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Abstract

Finding actions that satisfy the constraints imposed by both external inputs and internal 

representations is central to decision making. We demonstrate that some important classes of 

constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous 

cooperative-competitive modules that have connectivity similar to motifs observed in the 

superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming 

neurons that embed the constraints onto the otherwise homogeneous modular computational 

substrate. We show rules that embed any instance of the CSPs planar four-color graph coloring, 

maximum independent set, and Sudoku on this substrate, and provide mathematical proofs that 

guarantee these graph coloring problems will convergence to a solution. The network is composed 

of non-saturating linear threshold neurons. Their lack of right saturation allows the overall network 

to explore the problem space driven through the unstable dynamics generated by recurrent 

excitation. The direction of exploration is steered by the constraint neurons. While many problems 

can be solved using only linear inhibitory constraints, network performance on hard problems 

benefits significantly when these negative constraints are implemented by non-linear multiplicative 

inhibition. Overall, our results demonstrate the importance of instability rather than stability in 

network computation, and also offer insight into the computational role of dual inhibitory 

mechanisms in neural circuits.

1 Introduction

The ability to integrate data from many sources, and to make good decisions for action is 

essential for perception and cognition, as well as for industrial problems such as scheduling 

and routing. The process of integration and decision is often cast as a constraint satisfaction 

problem (CSP). In technological systems CSPs are solved by algorithms that implement 

strategies such as backtracking, constraint propagation, or linear optimization. In contrast to 
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those algorithmic methods, we explore here the principles whereby neural networks are able 

to solve some important classes of CSP directly through their asynchronous parallel 

distributed dynamics.

Our view of an algorithm here is computational one: The defined sequence of discrete 

operations to be carried out on data by a computer to achieve a desired end. By contrast, we 

view our neural networks as modeled approximations to physical neuronal networks such as 

those of the cerebral cortex, in which processing is not under sequential algorithmic control. 

Our primary interest in this paper is to understand how these natural networks can process 

CSP-like problems.

We explore the behavior of these networks in the context of some reference classes of CSP 

that are well understood from an algorithmic point of view: 4-coloring of planar graphs 

(GC4P); minimum independent set (MIS); and the game Sudoku (SUD). For each of these 

classes the network must decide a suitable color assignment for each node of the graph given 

a total number of available colors (which is given a priori). We choose these graph-coloring 

problems because their topologies lend themselves to implementation in networks, and 

because their constraints can be expressed as simple equal/not-equal relations. Moreover, 

four-coloring on planar graphs is an interesting problem because it is computationally hard, 

and because its solution can be applied to practical tasks in decision making and cognition 

(Afek et al., 2011; Dayan, 2008; Koechlin & Summerfield, 2007). On the other hand, 

Sudoku is interesting because it involves many constraints on a dense non-planar graph 

(Ercsey-Ravasz & Toroczkai, 2012; Rosenhouse & Taalman, 2011). Also, there are hard 

input constraints on the values of some SUD nodes, which makes the solution of SUD 

significantly more difficult than simple graph coloring, in which any valid coloring is 

acceptable.

We show that our neuronal networks can solve arbitrary instances in these three problem 

classes. Because many problems in decision making can be reduced to one of these classes 

(Dayan, 2008) showing that our networks can solve them, implies that they can in principle 

solve all other problems that are reducible to these reference classes. These problems can of 

course be solved also by algorithmical methods (Karp, 1972; Robertson, Sanders, Seymour, 

& Thomas, 1996; Appel, Haken, & Koch, 1977; Kumar, 1992). However, our important 

contribution here is to explain the principles of dynamics that allow a network of distributed 

interacting neurons to achieve the same effect without relying on the centralized sequential 

control inherent in these well known algorithms.

Our networks are composed of loosely coupled cooperative-competitive, ”winner-take-all” 

(WTA) modules (Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000; Maass, 2000; 

Hahnloser, Douglas, Mahowald, & Hepp, 1999; Douglas & Martin, 2007; Yuille & Geiger, 

2003; Ermentrout, 1992; Wersing, Steil, & Ritter, 2001; Abbott, 1994). Each WTA behaves 

as a special kind of variable that initially is able to entertain simultaneously many candidate 

values, but eventually selects a single best value, according to constraints imposed by the 

processing evolving at related variables. This collective selection behavior is driven by the 

signal gain developed through the recurrent excitatory (positive feedback) connections 

between the neurons participating in the WTA circuits, as described below.
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WTA circuits are appealing network modules because their pattern of connectivity resembles 

the dominant recurrent excitatory and general inhibitory feedback connection motif 

measured both physiologically (Douglas, Martin, & Whitteridge, 1991) and anatomically 

(Binzegger, Douglas, & Martin, 2004) in the superficial layers of the mammalian neocortex. 

There is also substantial and growing evidence for circuit gain and its modulation in the 

circuits of the neocortex, a finding that is consistent with the recurrent connectivity required 

by WTAs (Douglas, Martin, & Whitteridge, 1989; Douglas et al., 1991; Ferster, Chung, & 

Wheat, 1996; Lien & Scanziani, 2013; Li, Ibrahim, Liu, Zhang, & Tao, 2013; Carandini & 

Heeger, 2012; Kamiński et al., 2017).

Previous studies of WTA networks have focused largely on questions of their stability and 

convergence (For example (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Dayan & Abbott, 

2001; Hahnloser et al., 2000; Rutishauser, Douglas, & Slotine, 2011)). However, more 

recently we have described the crucial computational implications of the unstable expansion 

dynamics inherent in WTA circuits (Rutishauser, Slotine, & Douglas, 2015). It is these 

instabilities that drive the selection processing and therefore the computational process that 

the network performs. We have explored this computational instability in networks of linear 

thresholded neurons (LTN) (Koch, 1998; Douglas, Koch, Mahowald, & Martin, 1999; 

LeCun, Bengio, & Hinton, 2015) because they have unbounded positive output. 

Consequently, networks of LTNs with recurrent excitation must rely on feedback inhibition 

rather than output saturation (eg (Hopfield, 1982; Miller & Zucker, 1999; Rosenfeld, 

Hummel, & Zucker, 1976)) to achieve stability. This also means that networks of LTNs may 

change their mode of operation from unstable to stable (Rutishauser et al., 2015).

The principles we develop in this paper depend on concepts we have described previously, in 

which we apply contraction theory (Slotine, 2003) to understand the dynamics of collections 

of coupled WTAs (Rutishauser et al., 2011, 2015). And so, for convenience, we first 

summarize briefly the relevant points of that work. First, note that contraction theory is 

applicable to dynamics with discontinuous derivatives such as those introduced by the LTN 

activation function that we utilize. This is because in such switched systems the dynamics 

remain a continuous function of the state (see results for details). Under suitable parameter 

regimes, LTN networks can enter unstable subspaces of their dynamics. The expansion 

within an unstable subspace of active neurons is steered and constrained by the negative 

divergence of their dynamics. This ensures that the current expanding sub-network will soon 

switch to a different sub-network, and so to a different subspace of dynamics (Rutishauser et 

al., 2015). The new space might be stable or unstable. If unstable, the network will again 

switch, and so on, until a stable solution space is found. We refer to the unstable spaces 

as ’forbidden’ spaces because the network will quickly exit from them. The exit is 

guaranteed because the dynamics in forbidden spaces are such that the eigenvectors 

associated with the dominant eigenvalue of the system Jacobian are always mixed. This 

means that the activity of at least one neuron is falling toward threshold, and will soon pass 

below it, so changing the space of network dynamics (see (Rutishauser et al., 2015) for a 

proof.) Stable spaces, on the other hand, are said to be be ’permitted’. In these spaces the 

eigenvalues are all negative and so the network will converge toward a steady state in that 

space.
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Critically, negative divergence ensures that the dynamics of the space entered next has a 

lower dimensionality than the previous space, regardless of whether it is stable or unstable. 

Thus the sequence of transitions through the sub-spaces causes the network to compute 

progressively better feasible solutions. A further crucial feature of this process is that the 

direction of expansion is determined automatically by the eigenvectors of the Jacobian of the 

currently active neurons in the network. Thus, the direction of expansion may change 

according to the particular set of neurons active in a given forbidden subspace. In this sense 

the network is able to actively, asynchronously, and systematically search through the 

forbidden spaces until a suitable solution subspace is encountered. It is this process that 

constitutes network computation (Rutishauser et al., 2015).

