 R T}{\pi M W_{v o c}}}$, R is the gas constant, and T is temperature. Both the gas-to-wall transfer constant $k_{g \rightarrow w}$ and the equilibrium constant $K_{e q}$ determine the characteristic timescale $\tau_{v w e} . k_{g \rightarrow w}$ is determined by both the surface accommodation coefficient α_{w} and the eddy diffusivity k_{e} in the chamber. For either monofunctional or multifunctional compounds, Krechmer et al. ${ }^{8}$ recommended constant timescales (1800 s and 600 s) in the same chamber simulation, even though the equilibrium constants are different. Such an assumption $\left(\tau_{v w e}\right.$ is fixed, but $K_{e q}$ varies) requires that the accommodation coefficient α_{w} is compound-dependent.

We can calculate the surface accommodation coefficient α_{w} with the following equation
derived from EQ. (S13):

$$
\begin{equation*}
\alpha_{w}=\frac{4}{\omega}\left[\tau_{v w e}\left(\frac{A}{V}\right)\left(1+\frac{1}{C_{s} / C_{g}}\right)-\frac{\pi}{2} \frac{1}{\sqrt{k_{e} \mathcal{D}_{g}}}\right]^{-1} \tag{S14}
\end{equation*}
$$

Estimates of the characteristic timescale $\tau_{v w e}$ and the ratio C_{s} / C_{g} at equilibrium can be obtained from measurements in the literature. ${ }^{5-8}$ Krechmer et al. ${ }^{8}$ suggested the eddy diffusivity k_{e} could be calculated by:

$$
\begin{equation*}
k_{e}=0.004+5.6 \times 10^{-3} V^{0.74} \tag{S15}
\end{equation*}
$$

With a chamber volume of $V=8 \mathrm{~m}^{3}, k_{e}=0.03 \mathrm{~s}^{-1}$. The gas-phase diffusivity \mathcal{D}_{g} is set as a constant $5 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for all compounds. The calculated values of α_{w} are listed in Table. S1 and shown in Fig. S3. An empirical equation fitted to the data clearly indicates a negative dependence of α_{w} on the vapor saturation concentration, which is consistent with the expectation that less volatile compounds are more "sticky". Note that when $k_{e}=0.03$ s^{-1}, negative values of α_{w} result from the NO_{3}^{-}-CIMS data, ${ }^{8}$ suggesting that under their chamber conditions, the limiting step is gas-phase boundary layer diffusion (Fig. S3, left upper grean area), which was verified by turning on the fan inside the chamber (so that k_{e} increases) leading to a much faster decay rate. For the Caltech chamber, $k_{e}=0.075 \mathrm{~s}^{-1}$, calculated based on the particle-wall deposition rate, ${ }^{4}$ yields a critical $\alpha_{w}=7.80 \times 10^{-6}$ $\left(\omega=200 \mathrm{~m} \mathrm{~s}^{-1}\right.$), corresponding to $c^{*}=4 \times 10^{3} \mu \mathrm{~g} \mathrm{~m}^{-3}$ from the fitting expression (Fig. S3). The range of saturation concentration c^{*} of the compounds studied by Zhang et al. ${ }^{10}$ is $10^{-1}-10^{6} \mu \mathrm{~g} \mathrm{~m}^{-3}$. We apply this fitting expression (Fig. S3) to predict α_{w}.

