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INTRINSIC FREQUENCY ANALYSIS AND FAST ALGORITHMS

PEYMAN TAVALLALI1,∗, HANA KOOREHDAVOUDI2, JOANNA KRUPA3

Abstract. Intrinsic Frequency (IF) has recently been introduced as an ample signal processing

method for analyzing carotid and aortic pulse pressure tracings. The IF method has also been

introduced as an effective approach for the analysis of cardiovascular system dynamics. The phys-

iological significance, convergence and accuracy of the IF algorithm has been established in prior

works. In this paper, we show that the IF method could be derived by appropriate mathemati-

cal approximations from the Navier-Stokes and elasticity equations. We further introduce a fast

algorithm for the IF method based on the mathematical analysis of this method. In particular,

we demonstrate that the IF algorithm can be made faster, by a factor or more than 100 times,

using a proper set of initial guesses based on the topology of the problem, fast analytical solution

at each point iteration, and substituting the brute force algorithm with a pattern search method.

Statistically, we observe that the algorithm presented in this article complies well with its brute-

force counterpart. Furthermore, we will show that on a real dataset, the fast IF method can draw

correlations between the extracted intrinsic frequency features and the infusion of certain drugs. In

general, this paper aims at a mathematical analysis of the IF method to show its possible origins

and also to present faster algorithms.
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1. Introduction

Cardiovascular diseases (CVDs) and stroke are major causes of death in the United States. The

total cost related to CVDs and stroke was estimated to be more than $316 billion in 2011-2012
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[20, 22]. Hence, clinical measurements of cardiovascular health indices are of great importance.

These methods and measurements are essential tools for monitoring cardiovascular health due to

their relative availability. For example, Left Ventricular Ejection Fraction (LVEF) is a measure of

left ventricular contractility [6] and Carotid-Femoral Pulse Wave Velocity (cfPWV) is a measure of

aortic stiffness [18].

However, current methods of measuring such indices are expensive, sometimes invasive, prone to

measurement errors, and not necessarily easy to use. For example, 2D LVEF echocardiography is not

accurate compared to more expensive and laborious gold standard cardiac MRI method [10, 12, 15,

14]. As another example, obtaining accurate cfPWV measurements often requires certain medical

devices and a well-trained staff within a clinical setting [29]. Consequently, continuous measurement

of these indices is not practical. These limitations emphasize the need for new cardiovascular

monitoring methods.

Intrinsic Frequency (IF) has been established as a new method of cardiovascular monitoring through

a novel signal processing methodology [26]. The IF method needs only an uncalibrated pulse pressure

[31] to extract pertinent information regarding the cardiovascular health of an individual [26]. The

IF method has also been shown to be capable of non-invasively measuring LVEF by means of an

iPhone camera [25]. We believe that methods like IF are of clinical and financial benefit in addressing

cardiovascular monitoring.

In this paper, at first, we provide an overview of the IF method. Next, we present an approximate

derivation of the IF model by combining Navier-Stokes equations and continuity with elasticity

equations. This helps to build a solid mathematical foundation for the IF method and the analysis

that follows. Later, we analyze the IF algorithm in the space of feasible solutions, and based on

that, we introduce a new version of the IF algorithm which is faster than the current brute-force IF

method [31] while maintaining the same accuracy. We then perform a case study on real pressure

waveforms drawn from canine data using our new algorithm. We will see that the fast IF algorithm

is capable of capturing the effects of different drug infusions on a canine subject.
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2. Brief Overview of IF method

2.1. A History of Analyzing Cardiovascular Pulse Waveform. Blood pressure was first mea-

sured by Hales in 1735 [13]. In his measurements, he found that blood pressure is not constant in

the arterial system. He related these variations to the elasticity of the arteries [13]. Currently,

it is known that the shape of the arterial pulse wave is intimately related to the physiology and

pathology of the whole arterial system [1]. There has been much research on analyzing the dynamics

of blood pressure and flow in arterial systems [2, 9, 23, 24, 33]. Specifically, there are two main

approaches to analyzing cardiovascular pulse wave data. One approach is based on a systematic

mathematical framework for the cardiovascular system. The other is based on directly analyzing

the pulse pressure waveform using signal processing methods.

An example of the systematic framework can be seen with the set of Windkessel models [34]. The

formulation of a minimal lumped model of the arterial system was first presented by Westerhof et

al. [34]. Based on a Windkessel model, the arterial system dynamics have been modeled through a

combination of different elements such as resistance, compliance and impedance. In this simplified

model of the arterial system, the blood flow dynamics is modeled by the interaction between the

elements (assuming the blood flow acts as the current in the system). Because of the type of

modeling, the wave transmission of the blood flow is neglected. As a result, the Windkessel models

is not able to represent the entire dynamics of the blood flow in an arterial system accurately.

