CaltechAUTHORS
  A Caltech Library Service

Absence of Ballistic Motion

Simon, Barry (1990) Absence of Ballistic Motion. Communications in Mathematical Physics, 134 (1). pp. 209-212. ISSN 0010-3616. https://resolver.caltech.edu/CaltechAUTHORS:20180315-132837134

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180315-132837134

Abstract

For large classes of Schrödinger operators and Jacobi matrices we prove that if h has only one point spectrum then for φ_0 of compact support lim/_(t→∞)^(t−2)∥xe^(−ith)ϕ_0∥^2 = 0.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1007/BF02102095DOIArticle
https://link.springer.com/article/10.1007%2FBF02102095PublisherArticle
http://adsabs.harvard.edu/abs/1990CMaPh.134..209SADSArticle
http://rdcu.be/I8NFPublisherFree ReadCube access
https://projecteuclid.org/euclid.cmp/1104201619PublisherArticle
ORCID:
AuthorORCID
Simon, Barry0000-0003-2561-8539
Additional Information:© 1990 Springer-Verlag. Received February 20, 1990. Research partially supported by NSF grant number DMS-8801918 Communicated by T. Spencer.
Funders:
Funding AgencyGrant Number
NSFDMS-8801918
Subject Keywords:Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Large Classis
Issue or Number:1
Record Number:CaltechAUTHORS:20180315-132837134
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20180315-132837134
Official Citation:Cite this article as: Simon, B. Commun.Math. Phys. (1990) 134: 209. https://doi.org/10.1007/BF02102095
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:85336
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:16 Mar 2018 14:47
Last Modified:03 Oct 2019 19:29

Repository Staff Only: item control page