Now we extend these concepts and show how they can be utilized to construct networks that 

solve certain classes of constraint satisfaction problems. We show using new mathematical 

proofs and simulations how such problems can be embedded systematically in networks of 

WTA modules coupled by negative (inhibitory) and positive (excitatory) constraints. Our 

overall approach is to ensure that all dynamical spaces in which a constraint is violated 

are ’forbidden’. This is achieved by adding additional neurons that enforce the necessary 

constraints. Importantly, our new analytical proofs guarantee that these networks will find a 

complete and correct solution (provided that such a solution does exist for the problem 

instance).

We also find that the form of inhibitory mechanism used to implement negative constraints 

affects the performance of the network. Two different types of inhibition can be used to 

implement negative constraints: linear subtractive and non-linear multiplicative inhibition. 

While some problem classes could be solved using only standard subtractive inhibition 

between modules, we found that the solution of more difficult problems is greatly facilitated 

by using multiplicative non-linear inhibition instead. Recent experimental observations have 

implicated these two kinds of inhibition in different modes of cortical computation (Jiang, 

Wang, Lee, Stornetta, & Zhu, 2013; Pi et al., 2013), and the work presented here offers a 

theoretical foundation for the computational roles of these two types of inhibition also in the 

neuronal circuits of the neocortex.

2 Network Architecture and Results

2.1 CSP Organization

A CSP consists of a set of variables (concepts, facts) Xi that are assigned discrete or 

continuous values and a set of constraints Ci between these variables. The constraints may 

be unary (restricted to one variable), binary (a relation between two variables), or higher 

order. Each constraint Ci establishes the allowable combinations between values (or 

relationships between values) of the variables X. A state (or configuration) of the problem is 

an assignment of values to some or all of the variables X. An assignment (or solution) may 

be complete or partial.

The CSPs are instantiated as neuronal networks by embedding the specific problem in a field 

of identical WTA modules. These modules have a standard connection pattern of recurrent 

excitation and inhibition that supports the WTA functionality. The CSP is embedded in the 
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network by coupling the WTA modules via neurons that implement the negative (inhibitory) 

and positive (excitatory) constraints. As we will show below, we find that the performance of 

the CSP network is affected by the form of negative constraint inhibition onto the WTAs; 

either linear or nonlinear. We begin by describing the ’standard’ WTA (WTAS) and related 

CSP networks that make use of linear inhibitory negative constraints; and thereafter describe 

the extended WTA (WTAE) networks that make use of non-linear inhibitory negative 

constraints.

2.2 Standard Winner-Take-All circuit

Each standard WTA (WTAS) consists of N point neurons, N-1 of which are excitatory and 

the remaining one (N) is inhibitory (Fig 1A). In the examples below the WTA should 

express only a single active unit, and thus the excitatory neurons xi≠N receive only self-

feedback of excitation αi. Each neuron may receive also external input Ii. Normally 

distributed noise with mean μ and standard deviation sd is added to all these external inputs: 

Ii = Ii + 𝒩 μ, sd .

The single inhibitory neuron xN sums the β2 weighted input from each of the excitatory 

neurons, and returns a common β1 inhibitory signal to all of its excitatory neurons. The 

dynamics of this single WTA are

τẋi + Gxi = f αxi − β1xN − T i + Ii + 𝒩 μ, sd (1)

τẋN + GxN = f β2 ∑
j = 1

N − 1
x j − TN (2)

where f(x) is a non-saturating rectification non-linearity. Here, we take f(x) = max(x, 0), 

making our neurons linear threshold neurons (LTNs). Ti ≥ 0 is the activation threshold.

2.3 Constraint satisfaction models implemented on WTAs

The nodes of the graph represent the possible states of the problem at that location, while the 

edges of the graph represent the constraints acting between nodes. Each node is a WTA 

module, and the patterns of activation of its excitatory neurons represent the allowable states 

of that node. Since only one winner is permitted, these WTAs represent as many solution 

states as they have excitatory neurons, ie N − 1 states. In the CS problems considered here, 

all nodes implement the same set of states. For example, in the case of GC4P, every node of 

the problem graph is a WTA with 4 excitatory neurons that represent the four possible color 

states of that node.

The constraints between WTAs are implemented by additional neurons that add additional 

excitatory or inhibitory interactions between the relevant states (corresponding to particular 

neurons) of the interacting nodes. In graph-coloring problems, the constraints are negative: 

The selection of a particular color neuron at one node, suppresses the selection of the 
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corresponding color neuron at a neighboring node. However, other problems may require 

also positive constraints. For example, if WTA A is in state 1, then WTA B should also be in 

state 1. The Maximal Independent Set (MIS) problem considered below requires such 

positive constraints. In this section, we will first describe the dynamics and connectivity of 

negative-and positive contraint cells whereas their specific wiring to implement a particular 

CSP is described later separately for each CSP class considered.

Negative constraints (NC), or competition, between the states of different WTAs is 

introduced through inhibitory feedback by negative constraint cells (NCC) d. In our 

implementation, each d provides inhibitory output onto the same set of excitatory cells from 

which it receives its input (Fig 1B). In contrast to the inhibitory cells that enforce 

competition between states within an WTA, NC cells enforce their competition between 

(some) specific state neurons across multiple participating WTAs.

Positive constraints (PC), or hints, are implemented by excitatory positive constraint cells 

(PCC) p, each of which receives input from a specific excitatory cell of one WTA and 

provides excitation onto specific excitatory neurons(s) on other WTAs.

The dynamics of negative constraint cells d are:

τḋi + Gdi = f β
2D ∑

j = 1

Mi
x j − TD (3)

where Mi are the number of units xj that provide input to di. Note that the xj are members of 

different WTAs. Similarly, the dynamics of a positive constraint cell p are:

τṗi + Gpi = f γ
2P ∑

j = 1

Ni
x j − TP (4)

where Ni are the number of units xj that provide input to pi.

The total constraint current, composed of negative and positive components Ii
NC, and Ii

PC is:

Ii
cons = Ii

NC + Ii
PC = − ∑

k = 1

Di
β

1Ddk + ∑
k = 1

Pi
γ

1Ppk (5)

where Di and Pi are the total number of negative and positive constraint cells that provide 

input to cell i, respectively. β
1D > 0 is the strength of the inhibitory synapse made by 

negative constraint cell dk onto cell i and γ
1P > 0 is the strength of the excitatory synapse 

made by positive hint cell pk onto cell i.
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Thus, the dynamics of excitatory units in constraint networks composed of standard WTA xi 

are:

τẋi + Gxi = f s αxi − β1xN − T i + Ii + Ii
bias + Ii

cons (6)

where Ii
bias are forward inputs that bias the WTA towards solution xi. The initial conditions 

for all units are xi(0) = 0, di(0) = 0, pi(0) = 0 throughout this work.

2.4 Dynamics of an example negative constraint network

Before we consider how to choose the parameters of this network and how to analyze its 

stability and convergence, consider the example network shown in Fig 1B. This network 

implements two negative constraints (NC1 and NC2) between two WTA modules, M1 and 

M2. Each has only two possible solutions: A and B. The NC cells enforce the ”not same” 

constraint that both WTAs should not be in the same state. The dynamics of this circuit (Fig 

2) converge to a steady-state in which the solutions of the two WTAs depend on each other 

in addition to local constraints (the inputs). For example, in Fig 2 unit B on both WTAs 

receive the largest inputs (cyan,red) and so, independently, the winner on either WTA would 

be B. However, because of the constraint dependency only one WTA can express B (node 

M2), whereas the winner on the other node (M1) is A despite receiving the lower amplitude 

input.

2.5 Stability and convergence

Our arguments rely on the concept of the effective Jacobian, which expresses the dynamics 

of the currently active subset of neurons (Rutishauser et al., 2015). Consider the network in 

the form of ẋ = z x, t . Here, z(x, t) = f(Wx − Gx), where W is a matrix of weights that 

describes all the connections between neurons, f(x) is the non-linearity, and G = diag(G1, …, 

Gn) is a diagonal matrix containing the dissipative leak terms for each neuron. The effective 

Jacobian for this system is

Jeff = ∂z
∂x = ∑W − G (7)

where Σ = diag(σ1, …, σn) is a diagonal matrix of derivatives of the activation function, 

evaluated at the current state xi of each neuron. In our case, all neurons are LTNs, resulting 

in derivatives equal to either 0 or 1 depending on whether the state of a neuron is above or 

below threshold. This is because the activation function f(x) has slope 1 whenever it is above 

threshold. Therefore, Σ remains the same as long as no neuron crosses its threshold. 