On the other hand, there are various methods for direct analysis of an arterial pulse waveform, in

both time and frequency domains [24]. For example, the impedance method, which is based on

Fourier transform, is a common method to analyze the pressure waveform in the frequency domain

[2]. As an example, Milnor has shown that the pressure and flow waveforms can be a superposition

of several harmonics using the Fourier method [21]. Another method to investigate the pressure

wave in the time domain is the wave intensity analysis which is based on wavelet transform [8].

These methods do not necessarily convey a physical understanding of the cardiovascular system.

The IF algorithm presented in [31] is analyzing a pulse waveform through a direct time-frequency

signal processing machinery setting, from a quantitative perspective. Although, in previous work

[26], we tried to qualitatively express a systems approach to the IF formulation, the quantitative
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picture has not yet been clear. However, in this article, we show this connection from a quantitative

perspective.

2.2. IF Formulation. In the IF method, the aortic pressure waveform at time t ∈ [0, T ), for a

cardiac period T , can be represented as

(2.1)
S (ai, bi, p̄, ωi; t) = (a1 cosω1t+ b1 sinω1t+ p̄)1[0,T0) (t)+

(a2 cosω2t+ b2 sinω2t+ p̄)1[T0,T ) (t) ,

with a continuity condition at T0 and periodicity at T . In this formulation, the indicator function

is defined as

1[x,y) (t) =







1, x ≤ t < y,

0, else.

Here, a1, b1, a2 and b2 are the envelopes of the IF model fit. ω1 and ω2 are the Intrinsic Frequencies

(IFs) of the waveform. Further, p̄ is the mean pressure during the cardiac cycle. This type of

formulation embeds the coupling and decoupling of heart and aorta.

The goal of the IF model (2.1) is to extract a fit, called Intrinsic Mode Function (IMF), that carries

most of the energy (information) from an observed pressure waveform f (t) in one period. The latter

is done by solving the following optimization problem [31]:

(2.2) minimize
ai,bi,ωi,p̄

‖f (t)− S (ai, bi, p̄, ωi; t)‖
2
2

(2.3) subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

Here, ‖‖2 is the L2-norm. The first linear condition in this optimization enforces the continuity of

the extracted IMF at the dicrotic notch. The second one imposes the periodicity. The mathematical

convergence and accuracy of the IF algorithm have been explained in a previous work [31]. In the

next sections, we explore the foundation of the IF algorithm and propose a faster IF algorithm.
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3. Approximate Derivation of the IF Model

As mentioned earlier, in a previous work [26], we tried to express a systems approach to the IF

formulation qualitatively. However, in this article, we show this connection from a quantitative

perspective. This section is devoted to this purpose.

In this paper, we assume that the Left Ventricle (LV), the aortic valve, aorta and the arterial system

can be represented by a simplified model as shown in Figure 1. Here, the LV and the aortic valve

are assumed to be the boundary condition at the entrance of the aortic tube and the arterial system

is the terminal boundary condition of the aortic tube. The boundary condition at the entrance of

the aortic tube changes from an LV boundary condition to a closed valve boundary condition, at the

dicrotic notch time T0 during a cardiac cycle [0, T ]. We further assume that blood is a Newtonian

incompressible fluid, the aorta is a straight and sufficiently long elastic tube with a constant circular

cross section and there is no external force causing flow rotation. These assumptions are not all

satisfied in a real cardiovascular system. However, they are useful in estimating the general behavior

of blood in aorta.

Combining the Navier-Stokes equations and continuity with the elasticity equation, we can drive a

model for the flow Q (x, t) and the pressure P (x, t) along the length x of an aorta as follow

(3.1) −
∂P

∂x
(x, t) = L

∂Q

∂t
(x, t) +RQ (x, t) ,

(3.2) −
∂Q

∂x
(x, t) = C

∂P

∂t
(x, t) .

The step by step derivation of these equations is presented in Appendix A. Parameters L, R, and

C represent inductance, resistance, and compliance of the blood in aorta. Here, 0 ≤ x ≤ h, where

h represents the aortic length. This model has also been discussed and simulated numerically in [3]

with a complex set of boundary conditions. Here, our main concentration will be on the aortic tube

oscillatory waveform solutions. Next, we will show that we can derive (2.1) from (3.1) and (3.2).
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Since the input to the IF model (2.1) is a pressure waveform, we need to extract an equation for

the pressure P (x, t) from Equations (3.1) and (3.2) by eliminating the flow. Combining Equations

(3.1) and (3.2) results in

(3.3) CL
∂2P

∂t2
(x, t) + CR

∂P

∂t
(x, t) =

∂2P

∂x2
(x, t) .