Figure S2: Panel (A) Activity coefficients γ^{∞} in FEP film calculated from the literature ${ }^{5-8}$ as a function of vapor saturation concentration $\left(c^{*}\right)$ estimated by EVAPORATION. ${ }^{9,11}$ Raw data used to calculate γ^{∞} are provided in Table S1. n-alkanes and 1-alkenes (green) are from Matsunaga and Ziemann. ${ }^{5}$ 2-ketones, 2-alcohols, monoacids, and 1,2-diols (magenta) are from Yeh and Ziemann. ${ }^{7}$ Alkylnitrates (cyan) are from Yeh and Ziemann. ${ }^{6}$ I $^{-}$-CIMS (red) and $\mathrm{NO}_{3}{ }^{-}$-CIMS (blue) are from Krechmer et al.. ${ }^{8}$ SIMPOL. 1^{12} predicts vapor pressure by summation of group contributions, and EVAPORATION considers group position effect for multifunctional isomers. The difference in vapor pressure estimated by these two methods is within a factor of $2 \sim 3$. For multifunctional isomers, all HNs ${ }^{8}$ (hydroxynitrates) are 1-OH-5-alkylnitrates, DHNs (dihydroxynitrates) are 1,5-OH-2-alkylnitrates, THNs (trihydroxynitrates) are 1,2,5-OH-6-alkylnitrates, and DHCNs (dihydroxycarbonylnitrates) are $1,2-\mathrm{OH}-5$-carbonyl-6-alkylnitrates. Measurements by I^{-}- CIMS^{8} are thought to be biased by "memory" effects arising from sampling tube and instrument inlet; thus, they are excluded in the fitting. Panel (B) Fraction F_{g} at vapor-wall equilibrium remaining in the gas phase ${ }^{8}$ as a function of $\gamma^{\infty} c^{*} . F_{g}=\frac{1}{1+C_{w} /\left(\gamma^{\infty} c^{*}\right)}$, where $C_{w}=32.2 \mathrm{mg} \mathrm{m}^{-3}$ corresponding to $L_{e}=5 \mathrm{~nm}$ and surface-to-volume ratio $\frac{A}{V}=3 \mathrm{~m}^{-1}$.

Figure S3: Accommodation coefficient of vapor molecules on the Teflon wall α_{w} versus saturation concentration c^{*}. Data are from the Ziemann group. ${ }^{5-7}$ An empirical relationship is fitted to the data points. The critical α_{w} point ${ }^{13}\left(5.12 \times 10^{-6}\right.$, corresponding to $k_{e}=0.03$ s^{-1}, marked by an arrow) is that at which the rate of mass transport to the wall shifts from the gas-phase boundary layer diffusion regime (green area) to the interfacial accommodation regime (blue area). The fitted line indicates that the compounds studied by Krechmer et al. ${ }^{8}$ $\left(c^{*}\right.$ in the range of $10^{-2}-10^{4} \mu \mathrm{~g} \mathrm{~m}^{-3}$) lie in the gas-phase boundary layer diffusion regime.
Table S1: Literature data used to calculated activity coefficient γ^{∞} and accommodation coefficient α_{w}

				min	$\mathrm{g} \mathrm{mol}^{-1}$	atm		
alkylnitrate ${ }^{6}$		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{\text {voc }}$	EVAPORATION	α_{w}	γ^{∞}
	2-decyl nitrate	0.807	0.239	65	203	1.64E-05	$3.99 \mathrm{E}-07$	$1.00 \mathrm{E}+00$
	2-dodecyl nitrate	0.638	0.568	85	227	1.76E-06	6.24E-07	$3.95 \mathrm{E}+00$
	2-tetradecyl nitrate	0.307	2.252	28	251	$1.88 \mathrm{E}-07$	7.71E-06	$9.32 \mathrm{E}+00$
				min	$\mathrm{g} \mathrm{mol}^{-1}$	atm		
HN I ${ }^{-}$-CIMS ${ }^{8}$		F_{g}	C_{w} / C_{g}	$\tau_{\text {vwe }}$	$M W_{\text {voc }}$	EVAPORATION	α_{w}	γ^{∞}