Consequently, the effective connectivity of the network changes whenever a neuron crosses 

its threshold. ’Effective connectivity’ indicates that connections that arise from inactive 

(below threshold) neurons cannot influence their target neurons because they do not provide 

output. Therefore, the rows of the Jacobian corresponding to these silent neurons are zeroed 

out. However, their columns are not zeroed, and so these silent neurons still receive and 

process input.
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We use Jeff as a mathematical tool to assess and describe network computation. We have 

used Jeff previously to show that a single WTA circuit has both permitted (contracting) and 

forbidden (expanding) sets of active neurons, and that it is the existence of the forbidden sets 

that provides computational power (Rutishauser et al., 2015). This is because forbidden sets 

are highly unstable and this drives the network to enter a different set from the one it is 

currently expressing. While unstable, the negative feedback ensures that the dynamics 

during forbidden states steers network activity towards a suitable solution. A forbidden set 

must satisfy two conditions: its divergence must be negative, and its effective Jacobian Jeff 

must be positive definite (Rutishauser et al., 2015). In our WTA networks, these two 

conditions are enforced by shared inhibition and excitatory self-recurrence, respectively. 

Together, they guarantee that an individual WTA will exit forbidden sets exponentially fast.

The arguments summarized above and the new results derived below rest on contraction 

theory (Slotine, 2003), a powerful analytical tool that allows us to systematically reason 

systematically about the stability and instability of non-linear networks such as the LTN 

networks that we use. Contraction theory is applicable to non-linear networks, such as 

switched networks, provided that the dynamics remain a continuous function of the state, 

and that the contraction metric remains the same (Lohmiller & Slotine, 2000). It is thus 

applicable to networks composed of units such as LTNs that have activation functions whose 

derivatives are discontinuous. To see why this is the case, consider the following network: 

ẋ + x = max x, 0 . Note that ẋ, which describes the dynamics of the network, is a continuous 

function of x despite having discontinuous derivatives with respect to x. Furthermore, the 

metric of our networks remains the same throughout their processing (Rutishauser et al., 

2015). Thus, both conditions for the application of contraction theory are satisfied.

Now we present new proofs that together provide important insights into the operation of 

this network. First, we prove that adding NC cells creates new forbidden sets. The NCs are 

thereby able to influence the dynamics of network computation. Second, we prove that 

adding PC cells creates permitted sets. Third, we prove that networks of WTAs connected by 

NC/PC cells remain stable despite the presence of forbidden sets. Together, these new results 

generalize our previous findings from individual WTAs (Rutishauser et al., 2015) to 

networks of WTAs coupled by NC and PCs that implement specific constraints. Finally, we 

provide rules that allow all instances of three classes of CSPs to be implemented in networks 

of WTAs by installing suitable NC and PC coupling connections.

2.5.1 Proof 1: Adding negative constraint cells creates forbidden sets—
Consider a set of WTAs, with the dynamics of each described by a Jacobian Ji:

Ji =

l1α − G 0 −l1β1

0 l2α − G −l2β1

l3β2 l3β2 −G

(8)

Now, consider a system composed of two copies of the above circuits J1,2:
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J3 =
J1 0
0 J2

(9)

div(J3) < 0 if div(J1,2) < 0. Thus, combinations of circuits with negative divergence will 

always have negative divergence. Next, we add an additional inhibitory neuron (”NC cell”) 

that enforces additional competition between the two sub-circuits J1 and J2. This new 

constraint will create a new forbidden subspace, which must be expanding. This system is 

described by J4.

J4 = J3 −kDT

D −G
(10)

with k = β1

β2 . For example, setting D = [β2 0 0 β2 0 0] would connect the new inhibitory unit 

such that simultaneously activating the first unit in both sub-circuits J1 and J2 is forbidden.

The individual WTA J1,2 is expanding if V1, 2J1, 2V1, 2
T > 0 with

V1, 2 = 1 −1 0 (11)

This V term ensures that both excitatory units on a WTA cannot be simultanously active.

The combined system J4 is expanding if V4J4V4
T > 0 with

V4 =
V 0 0
0 V 0

V j −V j 0
(12)

where Vj = [1 0 0]. The term [Vj − Vj] ensures that the first excitatory neurons on both 

WTAs cannot be simultaneously active, which is the constraint that the NC cell described by 

D embeds. Multiplying out, the result becomes

F4 = V4J4V4
T =

VJ1VT 0 V jJ1VT

0 VJ1VT −V jJ2VT

V jJ1VT −V jJ2VT V jJ1V j
T + V jJ2V j

T

(13)

which can further be decomposed into
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F4
Q1 BT

B Q2
(14)

A sufficient condition for above to be positive definite is, Q2 > BTQ1
−1B (Horn, 1985) (Page 

472). Note that this condition requires Q1,2 to be symmetric. After substituting all variables, 

the result is

F4 =
−2 + 2α 0 −1 + α

0 −2 + 2α 1 − α
−1 + α 1 − α −2 + 2α

(15)

Thus, Q2 = 2(α − 1), B = [−1 + α, 1 − α], and Q1 = 2(α − 1)I. Accordingly, F4 is positive 

definite if 2(α − 1) > α − 1. This condition is satisfied if α > 1.

In conclusion, the additional feedback loop introduced by adding the negative constraint cell 

creates a forbidden subspace, which is both negatively divergent as well as expanding. This 

method can be applied recursively to add arbitrary numbers inhibitory feedback loops to a 

collection of WTA circuits.

Positive constraints do not create additional forbidden sets. Instead, a positive constraint of 

the kind ”if WTA1 is in state 1, WTA2 should be in state 2” reinforces two sets that are 

already permitted. Thus, all that is required with regard to positive constraints, is a proof 

demonstrating that permitted sets remain permitted (see below).

2.5.2 Proof 2: Stability analysis—In this section, we demonstrate that the addition of 

positive and negative constraints does not disturb the overall stability of the system. A key 

feature of contracting systems is that contraction is preserved through a variety of 

combinations of subsystems (Slotine, 2003). Importantly, this property includes the two 

kinds of combination that we consider here: the introduction of negative and positive 

constraint cells. In the following, we simply outline the grounds for this inclusion. The 

detailed proof of preservation of contraction under combination of subsystems is presented 

in (Slotine, 2003).

We begin by showing that the addition of negative constraint NC cells does not disturb the 

stability of the system. Coupling two WTAs J1 and J2 with NC cells such that the two 

WTAs can not have the same winners results in the system Jacobian J3 (see Equation 9).

τJ = J3 −kBT

A −G
(16)
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where the NC cells have no dynamics apart from the load term G on the diagonal. The 

connectivity of the NC cells is A = β2D 0 0 β2D 0 0 . With k = β1D

β2D , B = A. Feedback 

combinations of this form are guaranteed to be contracting as shown in (Slotine, 2003) 

(section 3.4).

A similar argument holds for positive constraint cells: Adding a positive constraint between 

two identical WTAs results in a new system with Jacobian

τJ J3 BT

A −G
(17)

where the positive constraint cell has no dynamics apart from the load term g on the 

diagonal. For the example of a single positive constraint cell that enforces that if WTA 1 is 

in state 1, WTA 2 should be in state 2, its connectivity is: A = γ2P 0 0 0 0 0  and 

B = 0 0 0 0 γ1P 0 . Unlike the previous negative constraint case, there is no simple 

relationship between A and B. However, taking the symmetric part JS = 1
2 J + JT  results in a 

system in which AS = BS = γ1P + γ2P

2 0 0 0 γ1P + γ2P

2 0 . Feedback combinations of this 

form are guaranteed to be contracting (Slotine, 2003) (section 3.4) if

σ2 AS < λ J3 λ −G (18)

where σ is the largest singular value and λ the largest eigenvalue. Both λ(J3) and λ(−G) are 

negative by definition, since the systems are both individually contracting.

The contraction rate of a WTA is α
2 − 1 (see (Rutishauser, Slotine, & Douglas, 2012) section 

2.3.2). Assuming G = 1, this reduces to

γP1 + γP2 2 < 2 − α (19)

Therefore, as long as the weights of the positive constraint cells fulfill condition Equation 

19, the system will remain contracting.