Taking P (x, t) = K (t) p (x, t) + p̄, with p̄ as the the mean pressure, we can write equation (3.3) as

(3.4)

(

CLK̈ (t) + CRK̇ (t)
)

p (x, t) +
(

2CLK̇ (t) + CRK (t)
)

∂p
∂t

(x, t) + CLK (t) ∂2p
∂t2

(x, t)

= K (t) ∂2p
∂x2 (x, t) .

Here, we have used the dot notation to represent the time derivative. We can simplify the term in

front of ∂p
∂t

(x, t), in (3.4), by setting 2CLK̇ (t) + CRK (t) = 0. The latter has a solution K (t) =

Ke−
R
2L

t for some constant K. This reduces Equation (3.4) into

(3.5) CL
∂2p

∂t2
(x, t)−

CR2

4L
p (x, t) =

∂2p

∂x2
(x, t) .

The solution of Equation (3.5) can be expressed in terms of eigenfunctions. In other words, using

the method of separation of the variables, one can express the solution of Equation (3.5) as

(3.6) p (x, t) =

∞
∑

n=1

Tn (t)Xn (x)

for

(3.7) Tn (t) = αnsin (ωnt) + βncos (ωnt) ,

(3.8) Xn (x) = ζnsin

(
√

CL (ωn)
2 −

CR2

4L
x

)

+ ηncos

(
√

CL (ωn)
2 −

CR2

4L
x

)

,
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and some constants αn, βn, ζn and ηn. As a result, the solution of (3.3) can be expressed as

(3.9)

P (x, t) = p̄+Ke−
R
2L

t
∑∞

n=1

{

(αnsin (ωnt) + βncos (ωnt))

(

ζnsin

(

√

CL (ωn)
2 − CR2

4L x

)

+ ηncos

(

√

CL (ωn)
2 − CR2

4L x

))

}

.

The variables ωn can be expressed based on the boundary conditions of the aortic tube. We need

to emphasize that for a period of the cardiac cycle [0, T ), the boundary conditions change before

and after the dicrotic notch T0. Hence, for t ∈ [0, T ), Equation (3.9) can be written as

(3.10)

P (x, t) = p̄

+1[0,T0) (t)K
1e−

R
2L

t
∑∞

n=1

{

(

α1
nsin

(

ω1
nt
)

+ β1
ncos

(

ω1
nt
))

(

ζ1nsin

(

√

CL (ω1
n)

2 − CR2

4L x

)

+ η1ncos

(

√

CL (ω1
n)

2 − CR2

4L x

))

}

+1[T0,T ) (t)K
2e−

R
2L

t
∑∞

n=1

{

(

α2
nsin

(

ω2
nt
)

+ β2
ncos

(

ω2
nt
))

(

ζ2nsin

(

√

CL (ω2
n)

2 − CR2

4L x

)

+ η2ncos

(

√

CL (ω2
n)

2 − CR2

4L x

))

}

.

Here, the superscripts indicated with “1” belong to the form of the solution before the closure of

the aortic valve, and the superscripts indicated with “2” belong to the form of the solution after

the closure of the aortic valve. Constants K1, α1
n, β1

n, ζ1n, η1n and ω1
n are found from the boundary

and initial conditions at systole. Similarly, constants K2, α2
n, β2

n, ζ2n, η2n and ω2
n are found from the

boundary and initial conditions at diastole.

Equation (3.10) is explicitly showing the coupling and decoupling of heart and aorta before and

after the dicrotic notch. As the boundary conditions change during a cardiac cycle, the frequencies

of oscillation also change from ω1
n to ω2

n. Generally, Equation (3.9) can represent pressure waveform

for a Newtonian incompressible fluid in a straight and sufficiently long elastic tube with constant

circular cross section.
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If the pressure is recorded at a specific point x0 on aorta, the terms containing the spacial variable

x would be fixed. In other words, Equation (3.10) would reduce to

(3.11)

P (x = x0, t) = p̄

+
{

K1e−
R
2L

t
∑∞

n=1 κ
1
n

(

α1
nsin

(

ω1
nt
)

+ β1
ncos

(

ω1
nt
))

}

1[0,T0) (t)

+
{

K2e−
R
2L

t
∑∞

n=1 κ
2
n

(

α2
nsin

(

ω2
nt
)

+ β2
ncos

(

ω2
nt
))

}

1[T0,T ) (t) ,

for

κ1n = ζ1nsin

(
√

CL (ω1
n)

2 −
CR2

4L
x0

)

+ η1ncos

(
√

CL (ω1
n)

2 −
CR2

4L
x0

)

and

κ2n = ζ2nsin

(
√

CL (ω2
n)

2 −
CR2

4L
x0

)

+ η2ncos

(
√

CL (ω2
n)

2 −
CR2

4L
x0

)

.