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}$

	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{4}$	0.851	0.175	-	177	2.41E-06	-	$9.39 \mathrm{E}+00$
	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{4}$	0.839	0.192	-	191	7.87E-07	-	$2.62 \mathrm{E}+01$
	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{4}$	0.723	0.383	-	205	$2.57 \mathrm{E}-07$	-	$4.00 \mathrm{E}+01$
	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{4}$	0.594	0.684	-	219	$8.41 \mathrm{E}-08$	-	$6.87 \mathrm{E}+01$
	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{4}$	0.490	1.041	-	233	$2.75 \mathrm{E}-08$	-	$1.38 \mathrm{E}+02$
	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{4}$	0.454	1.203	-	247	8.99E-09	-	$3.64 \mathrm{E}+02$
				min	$\mathrm{g} \mathrm{~mol}^{-1}$	atm		
DHN I--CIMS ${ }^{8}$		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{\text {voc }}$	EVAPORATION	α_{w}	γ^{∞}
	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{5}$	0.371	1.695	-	179	5.77E-08	-	$4.03 \mathrm{E}+01$
	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{5}$	0.312	2.205	-	193	$1.89 \mathrm{E}-08$	-	$9.48 \mathrm{E}+01$
	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{5}$	0.194	4.155	-	221	2.02E-09	-	$4.71 \mathrm{E}+02$
	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}$	0.163	5.135	-	235	$6.59 \mathrm{E}-10$	-	$1.17 \mathrm{E}+03$
	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{5}$	0.133	6.519	-	249	$2.16 \mathrm{E}-10$	-	$2.80 \mathrm{E}+03$
	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{5}$	0.083	11.048	-	263	7.05E-11	-	$5.06 \mathrm{E}+03$

$\min \quad \mathrm{g} \mathrm{mol}^{-1} \quad \mathrm{~atm}$

THN I $^{-}$-CIMS 8		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{v o c}$	EVAPORATION	α_{w}	γ^{∞}
	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{6}$	0.290	2.448	-	195	$3.79 \mathrm{E}-10$	-	$4.26 \mathrm{E}+03$
	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{6}$	0.262	2.817	-	209	$1.96 \mathrm{E}-10$	-	$7.15 \mathrm{E}+03$
	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{6}$	0.163	5.135	-	223	$6.42 \mathrm{E}-11$	-	$1.20 \mathrm{E}+04$
	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{6}$	0.072	12.831	-	237	$2.10 \mathrm{E}-11$	-	$1.46 \mathrm{E}+04$
	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{6}$	0.043	22.364	-	251	$6.86 \mathrm{E}-12$	-	$2.57 \mathrm{E}+04$

	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{6}$	0.030	32.898	-	265	2.24E-12	-	5.33E+04
	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{6}$	0.023	42.860	-	279	$7.34 \mathrm{E}-13$	-	$1.25 \mathrm{E}+05$
				min	$\mathrm{g} \mathrm{mol}^{-1}$	atm		
DHN NO_{3}^{-}- CIMS^{8}		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{\text {voc }}$	EVAPORATION	α_{w}	γ^{∞}
	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{5}$	0.355	1.817	9	179	5.77E-08	-	$3.76 \mathrm{E}+01$
	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{5}$	0.254	2.937	11.8	193	$1.89 \mathrm{E}-08$	-	$7.13 \mathrm{E}+01$
	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{5}$	0.143	5.993	11.2	207	$6.17 \mathrm{E}-09$	-	$1.07 \mathrm{E}+02$
	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{5}$	0.133	6.519	12.6	221	2.02E-09	-	$2.99 \mathrm{E}+02$
	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}$	0.114	7.772	10.2	235	$6.59 \mathrm{E}-10$	-	$7.68 \mathrm{E}+02$
	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{5}$	0.103	8.709	11.8	249	$2.16 \mathrm{E}-10$	-	$2.10 \mathrm{E}+03$
	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{5}$	0.072	12.831	9.8	263	$7.05 \mathrm{E}-11$	-	$4.36 \mathrm{E}+03$
				min	$\mathrm{g} \mathrm{mol}^{-1}$	atm		
DHCN NO ${ }_{3}^{-}$-CIMS ${ }^{8}$		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{\text {voc }}$	EVAPORATION	α_{w}	γ^{∞}
	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{6}$	0.143	5.993	8.2	193	$8.35 \mathrm{E}-09$	-	$7.89 \mathrm{E}+01$
	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{6}$	0.074	12.587	10	207	4.32E-09	-	$7.25 \mathrm{E}+01$
	$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{6}$	0.084	10.862	8.6	221	1.41E-09	-	$2.57 \mathrm{E}+02$
	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{6}$	0.072	12.831	9.4	235	$4.62 \mathrm{E}-10$	-	$6.65 \mathrm{E}+02$
	$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{6}$	0.043	22.364	8	249	$1.51 \mathrm{E}-10$	-	$1.17 \mathrm{E}+03$
	$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{6}$	0.063	14.898	9	263	4.94E-11	-	$5.36 \mathrm{E}+03$
	$\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{6}$	0.023	42.860	7.4	277	$1.62 \mathrm{E}-11$	-	$5.68 \mathrm{E}+03$

