CaltechAUTHORS
  A Caltech Library Service

Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run

Abbott, B. P. and Abbott, R. and Adhikari, R. X. and Anderson, S. B. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Brunett, S. and Cahillane, C. and Callister, T. and Cepeda, C. B. and Couvares, P. and Coyne, D. C. and Dergachev, V. and Drever, R. W. P. and Ehrens, P. and Eichholz, J. and Etzel, T. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Hall, E. D. and Heptonstall, A. W. and Isi, M. and Kanner, J. B. and Kells, W. and Kondrashov, V. and Korth, W. Z. and Kozak, D. B. and Lazzarini, A. and Lewis, J. B. and Maros, E. and Marx, J. N. and McIntyre, G. and McIver, J. and Meshkov, S. and Pedraza, M. and Perreca, A. and Price , L. R. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Schmidt, P. and Singer, A. and Smith, N. D. and Smith, R. J. E. and Taylor, R. and Thirugnanasambandam, M. P. and Torrie, C. I. and Vajente, G. and Vass, S. and Wallace, L. and Weinstein, A. J. and Williams, R. D. and Wipf, C. C. and Yamamoto, H. and Zhang, L. and Zucker, M. E. and Zweizig, J. and Chen, Y. and Engels, W. (2018) Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run. Classical and Quantum Gravity, 35 (6). Art. No. 065010. ISSN 0264-9381. http://resolver.caltech.edu/CaltechAUTHORS:20180214-141606381

[img] PDF - Published Version
Creative Commons Attribution.

2725Kb
[img] PDF - Submitted Version
See Usage Policy.

2855Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20180214-141606381

Abstract

The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1088/1361-6382/aaaafaDOIArticle
http://iopscience.iop.org/article/10.1088/1361-6382/aaaafa/metaPublisherArticle
https://arxiv.org/abs/1710.02185arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Arai, K.0000-0001-8916-8915
Billingsley, G.0000-0002-4141-2744
Callister, T.0000-0001-9892-177X
Isi, M.0000-0001-8830-8672
Kanner, J. B.0000-0001-8115-0577
Korth, W. Z.0000-0003-3527-1348
Kozak, D. B.0000-0003-3118-8950
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Zucker, M. E.0000-0002-2544-1596
Zweizig, J.0000-0002-1521-3397
Additional Information:© 2018 IOP. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 22 November 2017. Accepted 29 January 2018. Accepted Manuscript online 29 January 2018. Published 14 February 2018. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.
Group:LIGO
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max Planck SocietyUNSPECIFIED
State of Niedersachsen/GermanyUNSPECIFIED
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche ScientifiqueUNSPECIFIED
Stichting voor Fundamenteel Onderzoek der Materie (FOM)UNSPECIFIED
Council of Scientific and Industrial Research (India)UNSPECIFIED
Department of Science and Technology (India)UNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development (India)UNSPECIFIED
Agencia Estatal de InvestigaciónUNSPECIFIED
Vicepresidència i Conselleria d'Innovació Recerca i TurismeUNSPECIFIED
Conselleria d'Educació i Universitat del Govern de les Illes BalearsUNSPECIFIED
Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat ValencianaUNSPECIFIED
National Science Centre (Poland)UNSPECIFIED
Swiss National Science Foundation (SNSF)UNSPECIFIED
Russian Foundation for Basic ResearchUNSPECIFIED
Russian Science FoundationUNSPECIFIED
European CommissionUNSPECIFIED
European Regional Development Fund (Estonia)UNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding Council UNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Hungarian Scientific Research Fund (OTKA)UNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
National Research, Development and Innovation Office (Hungary)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Ontario Ministry of Economic Development and InnovationUNSPECIFIED
Natural Science and Engineering Research Council of Canada (NSERC) UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Ministério da Ciência, Tecnologia, Inovação e ComunicaçãoUNSPECIFIED
Research Grants Council of Hong KongUNSPECIFIED
National Natural Science Foundation of ChinaUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Taiwan FoundationUNSPECIFIED
Kavli FoundationUNSPECIFIED
International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR)UNSPECIFIED
Record Number:CaltechAUTHORS:20180214-141606381
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20180214-141606381
Official Citation:B P Abbott et al 2018 Class. Quantum Grav. 35 065010
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:84835
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:15 Feb 2018 00:22
Last Modified:15 Feb 2018 00:22

Repository Staff Only: item control page