2.6 Choice of parameters

The stability and computational power of a WTA depends on the following parameters: 

excitatory local recurrence α, inhibitory recurrence β1 and β2 (note that β2 is a superscript 

index and not a power), and inhibitory β
1, 2D and excitatory (γP1, γP2) recurrence between 

WTAs that implements the constraints. Provided these parameters are set to values within a 
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permitted range, this network will allow only one winner to emerge, and that solution 

depends on the pattern of its input I (Rutishauser & Douglas, 2009). These constraints are:

1 < α < 2 β1β2 (20)

1
4 < β1β2 < 1 (21)

β1β2 < 1 − 1
α β1

2 + α2

2 (22)

γP1 + γP2 2 < 2 − α (23)

where Equations 20–22 are derived in (Rutishauser et al., 2011) and Equation 23 is derived 

above. Note that the constraints on inhibitory feedback loops established by inhibitory 

neurons apply to both the local inhibitory neuron of each WTA, as well as the additional 

inhibitory neurons that establish inhibitory feedback between WTAs (referred to as β1,2 and 

β
1, 2D, respectively).

For all simulations, we chose parameters within the permitted ranges given by Equations 

20–23. Within those restrictions, the parameters were chosen to optimize performance for 

each problem class (i.e. GC4P, MIS, and SUD) and network type (WTAs and WTAe). Note 

that the parameters used were identical for all instances of a particular problem class and 

network type (i.e. GC4P solved with the WTAs architecture) and not optimized for a 

particular problem instance (which are randomly generated).

2.7 Planar Graph Coloring using only negative constraints (GC4P)

We next applied this architecture to the problem of graph coloring. Here, each node must at 

any time express only one of a fixed number of different colors. The selected color 

represents the node’s current state. The coloring constraint is that nodes that share an edge 

are forbidden from having the same color. Finding an assignment of colors to all the graph 

nodes that respects this constraint for all their edges solves the graph coloring problem (for 

example, Fig 3A). The smaller the number of permitted colors, the harder the problem.

More specifically, we chose to investigate the problem of coloring planar graphs with 4 

colors with an arbitrary number of nodes and undirected edges (Figs 4). A planar graph is 

one that can be embedded in the plane, which means that it can be drawn in such a way that 

no edges cross one another. Here, we restrict ourselves to planar graphs, because they are 

guaranteed to be colorable with 4 colors.
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The topology of Graph Coloring can naturally be framed as a topologically distributed 

constraint satisfaction problem, and so implemented by networks of WTA circuits in the 

manner that we have described above. The color state of each node is represented by a single 

WTA, and so the network implementation requires as many WTA modules as the graph has 

nodes. In the problems reported here, the smallest number of colors required to color the 

graph (its chromatic number) is constant (here, 4) and given. Thus, each WTA has as many 

state neurons (possible winners) as the chromatic number. Because the local competition 

between these states is unbiased, all WTAs have the same internal connection architecture.

The edges of the graph are constraints of the kind ”not same”, and they are implemented 

using NC cells (see Methods; Fig 3). At most, the constraints across each edge will require 

as many different NC cells as there are node colors. However, a single NC cell can enforce 

its constraint across arbitrary numbers of neighbor WTAs. Thus, it is sufficient to add only 

one NC cell per color at a given node. This cell is then able to assert the same constraint 

across all edges connected to this node (see Methods).

We have shown previously for both symmetrical (Hahnloser et al., 2000) and asymmetrical 

networks (Rutishauser et al., 2015) that the fundamental operation of the WTA modules is 

an active selection process whereby the activities of some neurons are driven below 

threshold by those who are receiving support from either local or remote excitatory input. 

Partitions of active neurons that are inconsistent with stability are forbidden. Such a partition 

is left exponentially quickly because the unstably high gain generated by the neurons of 

forbidden partitions will drive recurrent inhibition sufficiently strongly to soon drive a 

neuron of the set beneath threshold, and so bring a new partition into being. This process 

continues until a consistent permitted partition is found. The previous work was concerned 

only with the relationship between inhibitory feedback that is driven by the excitatory 

members of the local WTA, and the existence of forbidden sets. We demonstrated there that 

it is the existence of these forbidden subspaces that provides computational power 

(Rutishauser et al., 2015). Now, in these CSP networks the negative constraints provide an 

additional source of negative feedback routed via remote WTAs (see above for a proof).

We tested the performance of the network in solving randomly generated planar graphs with 

up to 49 four color nodes (Fig. 4). In these cases there were no constraints on the acceptable 

color of any specific node. Thus, any solution that satisfies all constraints is acceptable. 

Consequently there are many equally valid solutions for each graph (at minimum four, the 

number of colors).

The goodness of a solution was measured by two metrics: The average time the network 

took to converge, and the number of edges that were not satisfied (Number of Errors, in the 

following) as a function of time. We found that WTA networks can solve all graphs of up to 

25 nodes correctly within 1500τ. However, larger graphs are incompletely solved and take 

longer (Fig 4C). The computational process evolves in such a way that the number of errors 

decreases exponentially fast (Fig 4D). This means that networks of a given size solve the 

majority of random graphs quickly, with a minority taking much longer. This results in 

heavy-tailed distributions with respect to the elapsed time to solution (Fig 4H).
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2.8 Maximal Independent Set using both positive and negative constraints (MIS)

The use of positive constraint cells is demonstrated by solving a second class of graph 

coloring problems: maximal independent sets (MIS)(Fig 5). MIS problems are a second 

fundamental class of computational problems (Afek et al., 2011) solvable with the type of 

network we present here. MIS is related to graph coloring, but requires different constraints. 

In this case, each node must take one of two possible colors A and B. If two nodes are 

connected (they are neighbors), then they cannot both be A. Further, any node that takes 

color B must be connected to at least one other node that has color A. This problem finds 

practical application in many distributed algorithms (Lynch, 1996), where it is used for 

automatic selection of local leaders.

We translated MIS problems into networks that use both negative and positive constraints. 

The first constraint, that two neighbors can not both be color A, is implemented by one NC 

cell for each connected pair (see Fig 1D). The second constraint, that if a node has color B it 

encourages its neighbors to be of color A, is implemented by positive feedback through two 

hint cells for each pair of connected nodes (see Fig 1D). The positive feedback is active 

conditional on a node being of color B. Thus, if a node has color A, the positive constraint is 

inactive. We found that this WTA network solves MIS in a manner and speed similar to that 

described above for graph coloring (Fig 5D): The networks solve most MIS problems of 

large size fairly quickly, however a small number of large problems remain unsolved even at 

long times.

2.9 Fully constrained graph coloring problems - Sudoku (SUD)

The standard WTA networks are also able to solve non-planar graph coloring problems in 

which the color states of many nodes have a fixed assignment. These initial assignment 

constraints make graph coloring significantly more difficult than the case in which any valid 

solution is acceptable. A canonical example of this problem class is the popular game 

Sudoku.

The graph of Sudoku has 81 nodes arranged in a 9×9 lattice (Fig 6A,B). The lattice is 

composed of 3×3 boxes, each of which has 3×3 nodes. Each node can take one of nine 

colors (numbers). The constraints of the problem are that each color can appear only once in 

each row, in each column, and in each box. The neural network that implements Sudoku 

consists of 1052 units. Of those, 810 units (81 nodes, 9 excitatory and 1 inhibitory each) 

implement the nodes (WTAs) and 243 implement the constraints (9 row, 9 column and 9 box 

constraints, one for each color; i.e. 27*9). In addition, there are initial constraints in the form 

of specified inputs to a subset of the nodes which describe the specific problem to be solved 

(Fig 6A).

For the sudoku network, each excitatory cell receives a constant noisy excitatory input from 

the network. This input stands for the broader network context in which the particular CS 

network is embedded. In addition, each excitatory cell receives several negative constraint 

inputs. There are no positive hint constraints. The forward inputs Ii
bias enforce the fixed color 

assignments for some nodes, as required by the specific SUD problem to be solved. 

Unbiased neurons receive Ii
bias = 0.
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We found that these standard WTAs networks are able to solve many Sudoku problems. But 

their performance is poor. The average converge time was 1330τ, and the network was only 

able to solve 60% of all networks in the maximal time permitted. As in the case of graph 

coloring, the number of violated constraints (errors) decreases exponentially as a function of 

simulation time (Fig 6E,F).

2.10 Extended WTA (WTAe) networks

We sought to improve the fraction of correct solutions and rate of reduction in errors by 

modifying the network configuration. We reasoned that the exponential form of the network 

convergence reflects its exploration of the combinatorial solution space; and that 

convergence would be more rapid if the network could be made more sensitive to its 

constraints.

We noticed that in equation 6 the mechanism of state selection within a WTA is similar to 

that of negative constraints; both operate via subtractive inhibition (i.e. the term −β
1Dd j is 

added). Therefore a negative constraint, rather than only discouraging the selection of a 

particular state, could prevent a state from ever being selected: If the subtractive inhibition 

through negative constraints cells is sufficiently strong, this cell will be driven far below the 

activation threshold and so become insensitive to positive inputs. We hypothesized that, if 

the effects of the constraints scaled multiplicatively rather than being applied subtractively 

as in equation 6, then the network would be able to separate the function of state selection at 

a node from the constraints that biased that selection, and that this change in architecture 

might promote more rapid convergence.