	gin							g mol
THN NO	atm							
- CIMS 8		F_{g}	C_{w} / C_{g}	$\tau_{v w e}$	$M W_{v o c}$	EVAPORATION	α_{w}	γ^{∞}
	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{6}$	0.090	10.148	10.2	195	$3.79 \mathrm{E}-10$	-	$1.02 \mathrm{E}+03$
	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{6}$	0.043	22.364	11.2	209	$1.96 \mathrm{E}-10$	-	$8.99 \mathrm{E}+02$
	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{6}$	0.054	17.692	9.4	223	$6.42 \mathrm{E}-11$	-	$3.48 \mathrm{E}+03$
	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{6}$	0.032	30.153	11.4	237	$2.10 \mathrm{E}-11$	-	$6.24 \mathrm{E}+03$
	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{6}$	0.034	28.851	9.8	251	$6.86 \mathrm{E}-12$	-	$1.99 \mathrm{E}+04$
	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{6}$	0.023	42.860	11.6	265	$2.24 \mathrm{E}-12$	-	$4.09 \mathrm{E}+04$
	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{6}$	0.034	28.851	10.4	279	$7.34 \mathrm{E}-13$	-	$1.86 \mathrm{E}+05$

III. Analytical Solution for the Kinetics of the System $\mathbf{G} \xrightarrow{\mathrm{k}_{0}} \mathrm{X} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{Y}$

The system dynamics are described by the set of linear ODEs:

$$
\begin{equation*}
\frac{d}{d t} \mathbf{W}=\mathbb{A} \cdot \mathbf{W} \tag{S16}
\end{equation*}
$$

where $\mathbf{W}=\left(\begin{array}{c}G \\ X \\ Y\end{array}\right), \mathbb{A}=\left(\begin{array}{ccc}-k_{0} & 0 & 0 \\ k_{0} & -k_{1} & k_{-1} \\ 0 & k_{1} & -k_{-1}\end{array}\right)$. The initial condition is $\mathbf{W}_{0}=\left(\begin{array}{c}G_{0} \\ 0 \\ 0\end{array}\right)$. The
eigenvalues of \mathbb{A} are $\lambda_{1}=-k_{0}, \lambda_{2}=0$, and $\lambda_{3}=-\left(k_{1}+k_{-1}\right)$.
When $k_{0} \neq k_{1}+k_{-1}$, the analytical solution for the concentrations of the three species is:

$$
\frac{1}{G_{0}} \mathbf{W}=\left(\begin{array}{c}
1 \tag{S17}\\
\frac{-k_{0}+k_{-1}}{k_{0}-k_{1}-k_{-1}} \\
\frac{k_{1}}{k_{0}-k_{1}-k_{-1}}
\end{array}\right) \mathrm{e}^{-k_{0} t}+\left(\begin{array}{c}
0 \\
\frac{k_{-1}}{k_{1}+k_{-1}} \\
\frac{k_{1}}{k_{1}+k_{-1}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
\frac{k_{0} k_{1} /\left(k_{1}+k_{-1}\right)}{k_{0}-k_{1}-k_{-1}} \\
-\frac{k_{0} k_{1} /\left(k_{1} k_{-1}\right)}{k_{0}-k_{1}-k_{-1}}
\end{array}\right) \mathrm{e}^{-\left(k_{1}+k_{-1}\right) t}
$$