Now, considering that the cardiac cycle length would be around 1.5 sec, at most, and taking into

account that R is smaller than L [3], one can use the approximation e−
R
2L

t ≃ 1. Hence, Equation

(3.11) would become

(3.12)

P (x = x0, t) ≈ p̄

+
{

K1
∑∞

n=1 κ
1
n

(

α1
nsin

(

ω1
nt
)

+ β1
ncos

(

ω1
nt
))}

1[0,T0) (t)

+
{

K2
∑∞

n=1 κ
2
n

(

α2
nsin

(

ω2
nt
)

+ β2
ncos

(

ω2
nt
))}

1[T0,T ) (t) .

Further, if most of the information, or energy, is carried out by the first terms in the series of the

solution, we can further write the approximated solution (3.12) as

(3.13)

P (x = x0, t) ≈ p̄

+
{

K1κ11
(

α1
1sin

(

ω1
1t
)

+ β1
1cos

(

ω1
1t
))}

1[0,T0) (t)

+
{

K2κ21
(

α2
1sin

(

ω2
1t
)

+ β2
1cos

(

ω2
1t
))}

1[T0,T ) (t) .

Now, by relabeling

(3.14) b1 = K1κ11α
1
1,

(3.15) a1 = K1κ11β
1
1 ,

(3.16) b2 = K2κ21α
2
1,

8



(3.17) a2 = K2κ21β
2
1 ,

(3.18) ω1 = ω1
1 ,

(3.19) ω2 = ω2
1 ,

we can approximate the IF model (2.1). The continuity and periodicity conditions (2.3) can also be

approximated if we hold the assumption that most of the energy is carried out by the first terms in

the series of the solution (3.12).

In short, in this section, we have presented an approximate quantitative justification on the origins

of the IF method. In the next section, we move on with the analysis of the optimization problem

(2.2) subject to (2.3).

4. Analysis of The IF Algorithm

Practically, one must solve the discrete version of (2.2). We assume that the pressure waveform f (t)

is sampled uniformly. Also, we can simplify (2.2) by the fact that any sinusoid can be assumed to

start from time t = 0 with a compensation coming from a phase shift. In other words, any sinusoid

can be expressed as A cos ωt+ B sinωt, irrespective of whether the initial time is t = 0 or t = T0.

Hence, the discrete format of (2.2) can be expressed as

(4.1)

minimize
ai,bi,ωi,p̄

‖f − S (ai, bi, p̄, ωi; t)‖
2
2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 ,

a1 = a2 cosω2 (T − T0) + b2 sinω2 (T − T0) ,

for f = (f1, . . . , fn+m)′ as the uniform sampling of the original cycle. Here, by taking

(4.2) t =
(

t′1, t
′
2

)′
=
(

t11, t
2
1, . . . , t

n
1 , t

1
2, t

2
2, . . . , t

m
2

)′
∈ R

(n+m)×1

9



for t1 = (0,∆t, 2∆t, . . . , T0)
′ ∈ R

n×1 and t2 = (∆t, 2∆t, . . . , T − T0)
′ ∈ R

m×1, we have the discrete

form of S (ai, bi, p̄, ωi; t) as

(4.3) S (ai, bi, p̄, ωi; t) =





a1 cosω1t1 + b1 sinω1t1

a2 cosω2t2 + b2 sinω2t2



+ p̄1.

In this article, (.)′ denotes the transpose operator and the vector 1 = (1, 1, . . . , 1)′ ∈ R
(n+m)×1.

Also,

(4.4)

cosω1t1 =
(

cosω1t
1
1, . . . , cosω1t

n
1

)′
,

sinω1t1 =
(

sinω1t
1
1, . . . , sinω1t

n
1

)′
,

cosω2t2 =
(

cosω2t
1
2, . . . , cos ω2t

m
2

)′
,

sinω2t2 =
(

sinω2t
1
2, . . . , sinω2t

m
2

)′
.

The constraints, in (4.1), can be written as

(4.5)





cosω1T0 −1 sinω1T0 0

1 − cosω2 (T − T0) 0 − sinω2 (T − T0)























a1

a2

b1

b2



















=





0

0



 .

If we can solve for two, out of four, unknowns in (4.5), we would make (4.1) an unconstrained

optimization. However, it is important to check whether the matrix in (4.5) is of full rank or not.

In fact, the rows of this matrix are linearly independent except when

(4.6) cosω1T0 cosω2 (T − T0) = 1.

This will lead into two cases:

(1) Degenerate Case in which Equation (4.6) holds,

(2) General Case in which, it does not.