The necessary separation of inhibitory constraint functions was achieved by modifying 

equation 5 to:

Ii
cons = g ∑

k = 1

Di
β

1Ddk ∑
k = 1

Ci
Ik
C + ∑

k = 1

Pi
γ

1Dpk (24)

where Ik
C is non-specific contextual background excitation (see below), Di is the number of 

negative constraint cells synapsing on cell i, Pi the number of positive constraint cells 

synapsing on cell i, Ci the number contextual inputs (here, C = 1 throughout), and the 

function g(z) is an inverse sigmoid-type non-linearity of the form

g z = 1 − 1
2 tanh s z − o + 1 (25)

where s is the slope and o the offset. Note that this function takes only values of 0...1. To 

facilitate mathematical analysis, we use a linear approximation g(z) = 1 − min(max(sz, 0), 

1). When this function is not in saturation it assumes value sz, where s is the slope with 0 < s 
< 1.
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In this extended version of the WTA (WTAE), the inhibitory constraints enter as the 

argument of a non-linear function, g. This scales the effect of the two network excitatory 

sources (the positive constraint cells pk and the non-specific background excitation IC). 

Thus, each excitatory unit xi of the WTAE now receives two kinds of excitatory input: the 

forward input Ii
bias, and a constraint input Ii

cons. Note the critical difference: in WTAE, Ii
cons

is always positive. In contrast, in the standard WTA this input may also be negative. This has 

the effect that negative constraints can never overwrite the forward input.

The dynamics of excitatory units in the extended WTA xi are:

τẋi + Gxi = f s αxi − β1xN − T i + Ii
bias + Ii

cons (26)

Note that in Equation 26, the external input Ii no longer appears because it is replaced by the 

contextual input IC that is now applied through the non-linearity g(z).

2.11 Enhanced performance of WTAe networks

We tested the performance of the extended WTA networks on all of the constraint 

satisfaction tasks. Unlike the standard networks, the WTAe networks solve all the problems 

presented. For graph coloring, the WTAe architecture converged significantly faster (Fig 4G) 

and reduced the number of errors more rapidly (Fig 4D,F). This difference became more 

apparent the larger the problem size. For example, networks with 49 nodes converged on 

average after 255τ. In contrast, the same problems required on average 1100τ for WTAs (Fig 

4G).

Also, for MIS, we found that the WTAe architecture performed better for the larger problem 

sizes, with a speedup of up to 60% (Fig 5E,F).

The greatest advantage of the WTAe network was for SUD problems. WTAe solved all 

Sudoku problems quickly: convergence was on average 161τ for the hard problem shown in 

Fig 6A and 142τ for a set of 50 different sudoku standard problems of varying difficulty 

(Project Euler, 2015)(Fig 6D–F). By contrast, the WTAs network was only able to solve 

20% of the instances of the hard problem (Fig 6D, gray) and 60% of the 50 different 

problems in (Fig 6F, gray) the same time in which WTAe solved 100% of all problems. Note 

that because the solution times have a heavy tailed distribution, even for WTAe a small 

minority of runs take much longer. For example, whereas mean convergence is 142τ for the 

50 different problems, a few problems required up to 2000τ (Fig 6F).

3 Discussion

Our results indicate that large distributed constraint satisfaction problems can be processed 

on a computational substrate composed of many stereotypically connected neuronal WTA 

modules, together with a smaller number of more specific ’programming’ neurons that 

interconnect the WTAs and thereby encode the constraints (or rules) of the particular 

problem to be solved.

Rutishauser et al. Page 16

Neural Comput. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The architecture of these CSP networks is consistent with the strong recurrent excitatory, 

and recurrent inhibitory, connection motifs observed in the physiological and anatomical 

connections between neurons in superficial layers of mammalian neocortex (Douglas et al., 

1991; Binzegger et al., 2004). Therefore our results are relevant to understanding how these 

biological circuits might operate. However, we do not consider that GC4P, MIS, and SUD 

are per se the problems solved by the actual neuronal cortical circuits. Instead, we choose 

these canonical CSP examples because their properties and applications are well understood 

in the computational literature, and so they can be used as a basis of comparison for the 

operation and performance of our WTAs networks, and then by extrapolation also of 

neocortical networks.

Graph-coloring CSPs are intriguing computational problems because their structure requires 

simultaneous distributed satisfaction of constraints. However, in practice they are solved by 

sequential localized algorithms (Russell & Norvig, 2010; Wu & Hao, 2015). For example, 

CSPs can be solved by exhaustive search, in which candidate solutions are systematically 

generated and tested for validity. However, this approach does not scale well with problem 

size (Kumar, 1992). For our 49 node GC4P and SUD graph, this strategy would require up 

to approximately 1029 and 1022 configurations to be tested, respectively. Various heuristic 

algorithms can (but are not guaranteed to) improve performance beyond that obtainable by 

exhaustive search. By contrast, the neural network we present here solves CSPs efficiently 

without relying on domain-specific heuristics. However this performance would be a 

property of the physically realized network, and not of the algorithmic simulation of the 

model network that we are obliged to use here. For the moment our estimates of network 

performance are in terms of model time steps τ (eg Fig 4F), which stand proxy for physical 

performance measurements.

Previous approaches to solving CSPs using artificial neural networks (C. J. Wang & Tsang, 

1991; Habenschuss et al., 2013; Jonke, Habenschuss, & Maass, 2016; Hopfield & Tank, 

1985; Mostafa, Müller, & Indiveri, 2013; Mezard & Mora, 2009; McClelland, Mirman, 

Bolger, & Khaitan, 2014; Rosenfeld et al., 1976; Miller & Zucker, 1999) have relied on the 

use of saturating neurons to maintain global stability, and have neglected the important role 

of instability. Output saturation is not observed in biological networks, where neurons 

typically operate at well beneath their maximum discharge rate. The computational 

implications of this well-recognized fact have until recently received little attention. For 

example, it is now becoming clear that non-saturating ’ReLu’ activation functions are 

advantageous for deep learning networks (Nair & Hinton, 2010; Maas, Hannun, & Ng, 

2013; LeCun et al., 2015). Here we now show that there are novel principles of network 

computation that depend on non-saturating activation. In this case stability relies on shared 

inhibition, which allows transient periods of highly unstable dynamics. This kind of 

instability does not exist in networks that utilize saturating neurons (eg (Hopfield & Tank, 

1985; Miller & Zucker, 1999)) where the majority (or even all) neurons are in either positive 

or negative saturation. In networks with non-saturating LTNs, the derivative of the activation 

function (equal to 1 here) appears in Jeff for all supra-threshold neurons, and hence all 

currently active neurons contribute to the expansion or contraction of the network dynamics. 

Neurons that are in saturation are of course also active, but because the derivative of their 
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saturated activation function is at or near zero they contribute little or nothing to the 

expansion or contraction of the network dynamics. Analyzing the properties of Jeff is thus a 

powerful tool to understand the way by which our networks switch between different states 

autonomously as driven by their dynamics during the unstable parts of the dynamics. This 

tool is analogous to the energy function used in work pioneered by (Hopfield & Tank, 1985), 

analysis of which has provided great insight into how saturating networks compute.

Our approach consists of a set of rules that allows the systematic ’programming’ of 

biologically plausible networks. Thus, we are able to program the desired computational 

processes onto a uniform substrate in a scalable manner (Rutishauser et al., 2015, 2011). 

This approach has technological benefits for configuring large scale neuromorphic hardware 

such as IBM TrueNorth (Merolla et al., 2014) or the Dynap chip (Qiao et al., 2015), which 

instantiate a physical network rather than simulating it as we are doing here. While we deal 

here only with continously-valued networks, it has been shown that the types of WTA-

networks we use here can also be implemented using spiking neurons (Neftci et al., 2013; 

Neftci, Chicca, Indiveri, & Douglas, 2011; W. Wang & Slotine, 2006).