When $k_{0}=k_{1}+k_{-1}$, the solution is:

$$
\frac{1}{G_{0}} \mathbf{W}=\left(\begin{array}{c}
1 \tag{S18}\\
-\frac{k_{-1}}{k_{1}+k_{-1}} \\
-\frac{k_{1}}{k_{1}+k_{-1}}
\end{array}\right) \mathrm{e}^{-k_{0} t}+\left(\begin{array}{c}
0 \\
\frac{k_{-1}}{k_{1}+k_{-1}} \\
\frac{k_{1}}{k_{1}+k_{-1}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
\frac{k_{0} k_{1}}{k_{1}+k_{-1}} \\
-\frac{k_{0} k_{1}}{k_{1}+k_{-1}}
\end{array}\right) t \mathrm{e}^{-\left(k_{1}+k_{-1}\right) t}
$$

After the oxidation period of duration t_{0}, during which G is oxidized to $\mathrm{X}, X\left(t_{0}\right)+Y\left(t_{0}\right)=$ $X_{e}+Y_{e}=1-\mathrm{e}^{-k_{0} t_{0}}$, where X_{e} and Y_{e} are equilibrium concentrations of X and Y and have

102 a relationship of $\frac{Y_{e}}{X_{e}}=K=\frac{k_{1}}{k_{-1}}$. Thus the derivation from equilibrium $\epsilon\left(t_{0}, K\right)$ is

$$
\begin{equation*}
\epsilon\left(t_{0}, K\right)=\frac{X\left(t_{0}\right)-X_{e}}{Y_{e}}=\frac{X\left(t_{0}\right)-\left(1-\mathrm{e}^{-k_{0} t_{0}}\right) \frac{1}{1+K}}{\left(1-\mathrm{e}^{-k_{0} t_{0}}\right) \frac{K}{1+K}} \tag{S19}
\end{equation*}
$$

IV. Fresh versus Aged Teflon Chambers

Ratios of the inferred molecular diffusivities in fresh vs. aged Teflon as a function of c^{*} are shown in Fig. S4, based on the measurements of Zhang et al. ${ }^{10}$ It is found that the inferred diffusivity in fresh Teflon chambers is ~ 1 order of magnitude lower than that in an aged chamber. No apparent trend for high- NO_{x} and low- NO_{x} conditions is evident. Over 330 experiments were carried out in the "aged" Caltech chambers from 2012 to 2014, whereas the "fresh" data were obtained immediately after installation of new chambers. A change in polymer diffusivity over time has been reported, ${ }^{14}$ attributed to unrecoverable inter-chain bonds, such that subsequent diffusion events are characterized by internal stress relaxation. ${ }^{15}$

Differences in measured vapor-wall deposition rates between fresh and aged Teflon chambers are consistent with the observations by Loza et al. ${ }^{16}$ that the first-order vapor-wall loss rate is essentially negligible in new chambers but increases as more and more experiments are performed. However, this observation is not in conflict with that by Matsunaga and Ziemann ${ }^{5}$ of a lack of chamber age dependence for surface layer absorption, ${ }^{15}$ since the surface layer, i.e. the sharp and swollen boundary interface, is the same in either fresh or aged Teflon chambers.

The effect of temperature on vapor-wall deposition was studied at $45^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ for three relatively volatile species (isoprene, MACR, and MVK, Fig. S4). The data indicate that at higher temperature, these three species exhibit a slower wall deposition rate. The reason is unclear; it could be a result of decreased surface accommodation at higher temperature, as parameterized by α_{w}.