4.1. General Case (cosω1T0 cosω2 (T − T0) 6= 1). One can solve the constraints in (4.1) for a1

and a2 to obtain

(4.7) a1 =
b1 sinω1T0 cosω2 (T − T0) + b2 sinω2 (T − T0)

1− cosω1T0 cosω2 (T − T0)
,
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(4.8) a2 =
b1 sinω1T0 + b2 cosω1T0 sinω2 (T − T0)

1− cosω1T0 cosω2 (T − T0)
.

Equations (4.7) and (4.8) would then simplify (4.3) into

(4.9) S (ω1, ω1, b1, b2, p̄; t) = Q (ω1, ω1, b1, b2; t) + p̄1,

where Q (ω1, ω1, b1, b2; t) = b1v1 (ω1, ω2; t) + b2v2 (ω1, ω2; t) for

(4.10) v1 (ω1, ω2; t) =





sinω1T0 cosω2(T−T0)
1−cosω1T0 cosω2(T−T0)

cosω1t1 + sinω1t1

sinω1T0

1−cos ω1T0 cosω2(T−T0)
cosω2t2



 ,

and

(4.11) v2 (ω1, ω2; t) =





sinω2(T−T0)
1−cos ω1T0 cosω2(T−T0)

cosω1t1

cosω1T0 sinω2(T−T0)
1−cosω1T0 cosω2(T−T0)

cosω2t2 + sinω2t2



 .

Using Equations (4.9)-(4.11), and dropping the dependencies in notation, simplifies (4.1) into

(4.12) minimize
ω1,ω2,b1,b2,p̄

‖Q+ p̄1− f‖22 .

This simplification has helped to eliminate the constraints in the optimization problem (4.1).

The minimization problem (4.12) is non-convex and non-linear in its parameters. So, in order to be

able to solve the problem, we can use the fact that the minimum of a function can first be found

over some variables and then over the remaining ones [7]. In other words, the optimization problem

in (4.12) can be written as

(4.13) minimize
ω1,ω2

(

minimize
b1,b2,p̄

‖Q+ p̄1− f‖22

)

.

We call the inner optimization in (4.13) as P (ω1, ω2). Solving for P (ω1, ω2) is a classical least

squares problem. The solution existence and uniqueness of this optimization is mentioned in our

previous work [31]. To find the exact solution we simplify the objective function as

(4.14)
‖Q+ p̄1− f‖22 = (Q+ p̄1− f)′ (Q+ p̄1− f)

= Q′Q+ 2p̄Q′1− 2Q′f − 2p̄f ′1+ p̄1′1+ f ′f .
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Substituting for Q = b1v1 + b2v2, we convert (4.14) into

(4.15)
‖Q+ p̄1− f‖22 = b21v

′
1v1 + 2b1b2v

′
1v2 + b22v

′
2v2 + 2p̄b1v

′
11+ 2p̄b2v

′
21

−2b1v
′
1f − 2b2v

′
2f − 2p̄f ′1+ p̄21′1+ f ′f .

Since, in this part of the optimization, the values of ω1 and ω2 are fixed, we can find the optimal

values of b1, b2, and p̄ by setting the partial derivatives of (4.15) equal to zero. In other words, we

set
∂(‖Q+p̄1−f‖2

2)
∂b1

= 0,
∂(‖Q+p̄1−f‖2

2)
∂b2

= 0, and
∂(‖Q+p̄1−f‖2

2)
∂p̄

= 0. Doing this, we find the optimal

solution for b1, b2, and p̄, by

(4.16)











b∗1 (ω1, ω2)

b∗2 (ω1, ω2)

p̄∗ (ω1, ω2)











=











v′
1v1 v′

1v2 v′
11

v′
1v2 v′

2v2 v′
21

v′
11 v′

21 1′1











−1









v′
1f

v′
2f

1′f











.

Here, we have fulfilled the optimization part by solving a linear system. This could potentially

accelerate the IF algorithm. Finally, we only have to solve a minimization on

(4.17) P (ω1, ω2) = ‖Q (ω1, ω2, b
∗
1 (ω1, ω2) , b

∗
2 (ω1, ω2) ; t) + p̄∗ (ω1, ω2) 1− f‖22 ,

which is

(4.18) minimize
ω1,ω2

P (ω1, ω2) .

We note that a property of the function P (ω1, ω2) is its differentiability, away from its singularities.

In fact, by definition, the function ‖Q+ p̄1− f‖22 is directionally differentiable with respect to all

its variables. Hence, using the results in [5, 28], we can deduce that

(4.19) P (ω1, ω2) = minimize
b1,b2,p̄

‖Q+ p̄1− f‖22

is directionally differentiable with respect to ω1 and ω2. This property can be exploited if one tries

to solve (4.18) using a gradient based optimization method [4].