Although we do not claim that our CSP problems are implemented in real cortical networks, 

principles such as instability as the driving force of computation (Rutishauser et al., 2015), 

and search through forbidden sets, are likely fundamental to spontaneous computation in all 

types of LTN networks. In addition, this work provides insight into how analogous hardware 

should be engineered. These practical implications are in contrast to more general theoretical 

frameworks (e.g. (Heeger, 2017)) that often lack a circuit-level implementation and so 

cannot make predictions about the necessary computational roles of cell types such as we do 

here. Note also that the computational properties of the networks we describe here are 

preserved regardless of network size. This is because all aspects of the network rely on a 

simple computational motif (that of the WTA) that can be replicated as many times as 

needed for a particular problem without having to make modifications that depend on 

network size. This scalability is in contrast to other attractor-based computational 

approaches, which can be shown to solve small problems but cannot easily be generalized to 

larger ones (Afraimovich, Rabinovich, & Varona, 2004).

3.1 Computational properties of network solution of CSP

The fundamental operation of our network involves simultaneous and interactive selection of 

values (states) across the WTA modules. The selection process drives the activities of some 

neurons below threshold using the signal gain developed by those neurons which receive 

support from either local or remote excitatory input. The dynamics of the network forbid 

partitions of active neurons that are inconsistent with network stability. These partitions are 

left exponentially quickly because the unstably high gain generated by the neurons active in 

the forbidden partition will increase recurrent inhibition such that at least one active will be 

driven beneath its activation threshold (Rutishauser et al., 2015). As a consequence of this, a 

new partition of lower divergence is entered. This next partition may again be forbidden, and 

so exited; or it might be permitted, and so stable. Exploiting instability in this manner can be 

thought of as taking the path of least resistance in state space (Niemeyer & Slotine, 1997). 

This exploration of state space continues until a consistent permitted partition is found 
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(Hahnloser et al., 2000; Rutishauser et al., 2015). In the absence of noise or other external 

inputs, any transition between two states results in a reduction of divergence. This reduction 

implies that the network cannot return to its previously occupied forbidden state, and so 

introduces a form of memory into the network that prevents cycling. In the presence of noise 

cycling becomes theoretically possible, but is very unlikely (Rutishauser et al., 2015).

Solving CSPs by sequentially exploring different network subspaces has interesting 

similarities with algorithmic linear optimization methods, in particular the simplex and 

related methods (Miller & Zucker, 1992, 1999). The critical step in simplex is the Pivot, an 

algorithmic manipulation that improves the subset of problem variable(s) to be maximized, 

while holding all others constant. This involves a decision, followed by a change of basis, 

and then maximization along the newly chosen dimensions. This process is similar to the 

process whereby the WTA network transitions through its forbidden sets (a link between 

neural network operation and simplex similar to that which has been made through the 

equivalence between polymatrix games and CSPs in (Miller & Zucker, 1992) for relaxation 

labeling networks (Rosenfeld et al., 1976) with saturating units). Driven by the exponentially 

shrinking volumes implied by negative divergence, the unstable dynamics rapidly cause a 

switch to a different state of lower dimensionality of the state space. The direction in which 

the expansion proceeds is described by the subset of eigenvectors of the effective Jacobian 

Jeff that have positive eigenvalues (Rutishauser et al., 2015). This network step is similar to 

maximization of the chosen variable in simplex. Furthermore, whenever the network 

switches from a forbidden set to another set (which is either forbidden or permitted), the 

network performs a ‘Pivot’, changing the basis functions among which the dynamics evolve. 

In contrast, the mechanism by which the CSP network implements these search principles is 

fundamentally different from linear programming and similar approaches, including the 

generalization to CSPs based on polymatrix games based on Lemke’s algorithm (Miller & 

Zucker, 1992). Firstly, our network performs these steps fully asynchronously and 

autonomously for every module. Secondly, our network does not require access to a global 

cost function, does not require access to the current values of all variables, and does not 

depend on an external controller to decide suitable pivots. Instead, our network moves along 

the best directions for each WTA, and so the search proceeds for all WTAs in parallel.

The constraint connections affect the mutual selection (value assignment) process of the 

coupled WTA variables. These constraints are implemented by directed weighted 

connections that provide an immediate and distributed update of all the appropriate values of 

all affected variables. Within each subspace, the network behaves as a piecewise linear 

system that is computationally powerful in that the partial derivatives of the system update 

the many interacting variables simultaneously and consistently as described by the effective 

Jacobian Jeff.

Importantly, these are updates to possible mixtures of values evolving at each WTA variable, 

rather than a replacement of one discrete value by another. But, eventually each WTA 

variable will enhance the signal due to one candidate value, while suppressing its 

competitors. This process is radically different to the back-tracking/constraint-propagation 

method implemented by digital algorithms that procedurally generate and test the 

consequences of alternative discrete value assignments to particular variables. Instead, the 
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CSP network approaches its solution by successive approximation of candidate quality, and 

so is unlikely to compute towards a false assignment (unless the CSP has no feasible 

solution). This optimization process follows from the computational dynamics of the 

network: Its computational trajectory follows successively less unfavorable forbidden 

subspaces until a permitted subspace is entered.

A further important distinction between algorithmic CS and our network rests in the 

assignment of an initial candidate configuration. Algorithmic approaches begin with a 

candidate configuration in which every variable is initialized with some legal value. By 

contrast, the initial CSP network assignment is effectively null: All xi at all WTA neurons 

are zero. However, these values are soon affected by the stochastic context signals IC applied 

to all xi so that there is almost immediately a low amplitude mixture of variables across the 

network xi. The network dynamics then bootstrap better estimates of these mixtures through 

the constraints until the network finally converges towards a complete and consistent 

assignment. In this way the network offers an novel approach to CSP that is a dynamic 

balance between candidate generation and validation through progressive refinement of a 

mixture of values at each variable.

3.2 Probabilistic processing

A certain degree of noise is essential for the operation of our networks. Such stochasticity 

and bias enters into the CSP network process via inputs from its embedding network. These 

are the contextual excitatory inputs IC. For the moment, the IC introduce only randomness 

and biases that enable the CSP network to gain access to an otherwise computationally 

inaccessible solution subspace, and so provide some degree of innovation in the search 

process. It is also these inputs that are modulated by multiplicative inhibition. In a more 

realistic scenario, IC would be replaced with input from other parts of the brain to specify 

priors. This way, the network would be responsive to constraints set by other parts of the 

network, such as sensory input or internal states.

We confirmed that the network does find a solution more quickly when biased towards easy 

candidates (Fig. 7C). Repetitions of these runs using the same random seed for the initial 

state (but not for further processing) confirm that non-deterministic processing nevertheless 

gives rise to distinct distributions of solution times for the easier and harder problems (Fig 

7C). In the case of SUD, the prior information is set by the feedforward inputs Ibias that 

implement the required values of some variables. The larger the number of biases, the harder 

the problem. But however hard, the set of problem biases for a given game of Sudoku are a 
priori known to be compatible with a solution, and therefore the network can be expected to 

finally find a complete solution. However, for more general coloring problems the input 

biases may only be desirable, and not known to be compatible with a complete assignment. 

In such cases the network may find an approximate but incomplete assignment (Fig 7C).

3.3 Distribution of run times

The network solves the majority of random graphs quickly, with a minority taking much 

longer (Fig 7). Thus, the distribution of times required for the WTA networks to solve CSP 

is heavy-tailed (Fig 7A,B). The form of the distribution does not depend on the hardness of 
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the problem (compare Figs 6D and 6F). The heavy-tail persists even if the very same 

problem is solved multiple times from the same initial conditions, indicating that 

probabilistic processing allows the network to follow different trajectories that may differ 

substantially in their length (duration) because of alternative routes through successive 

forbidden subspaces (Rutishauser et al., 2015). On the other hand if the network is seeded 

with initial conditions that favor simple solutions, then the median processing time is shorter 

than when the seed is biased towards invalid solutions (Fig 7C. Thus, the overall distribution 

of network run times appears to be a composition of the distribution over the hardness 

problems, as well the distributions over probabilistic trajectories. Such a composition is a 

characteristic of heavy-tailed processes (Gomes, Selman, Crato, & Kautz, 2000).

3.4 Computational advantage of multiplicative inhibition

We found that the ability of the network to solve hard problems was improved significantly 

when negative constraints were implemented by non-linear multiplicative inhibition (see Fig 

4D,F). This non-linearity improved performance on difficult problems that have both global 

as well as local constraints, such as SUD.

Multiple types of inhibition are a prominent feature of nervous systems (Blomfield, 

1974-03-29; Koch, Poggio, & Torre, 1983; Koch, 1998), in particular in neocortex (Isaacson 

& Scanziani, 2011). There are both non-linear and linear mechanisms, associated with 

GABAA chloride-, and GABAB potassium-mediated inhibition, respectively. Their actions 

are separable in intracellular recordings in vivo (Douglas & Martin, 1991; Borg-Graham, 

Monier, & Fregnac, 1998), but their effects during processing are mixed (El-Boustani & Sur, 

2014; Zhang, Li, Rasch, & Wu, 2013).