Figure S4: Ratio of inferred diffusivity in fresh to aged Teflon film as well as that at $45^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ as a function of saturation concentration c^{*}. Since the wall accommodation coefficient, α_{w}, at $45^{\circ} \mathrm{C}$ is assumed the same as that at $20^{\circ} \mathrm{C}$, the smaller inferred diffusivity at $45^{\circ} \mathrm{C}$ could also be caused by lower α_{w} at higher temperature.

V. Humidity Effect on Teflon Inner Layer Diffusivity

Figure S5: Inferred Diffusivity $\mathcal{D}_{\text {eff }}\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$ in FEP Teflon film as a function of saturation concentration $c^{*}\left(\mu \mathrm{~g} \mathrm{~m}^{-3}\right)$ at different relative humidities for alcohols $\left(\mathrm{C}_{6}\right.$ - C_{12} 1-alcohols), alkanes $\left(\mathrm{C}_{12}-\mathrm{C}_{14} n\right.$-alkanes and n-octylcyclohexane), aromatics (toluene, m-, o-xylene, and $1,3,5$-trimethylbenzene), and biogenic compounds (isoprene, MACR, MVK, and α-pinene).

VI. Exact and Approximate Solutions for the Kinetics of the System $X \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{Y} \xrightarrow{\mathrm{k}_{2}} \mathbf{Z}$

The system dynamics are described by the set of linear ODEs:

$$
\begin{equation*}
\frac{d}{d t} \mathbf{W}=\mathbb{A} \cdot \mathbf{W} \tag{S20}
\end{equation*}
$$

${ }^{128}$ where $\mathbf{W}=\binom{X}{Y}$, and $\mathbb{A}=\left(\begin{array}{cc}-k_{1} & k_{-1} \\ k_{1} & -k_{-1}-k_{2}\end{array}\right)$. It is assumed that X and Y rapidly come to equilibrium. The initial condition is $\mathbf{W}_{0}=X_{0}\binom{1}{k_{1} / k_{-1}}$.

The eigenvalues of \mathbb{A} are:

$$
\begin{align*}
& \lambda_{1}=\frac{-\left(k_{1}+k_{-1}+k_{2}\right)-\sqrt{\left(k_{1}+k_{-1}+k_{2}\right)^{2}-4 k_{1} k_{2}}}{2} \tag{S21}\\
& \lambda_{2}=\frac{-\left(k_{1}+k_{-1}+k_{2}\right)+\sqrt{\left(k_{1}+k_{-1}+k_{2}\right)^{2}-4 k_{1} k_{2}}}{2}
\end{align*}
$$

The solution of Eq. (S20) is

$$
\begin{equation*}
\frac{1}{X_{0}} \mathbf{W}=\frac{1}{X_{0}}\binom{X(t)}{Y(t)}=-\frac{\lambda_{2}}{\lambda_{1}-\lambda_{2}}\binom{1}{\frac{k_{1}+\lambda_{1}}{k_{-1}}} \mathrm{e}^{\lambda_{1} t}+\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}}\binom{1}{\frac{k_{1}+\lambda_{2}}{k_{-1}}} \mathrm{e}^{\lambda_{2} t} \tag{S22}
\end{equation*}
$$

And by mass balance:

$$
\begin{equation*}
Z(t)=X_{0}\left(1-X(t)+\frac{k_{1}}{k_{-1}}(1-Y(t))\right. \tag{S23}
\end{equation*}
$$

Under conditions that $k_{2} \ll k_{1}+k_{-1}$, that is, rapid equilibrium established by X and Y , we can derive approximate solutions.