4.2. Degenerate Case (cosω1T0 cosω2 (T − T0) = 1). The solution of (4.6) can be expressed as

nodes of a lattice N in ω1ω2 plane. To be more specific, we have

(4.20) N = Γ1 ∪ Γ2,
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where

(4.21) Γ1 = {(ω1, ω2) |ω1T0 = (2k1 + 1) π, ω2 (T − T0) = (2k2 + 1) π, k1 ∈ Z, k2 ∈ Z} ,

and

(4.22) Γ2 = {(ω1, ω2) |ω1T0 = 2k1π, ω2 (T − T0) = 2k2π, k1 ∈ Z, k2 ∈ Z} .

If (ω1, ω2) ∈ Γ1, from (4.5) we have a1 = −a2. On the other hand, if (ω1, ω2) ∈ Γ2, from (4.5) we

have a1 = a2. In both of these cases, we can express (4.3) as

(4.23) S (ω1, ω1, a1, b1, b2, p̄; t) = Q (ω1, ω1, a1, b1, b2; t) + p̄1,

where Q (ω1, ω1, a1, b1, b2; t) = a1w
Γi

0 (ω1, ω2; t) + b1w1 (ω1, ω2; t) + b2w2 (ω1, ω2; t), for i = 1, 2. If

(ω1, ω2) ∈ Γ1,

(4.24) w
Γ1

0 =





cosω1t1

− cosω2t2



 .

Similarly, if (ω1, ω2) ∈ Γ2, we have

(4.25) w
Γ2

0 =





cosω1t1

cosω2t2



 .

In both of the cases, we have

(4.26) w1 =





sinω1t1

01



 ,

and

(4.27) w2 =





02

sinω2t2



 .

Here, 01 and 02 are zero vectors in R
m×1 and R

n×1, respectively. It is clear, from (4.26) and (4.27),

that w′
1w2 = w′

2w1 = 0. Using (4.23), and a similar approach we employed in (4.15) and (4.16),

13



we find the optimal solution for a1, b1, b2, and p̄, by

(4.28)


















a∗1,i (ω1, ω2)

b∗1,i (ω1, ω2)

b∗2,i (ω1, ω2)

p̄∗,i (ω1, ω2)



















=



















(

w
Γi

0

)′
w

Γi

0

(

w
Γi

0

)′
w1

(

w
Γi

0

)′
w2

(

w
Γi

0

)′
1

(

w
Γi

0

)′
w1 w′

1w1 0 w′
11

(

w
Γi

0

)′
w2 0 w′

2w2 w′
21

(

w
Γi

0

)′
1 w′

11 w′
21 1′1



















−1

















(

w
Γi

0

)′
f

w′
1f

w′
2f

1′f



















,

for i = 1, 2. Hence, similar to (4.17), for (ω1, ω2) ∈ Γ1 or (ω1, ω2) ∈ Γ2, we only have to solve a

minimization on

(4.29) P (ω1, ω2) =
∥

∥Q
(

ω1, ω1, a
∗
1,i (ω1, ω2) , b

∗
1,i (ω1, ω2) , b

∗
2,i (ω1, ω2) ; t

)

+ p̄∗,i (ω1, ω2) 1− f
∥

∥

2

2
.

Note that, from a machine learning perspective, the nodes specified in (4.20) do not have important

information physiologically as they could be inferred from the systolic and diastolic parts of a wave-

form alone. In other words, even if these points present a global minima, they are not informative

as we already know the systolic and diastolic inverses, 1
T0

and 1
T−T0

respectively, as possible inputs

to any machine learning algorithm. Hence, these points could possibly be ignored in a search for an

optimum point of (4.1).

5. Fast IF Algorithms

In this section, we present a fast IF algorithm which is based on the results presented in the previous

section and the topology of the solution space for P (ω1, ω2). In order to keep the fluency of this

section, we mention the original IF algorithm (see Algorithm 1) as presented in [31].

Algorithm 1 has three major steps. In the first step, the (ω1, ω2) domain

(5.1) Dfr = {(ω1, ω2) |0 < ω1 ≤ C, 0 < ω2 ≤ C }

is made discrete, namely Dfr. The second step is a minimization to find P (ω1, ω2), see (4.18). The

final step is a brute-force search on Dfr to find the minimum of P (ω1, ω2).

All three steps can be optimized to make the IF algorithm faster. Regarding the domain of opti-

mization Dfr, defined in (5.1), we know from our previous work in [25] that the average IF solution,
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for a physiological pulse waveform recording, is confined to a smaller domain D expressed as

(5.2) D =

{

(ω1, ω2)

∣

∣

∣

∣

0.5 6
ω1T0

π
6 1.5, 0.5 6

ω2 (T − T0)

π
6 3

}

.