Inhibition is mediated by distinct types of neuron encountered in the superficial layers of 

neocortex (Rudy, Fishell, Lee, & Hjerling-Leffler, 2011). One large group (40%), the basket 

(BCs) inhibitory neurons, have horizontally disposed axons that target predominantly the 

soma and proximal dendritic segments of pyramidal neurons. The somatic bias of the 

synapses of these neurons make them likely candidates for implementing the somatic WTA 

selective mechanism. Another large group (30%), the bitufted cells or double-bouquet cells 

(DBCs), have vertically disposed axons that target predominantly the more distal dendritic 

segments of pyramidal neurons. These neurons are candidates for the non-linear NC cells of 

our model. Although their particular conductance mechanisms are as yet unknown, non-

linear inhibitory effects are considered to play an important role in the processing of 

synaptic inputs by dendrites of pyramidal cells (Koch, 1998; Bar-Ilan, Gidon, & Segev, 

2013; Brunel, Hakim, & Richardson, 2014-04; Stuart & Spruston, 2015).

When negative constraints are implemented by direct subtractive inhibition applied to the 

somatic compartment, they degrade the local WTA selection process by falsely contributing 

to the inhibitory normalization over the WTA xi. We overcame this disadvantage by 

introducing a second, dendritic, compartment that receives the positive constraint and 

contextual input, and whose output Idendrite
i  to the soma is governed by the non-linearity g(z) 

(Fig 8A). The somatic compartment receives the standard WTA inputs Ibias, Iα, and Iβ1, and 

the output of the dendritic compartment. Thus, in addition to local recurrence, each 
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excitatory unit xi of the WTAE receives two kinds of input: direct somatic input Ii
bias and 

dendritic input Idendrite
i . In this configuration, multiplicative inhibitory constraints quench 

only the various sources of IC excitation received by each of the xi, and do not interfere 

directly with the WTA local decision for the best supported of the xi. This advantage 

explains the improved performance of the WTAE networks depicted in Figs 4D,F,I; 5D,E,F; 

and 6D,E,F.

The g(z) non-linearity provides ’on-path’, multiplicative or ’shunting’ inhibition previously 

described in biological dendrites (Koch et al., 1983; Gidon & Segev, 2012). This type of 

inhibition can veto excitatory input arriving on the the same dendritic branch but has much 

less influence on excitatory inputs that arrive on other branches or the soma (Zhang et al., 

2013). The g(z) has two important implications for computation. Firstly, somata that are 

strongly activated (e.g. by large Ibias) have little or no dendritic sensitivity because the strong 

feedback inhibition drives g(z) towards 0 (Fig 8C). They ignore their dendritic excitatory 

input, thereby reducing the dimensionality of the problem. Second, dendritic sensitivity is 

graded so that when somatic activation varies, neurons with the low somatic activation are 

more sensitive to remote excitatory input (Fig 8D). This mechanism provides a weighting of 

the importance of different dimensions of the problem, making it easier for solutions with 

little evidence to switch to alternative solutions, by comparison with those that have more 

evidence (ie more somatic activation).

The single dendritic compartment can be generalized to multiple compartments, each 

governed by its own nonlinearity, thereby allowing localized inhibitory modulation of 

specific excitatory input in the manner of a dendritic tree (Koch, 1998; Tran-Van-Minh et al., 

2015). The total dendritic input Idendrite
i  is then the sum of currents provided by all dendritic 

branches j. There are Δi branches in total. Each branch receives inhibitory inputs dk from 

negative constraint cells as well as two kinds of excitatory inputs: contextual inputs IC
k  and 

inputs from the positive constraint cells pk. Each branch j receives Ij, Cj, and Pj such inputs, 

respectively.

Idendrite
i = ∑

j

Δi

g ∑
k = 1

I j
β1

Ddk ∑
k = 1

C j
IC
k + ∑

k = 1

P j
γ1

Dpk (27)

Future work will explore the potential benefits for network processing of such parallel, or 

tree-structured, dendritic structures. For the present we consider only a single dendritic 

segment.

4 Conclusion

We have shown that large distributed constraint satisfaction problems can be processed on a 

computational substrate that is composed of stereotypically connected neuronal WTA 

modules, and a smaller number of more specific ’programming’ neurons which embody the 

constraints (or rules) of the particular problem to be solved. The rules of network 
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construction and accompanying mathematical proofs guarantee that any instance of the three 

CSP types GC4P, MIS, and SUD implemented in the way described will find a solution. 

Note that the CSPs we considered can be reduced to graph coloring of planar (GC4P, MIS) 

and non-planar (SUD) graphs with the number of colors available given a-priori.

The networks use a combination of unstably high gain and network noise to drive a search 

for a consistent assignment values to problem variables. The organization of the network 

imposes constraints on the evolving manifold of system dynamics, with the result that the 

computational trajectory of the network is steered toward progressive satisfaction of all the 

problem constraints. This process takes advantage of the non-saturating nature of the 

individual neurons, which results in the effective Jacobian being driven by all neurons that 

are currently above threshold.

This search performance is greatly improved if the mechanism of value selection at any 

variable can reduce its sensitivity to constraints according the confidence of selection. This 

can be achieved by using subtractive inhibition for selection, while modulating constraint 

inputs using multiplicative inhibition. This arrangement allows the constraint satisfaction 

network to solve more difficult problems, and to solve all such problems more quickly.

Our findings provide insight into the operation of the neuronal circuits of the neocortex, 

where the fundamental patterns of connection amongst superficial neurons is consistent with 

the WTA networks described here (Douglas & Martin, 2004; Lee et al., 2016; Rudy et al., 

2011; Binzegger et al., 2004). Our findings are also relevant to the design and construction 

of hybrid analog digital neuromorphic processing systems (Liu, Delbruck, Indiveri, Whatley, 

& Douglas, 2015; Indiveri, Chicca, & Douglas, 2009; Neftci et al., 2013) because they 

provide general principles whereby a physical computational substrate could be engineered 

and utilized.

5 Methods

5.1 Numerical simulations

All simulations were implemented in MATLAB. Numerical integration of the ODEs is with 

Euler integration with δ = 0.01.

The Boost graph library (Siek, Lee, & Lumsdaine, 2002) and its MATLAB interface 

MatlabBGL (Gleich, 2009) is used for graph-theoretical algorithms such as confirmation 

that graphs are planar, generation of random graphs, Chrobak-Payne Straight Line Drawing 

etc. The description of the network is generated automatically based on an XML file that 

specifies the graph. The XML file is in JFF format as used by JFLAP (Rodger & Finley, 

2006).

5.2 Translating a graph coloring problem into collection of WTAs

The graph is decomposed into fully connected (all-to-all) non-overlapping subgraphs, for 

each of which a NC cell (”ring”) is added (one for each color, so 4 for each ring). The sum 

of all β1
D j projecting to a particular pyramid cell j is normalized to a constant equal to β j

D. 
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External input to all pyramid cells (4 for each node) is normally distributed i.i.d. noise 

(currently μ = 1 and σ = 0.1, i.e. 10% of the mean).
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Figure 1. 
Connectivity and network architecture. (A) Single WTA comprising two excitatory neurons 

that encode possible winners, A and B. Top: all connections. Bottom: simplified notation. 

(B) Two modules M1 and M2 that implement WTA shown in (A) are connected with one 

another by two additional inhibitory cells NC1,2. These cells enforce the negative constraint 

that the two WTAs cannot reach the same winner (solution). The constraint inhibition is 

linear. To maintain analogy with neurons, the inhibition is shown applied to a dendrite. 

However, in this point model neuron, it could as well be applied directly to the soma. See 

Fig 2 for a simulation of this constraint problem. (C) The non-linear inhibitory synapse (blue 

circle) provides on-path inhibition, which can suppress only dendritic but not somatic 

excitatory inputs. (D) Example circuit with both (nonlinear) negative, and positive (NC, PC) 

constraint cells implemented with non-linear inhibitory synapses.
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Figure 2. 
Enforcing constraints between WTAs using negative constraint (NC) cells. Simple example 

using the two-Node circuit of Fig 1B. (A) Circuit diagram of the network, with two nodes 

M1 and M2 with two winners A and B each. The two negative constraint cells NC enforce 

the not-same constraint. (B) Weight matrix of the full network. Gray boxes mark nodes M1 

and M2. Connections outside of the boxes correspond to the NCs. (C) The inputs to the 

network. (D,E) Activity on nodes M1 and M2. (F) Activity of the two negative constraint 

cells NC1 and NC2.
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Figure 3. 
Solving graph coloring problems with networks of WTAs. (A) Example 4-node graph, with 

one possible color solution computed by a WTA network indicated (colors). (B) Weight 

matrix of the 4 module WTA network, implementing the graph shown in (A). Neurons 1 

through 20 are configured as 4 separate WTAs, each with four excitatory neurons that 

encode the 4 possible colors of each node, and one global (to that WTA) inhibitory neuron. 