First, the eigenvalues can be simplified as:

$$
\begin{align*}
& \lambda_{1}=-\left(k_{1}+k_{-1}\right)-\frac{k_{-1}}{k_{1}+k_{-1}} k_{2} \tag{S24}\\
& \lambda_{2}=-\frac{k_{1}}{k_{1}+k_{-1}} k_{2}
\end{align*}
$$

We note that $\frac{\lambda_{2}}{\lambda_{1}} \ll 1$. If the equilibrium constant $K_{e q}=\frac{k_{1}}{k_{-1}} \gg 1, \lambda_{1}=-k_{1}-k_{-1}$ and $\lambda_{2}=-k_{2}$. If $K_{e q} \ll 1, \lambda_{1}=-k_{1}-k_{-1}-k_{2}$ and $\lambda_{2}=-\frac{k_{1}}{k_{-1}} k_{2}$.

Second, the slow change of X owing to the slow conversion of Y to Z is usually described in terms of a first-order rate constant k_{w}^{X}, in the units of time ${ }^{-1}$:

$$
\begin{align*}
k_{w}^{X}=\frac{1}{X} \frac{d X}{d t} & =\frac{\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}-\lambda_{2}} \mathrm{e}^{\lambda_{1} t}\left(\mathrm{e}^{\left(\lambda_{2}-\lambda_{1}\right) t}-1\right)}{\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}} \mathrm{e}^{\lambda_{1} t}\left(\mathrm{e}^{\left(\lambda_{2}-\lambda_{1}\right) t}-\frac{\lambda_{2}}{\lambda_{1}}\right)}=\lambda_{2} \frac{\mathrm{e}^{\left(\frac{\lambda_{2}}{\lambda_{1}}-1\right) \lambda_{1} t}-1}{\mathrm{e}^{\left(\frac{\lambda_{2}}{\lambda_{1}}-1\right) \lambda_{1} t}-\frac{\lambda_{2}}{\lambda_{1}}} \sim \lambda_{2} \frac{\mathrm{e}^{-\lambda_{1} t}-1}{\mathrm{e}^{-\lambda_{1} t}} \tag{S25}\\
& =\lambda_{2}\left(1-\mathrm{e}^{\lambda_{1} t}\right)
\end{align*}
$$

EQ. (S25) indicates that at the outset when t is small, the rate of change of X is $k_{w}^{X} \sim-\lambda_{2} \lambda_{1} t$, which results in a relatively flat profile of X. As $t \rightarrow \infty, k_{w}^{X} \sim-\lambda_{2}$, suggesting that, X and Y can be viewed as a group, for which the net loss rate is λ_{2}.

VII. Application in Chamber Simulations

This two-layer model can be readily incorporated into models of vapor and particle dynamics in chambers, since only the fates of vapor molecules in gas phase and in the surface layer have to be tracked. The scheme $\mathrm{X} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{Y} \xrightarrow{\mathrm{k}_{2}} \mathrm{Z}$ can simplify this incorporation, where X is the gas-phase concentration of concern and Y corresponds to its concentration in the surface. Thus the ordinary differential equations for X and Y are:

$$
\begin{gather*}
\frac{d X}{d t}=-k_{1} X+k_{-1} Y+\sum P_{i X}-\sum L_{i X} \tag{S26}\\
\frac{d Y}{d t}=k_{1} Y-k_{-1} Y-k_{2} Y \tag{S27}
\end{gather*}
$$

where $\sum P_{i X}$ and $\sum L_{i X}$ are the production and loss processes for gas-phase species X in the chamber, respectively, e.g. chemical reactions or interaction with particles. ${ }^{17}$ Expressions for $\mathrm{k}_{1}, \mathrm{k}_{-1}$, and k_{2} can be found in Table 1.

Initial conditions are required to apply this model. We suggest that: if Compound X is introduced into the chamber through injection, the initial conditions for EQs. (S26) and (S27) are $X=X_{0}$ and $Y=X_{0} \frac{k_{1}}{k_{-1}}$; if Compound X is generated in-situ chemically, the initial conditions are $X=Y=0$.