This will make the first step search area more well-defined and optimized. In the previous section,

we have been able to find some analytic solutions (see (4.16)) for the inner optimization part of

problem (4.13). This will help us to substitute an analytic solution instead of an iterative [11] or

QR decomposition [32] solution for (5.3). Finally, the brute-force part can be substituted with

an appropriate direct search algorithm [17], e.g. pattern search algorithm [16]. It can even be

substituted with an appropriate gradient based algorithm [4, 7], e.g. gradient descent, as we know

the differentiability of P (ω1, ω2).

Algorithm 1 Intrinsic Frequency

(1) Make Dfr discrete for a uniform r × r mesh Dfr, r ∈ N,

Dfr =

{

(

ωl
1, ω

m
2

)

∣

∣

∣

∣

ω1 =
l

r
C, ω2 =

m

r
C; l,m ∈ {0, 1, . . . , r}

}

.

(2) For all l,m ∈ {0, 1, . . . , r} solve

(5.3)

minimize
ai,bi,p̄

∑n
j=1

(

f (tj)− S
(

ai, bi, p̄, ω
l
1, ω

m
2 ; tj

))2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

and store P
(

ωl
1, ω

m
2

)

=
∑n

j=1

(

f (tj)− S
(

a∗i , b
∗
i , p̄

∗, ωl
1, ω

m
2 ; tj

))2
for minimizers a∗i , b

∗
i , p̄

∗.
(3) Find the intrinsic frequencies (IFs)

(ω∗
1, ω

∗
2) = argmin

l,m

(

P
(

ωl
1, ω

m
2

))

.

Before moving on, we show the topology of the P (ω1, ω2) function and also its minima locations

in ω1 and ω2 space. These will provide useful insights on where to set the initialization point(s)

of a possible fast IF algorithm. The data description is provided in the next section. In Figures 2

and 3, we have presented two different dog aortic pressure cycles with the IMF extracted by the

means of the brute-force IF Algorithm 1. Figures 2 and 3, top right, show the heat-map plots of

P
(

ω1T0

π
, ω2(T−T0)

π

)

. The complex nature of P (ω1, ω2) can be seen in these figures. We purposefully

plotted P in the dimensionless coordinates ω1T0

π
and ω2(T−T0)

π
to show the behavior of this function

with respect to the lattice node locations N defined in (4.20)-(4.22). To have a better view and

understanding of the P (ω1, ω2) topology, a contour of P
(

ω1T0

π
, ω2(T−T0)

π

)

is shown in those figures.
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The general topology of P
(

ω1T0

π
, ω2(T−T0)

π

)

, for all aortic or carotid pulse waveforms, is similar to

the ones presented in Figures 2 and 3. However, the location of the minimizer is not similar.

Our investigations show that the locations of the minimizers of all P functions construct two different

areas in the dimensionless coordinates ω1T0

π
and ω2(T−T0)

π
. We call these areas as the upper lobe and

lower lobe. The upper lobe is an area, in D, confined above the line ω2(T−T0)
π

= 1. The lower lobe

is an area, in D, confined below the line ω2(T−T0)
π

= 1. This is also the case for human subject data

[25]. This type of topology suggests two critical initial guess areas for any non-brute-force algorithm

solving (4.1): one set of points in the upper lobe, the other in the lower. In the remaining part of

this section, we introduce a fast IF algorithm based on the pattern search method [17].

5.1. Pattern Search IF. The pattern search algorithm (or sometimes called the compass search

algorithm) is explained in detail in [17]. For completeness, we have summarized the pattern search

algorithm in Algorithm 2. The convergence analysis of this method is expressed in [17].

Algorithm 2 Pattern Search [17]

Initialization.
Let f : Rn → R be given.
Let x0 ∈ R

n be the initial guess.
Let △tol > 0 be the tolerance used to test for convergence.
Let △0 > △tol be the initial value of the step length control parameter.
Algorithm. For each iteration k = 1, 2, . . .
Step 1. Let D⊕ be the set of coordinate directions {±ei |i = 1, . . . , n}, where ei is the ith unit
coordinate vector in R

n.
Step 2. If there exists dk ∈ D⊕ such that f (xk +△kdk) < f (xk), then do the following:

• Set xk+1 = xk +△kdk.
• Set △k+1 = △k.

Step 3. Otherwise, f (xk +△kdk) > f (xk) for all dk ∈ D⊕, so do the following:

• Set xk+1 = xk.
• Set △k+1 =

1
2△k.

• If △k+1 < △tol, then terminate.

The fast IF algorithm, without considering the nodes (4.20), is expressed in Algorithm 3. As

mentioned before, what makes Algorithm 3 fast is embedded in three different objects:

(1) The initial guess set up in the initialization part of the algorithm.