Neurons 21–24 impose the inhibitory constraint that no edge may have nodes of the same 

color. (C) Dynamics of the network leading to solution in (A). Note the relatively small 

modulations of constraint neuron activity required to achieve this solution.
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Figure 4. 
Performance on solving the planar graph four coloring problem (GC4P). (A) Example of a 

GC4P solution. (B) Weight matrix of a network with 505 units (245 for WTAs and 260 

NCs). (C,D) Performance of WTAs. (C) Cumulative probability of network convergence as a 

function of processing time and network size. (D) Average number of errors (graph edge 

constraints violated) as a function of time. (E,F) Performance for WTAe. Same notation as 

(C,D). (G) Average time ± s.e. to find a solution as a function of network size and 

architecture. Time to solution for large problems was significantly shorter for WTAe network 

by comparison with WTAs (**, p¡0.01, kstest). (H) Distribution of times to solution, as a 

function of network size. (I) Scaling of time at which solved 50% and 80% of all networks 

converged as a function of network size. WTAs parameters: α = 1.5, β1 = 3, β2 = 0.3, 

β
1D = 1.5, β

2D = 0.15, iid noise of μ = 1.5, σ = 0.15. WTAe parameters: same, except α = 

1.2, β
1D = 3, β

2D = 0.3, s = 0.15, o = 0. See section 2.6 for how the network parameters were 

chosen. Results are for N=1000 simulations for each network size. A new random planar 

graph with 80% density was generated for each simulation.
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Figure 5. 
Performance on solving the Maximal Independent Set (MIS) problem. (A) Example 

maximal independent set (red nodes) on an 8 node graph. Each red node is not connected to 

any other red nodes and each green node is connected to at least one red node. (B) 

Connectivity for a simple two-node problem. Each node has two possible winners (red, 

green). NC1 enforces that not both notes can be red. PC1 and PC2 enforces that if a node is 

green, the other is red. (C) Weight matrix for the 8-node graph illustrated in (A). The dashed 

box indicates the connection submatrix of the 8 WTAs (3 units each). Remaining entries 

indicate constraint units and their connections. (D–E) Performance of WTAs (D) WTAe (E) 

on random MIS problems of different size (number of nodes). Graphs were randomly 

generated planar graphs with 90% density. WTAe converges more quickly than WTAs for all 

problem sizes. (F) Performance comparison between WTAs (black) and WTAe (red). Except 

for the smallest problem (size N=9), WTAe converged significantly more quickly than WTAs 

(** is p¡0.01, ks-test). WTAs parameters: α = 1.2, β1 = 3, β2 = 0.3, β
1D = 1.5, β

2D = 0.15, 

γ
1P = 0.8, γ2

2P = 0.15, iid noise of μ = 1.5, σ = 0.15. WTAe parameters: Same, except 

γ
1P = 1.5.
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Figure 6. 
Sudoku, a graph coloring problem, solved by WTAe. (A) Example ”hard” SUD, identical to 

the ”hard” example used in (Habenschuss et al., 2013). Red values are given. (B) Circuit 

implementation of SUD. Each node has 9 possible winners (colors). Row, column and box 

constrains are enforced through negative constraint (NC) cells). The pre-defined (red) 

winners are enforced through bias currents to the soma. (C) Weight matrix of network that 

implements SUD. The network consists of 1052 units. Of those, 810 units (81 nodes, 9 

excitatory and 1 inhibitory each) implement the nodes (WTAs) and 243 implement the 

constraints (9 row, 9 column and 9 box constraints, one for each color; i.e. 27*9). (D) 

Performance of the WTAe (blue) and WTAs (gray) network on the sudoku shown in (A). 

1000 runs of the same network with different initial conditions. WTAe required on average 

161 τ to converge, with a maximal duration of 800τ. (E) Number of violated constraints 

(errors) decreases exponentially as a function of simulation time for the simulations shown 

in (D). (F) Same as in (D), but for simulations of 50 different sudoku problems of varying 

difficulty (Project Euler, 2015). For WTAe and WTAs, average convergence time was 142 τ 

and 1330τ, respectively. WTAe parameters: α = 1.1, β1 = 3, β2 = 0.3, β
1D = 3, β

2D = 0.3, s = 

4, o = 4. All contextual inputs IC = 4, with s.d. of 1. WTAs parameters were identical except 

α = 1.5, β
D1 = 1.5, β

D2 = 0.15 (see Fig 4).
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Figure 7. 
Distribution of run times and influence of initial conditions. (A) Probability that a simulation 

will find a correct solution after a certain amount of simulation time. N=6000 simulation 

runs of random graphs with N=36 nodes, same parameters as in Fig 4H). The majority of 

simulations find a solution within 200τ (red line). The data was well fit by the log-normal (μ 
= 5.11 – 5.15, σ = 0.72 – 0.75, 95% confidence intervals) and generalized extreme value (k 
= 0.50 – 0.56, σ = 74.3 – 78.7, μ = 120.5 – 125.0, 95% confidence intervals) distributions. 

Both these distributions are characteristic of heavy-tailed phenomena (Feldman & Taqqu, 

1998). (B) Assessment of fit using a log-log plot. For robustness the y-axis is cumulative 

rather than log frequency. The tail of the observed data falls between the two theoretical 

distributions, indicating that its tail is heavier than expected by log-normal but less heavy 

than expected by generalized extreme value. (C) GC4P for an identical N=25 node graph, 

but with different initial conditions: i) random initial conditions (green), ii) partially 

informative (50% of states are set correctly), and iii) partially uninformative (50% of states 

are set incorrectly).
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Figure 8. 
Behavior of dendritic non-linearity that improves performance of network in solving heavily 

constrained problems such as sudoku (SUD). (A) Separation of processing into a dendritic 

(top) and somatic (bottom) compartment by non-linearity g(z). Both compartments receive 

excitation and inhibition from nearby neurons as well as external inputs. (B) Shape of the 

non-linearity g(z), where z is equal to the total inhibitory dendritic input that a dendritic 

branch receives. g(z) = 1 − tanh(sz) is plotted for different values of s. The remainder of the 

fig uses s = 0.2. (C) Histogram of g(z) values across all dendritic branches in a simulation of 

sudoku (81 nodes) after a correct solution was found. Note the bimodality (arrows): 64% of 

all compartments have g(z) = 0, making them insensitive to dendritic input. This is because 

their somatic inputs Ibias are strong. Effectively, this reduces the dimensionality of the 

problem. (D) Same as (C), but for a simulation where two different values of Ibias were used 

(10 and 3). This results in a tri-modal distribution (arrowheads), with the new mode 

corresponding to units with non-zero but weak Ibias. These units thus remain sensitive to 

dendritic input, but much less so than the units where Ibias = 0 (right-most mode).

Rutishauser et al. Page 35

Neural Comput. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1 Introduction
	2 Network Architecture and Results
	2.1 CSP Organization
	2.2 Standard Winner-Take-All circuit
	2.3 Constraint satisfaction models implemented on WTAs
	2.4 Dynamics of an example negative constraint network
	2.5 Stability and convergence
	2.5.1 Proof 1: Adding negative constraint cells creates forbidden sets
	2.5.2 Proof 2: Stability analysis

	2.6 Choice of parameters
	2.7 Planar Graph Coloring using only negative constraints (GC4P)
	2.8 Maximal Independent Set using both positive and negative constraints (MIS)
	2.9 Fully constrained graph coloring problems - Sudoku (SUD)
	2.10 Extended WTA (WTAe) networks
	2.11 Enhanced performance of WTAe networks

	3 Discussion
	3.1 Computational properties of network solution of CSP
	3.2 Probabilistic processing
	3.3 Distribution of run times
	3.4 Computational advantage of multiplicative inhibition

	4 Conclusion
	5 Methods
	5.1 Numerical simulations
	5.2 Translating a graph coloring problem into collection of WTAs

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