Another key aspect is the value of k_{2}. From Table $1, k_{2}$ can be found through $\mathcal{D}_{\text {eff }}$, while $\mathcal{D}_{\text {eff }}$ can be predicted based on the molecular volume (θ) and the vapor saturation concentration $\left(c^{*}\right)$. If one wants to account for the history of use of the chamber, a rough expression for the corrected diffusivity is $\mathcal{D}_{\text {eff }}^{\text {corr }}=\frac{0.015 n}{330} \mathcal{D}_{\text {eff }}$, where n is the number of experiments performed in that chamber, and we assume the diffusivity increases by $\sim 1.5 \%$ per experiment based on the finding in Section IV. However, the semi-empirical expression for k_{2} applies only to dry conditions at room temperature and a chamber constructed of $50 \mu \mathrm{~m}$ Teflon film. For other conditions, e.g. different RH or temperature, we suggest that k_{2} be determined experimentally. One has to find the "apparent" first-order decay rate k_{w}^{X} by exponentially fitting the
${ }^{167}$ experimental data, similar to the GC measurement in this study, and apply $k_{w}^{X}=\frac{k_{1}}{k_{1}+k_{-1}} k_{2}$ to find k_{2}.

References

(1) Corner, J.; Pendlebury, E. D. The coagulation and deposition of a stirred aerosol. Proc. Phys. Soc. B 1951, 64, 645.
(2) Crump, J. G.; Seinfeld, J. H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. J. Aerosol Sci. 1981, 12, 405-415.
(3) Seinfeld, J. H.; Pankow, J. F. Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 2003, 54, 121-140.
(4) Zhang, X.; Cappa, C. D.; Jathar, S. H.; McVay, R. C.; Ensberg, J. J.; Kleeman, M. J.; Seinfeld, J. H. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5802-5807.
(5) Matsunaga, A.; Ziemann, P. J. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 2010, 44, 881-892.
(6) Yeh, G. K.; Ziemann, P. J. Alkyl nitrate formation from the reactions of C8-C14 nalkanes with OH radicals in the presence of NOx: measured yields with essential corrections for gas-wall partitioning. J. Phys. Chem. A 2014, 118, 8147-8157.
(7) Yeh, G. K.; Ziemann, P. J. Gas-wall partitioning of oxygenated organic compounds: measurements, structure-activity relationships, and correlation with gas chromatographic retention factor. Aerosol Sci. Technol. 2015, 49, 727-738.
(8) Krechmer, J. E.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L. Quantification of gaswall partitioning in Teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ. Environ. Sci. Technol. 2016, 50, 5757-5765.
(9) Compernolle, S.; Ceulemans, K.; Müller, J.-F. EVAPORATION: a new vapour pressure
estimation methodfor organic molecules including non-additivity and intramolecular interactions. Atmos. Chem. Phys. 2011, 11, 9431-9450.
(10) Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H. Vapor wall deposition in Teflon chambers. Atmos. Chem. Phys. 2015, 15, 4197-4214.
(11) Tropo, Vapour pressure of Pure Liquid Organic Compounds. http://tropo. aeronomie.be/models/evaporation_run.htm.
(12) Pankow, J. F.; Asher, W. E. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 2008, 8, 2773-2796.
(13) McMurry, P. H.; Grosjean, D. Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176-1182.
(14) Bagley, E.; Long, F. A. Two-stage Sorption and Desorption of Organic Vapors in Cellulose Acetate ${ }^{1,2}$. J. Am. Chem. Soc. 1955, 77, 2172-2178.
(15) Crank, J. A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers. J. Polym. Sci. 1953, 11, 151-168.
(16) Loza, C. L.; Chan, A. W. H.; Galloway, M. M.; Keutsch, F. N.; Flagan, R. C.; Seinfeld, J. H. Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 2010, 44, 5074-5078.
(17) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley Sons, 2016.