(2) The fast analytic solution at each point iteration defined by (4.17) and (4.16).

(3) The pattern search part which is a substitute for the brute force algorithm.
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Figure 2, bottom right, shows the results of Algorithm 3. In this figure, when using Algorithm

3, we have used two initial guesses
(

ω1T0

π
= 1, ω2(T−T0)

π
= 2
)

and
(

ω1T0

π
= 1, ω2(T−T0)

π
= 0.9

)

. As

depicted on the figure, the initial guess located in the upper lobe has converged towards the true

minimizer in D. On a PC having 8 threads, Intel® Core™ i7-4700MQ CPU @ 2.40GHz × 8, running

a Matlab implementation of the brute-force Algorithm 1 in parallel takes roughly 85 seconds. On

the other hand, achieving the same minimizer, using a sequential version of the fast Algorithm 3,

takes approximately 0.5 seconds.

The same test was done for another aortic cycle presented in Figure 3. We used the same initial

guesses as before. This time, on the same PC, using the same implementations, the brute-force

Algorithm 1 took roughly 80 seconds and the fast Algorithm 3 took approximately 0.5 seconds.

These two examples show a speed up of almost 160 times. In the next section we present more

about the statistical accuracy of Algorithm 3 and its physiological capabilities.

Algorithm 3 Fast IF
Initialization.
Let f ∈ R

n+m be a given discrete aortic/carotid signal with specified T0 and T − T0.

Let D =
{

(ω1, ω2)
∣

∣

∣0.5 6
ω1T0

π
6 1.5, 0.5 6

ω2(T−T0)
π

6 3
}

.

Let G =
⋃M

l=1 {(ω1, ω2)l ∈ D} be the set of M random initial guesses excluding the nodes (4.20).
Let △ωtol > 0 be the convergence tolerance.
Let △ω0 > △ωtol be the initial step length.
Let ω̃k =

(

ωk
1 , ω

k
2

)

and

P
(

ω̃k
)

=
∥

∥

∥Q
(

ω̃k, b∗1

(

ω̃k
)

, b∗2

(

ω̃k
)

; t
)

+ p̄∗
(

ω̃k
)

1− f

∥

∥

∥

2

2

for the kth iteration, defined by (4.17), which is solved using (4.16).
Let D⊕ = {±ej |j = 1, 2}, where ej is the j th unit coordinate vector in R

2.
Algorithm. For each initial guess ω̃i ∈ G, i = 1, . . . ,M , and for each iteration ki = 0, 1, . . .
Step 1. If there exists dki ∈ D⊕ such that P

(

ω̃ki +△ωkidki

)

< P
(

ω̃ki
)

, then:

• ω̃ki+1 = ω̃ki +△ωkidki .
• △ωki+1 = △ωki .

Step 2. Otherwise, if P
(

ω̃ki +△ωkidki

)

> P
(

ω̃ki
)

for all dki ∈ D⊕, then:

• ω̃ki+1 = ω̃ki .
• △ωki+1 =

1
2△ωki .

• If △ωki+1 < △ωtol, then terminate and ω̃∗
i = ω̃ki+1.

Step 3. The solution isω̃∗ = argmin
i∈{1,...,M}

P (ω̃∗
i ).
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6. Real Data Example

The real dog data used in this manuscript is well described in [30]. Since, at the time of the the data

retrieval, the data was downloaded with different sampling rates, we re-sampled all six dog data

at 500Hz. We used a modified version of the automatic cycle selection introduced in [36] to pick

cycles. Dicrotic notch locations were then found from the picked cycles [19]. We totally extracted

59384 acceptable aortic cycles form those six dogs.

6.1. Statistical Accuracy. To check the statistical accuracy of the fast IF algorithm versus the

brute-force IF algorithm, we compared the results of these two algorithms on the extracted 59384

dog aortic cycles. The brute-force IF algorithm (Algorithm 1) was run over the sample set with a

mesh size (min
l 6=m

(

ωl
1 − ωm

1

)

= min
l 6=m

(

ωl
2 − ωm

2

)

) of 0.02π. Algorithm 3 was run on the same sample

set of 59384 aortic cycles with △ωtol = 0.001, and △ω0 = 0.1, comprising a mesh size of 0.1
26

. The

brute-force algorithm has a larger mesh size due to heavy computational cost of this algorithm.

The maximum average difference between the IFs found by these two algorithms was found to be

less than 0.0475. This difference is smaller than both mesh sizes used for the brute-force and fast

IF algorithms. This shows that, on average, the fast IF algorithm (Algorithm 3) reaches the same

minima as the brute-force algorithm (Algorithm 1).

6.2. Physiological Observations. To evaluate the new fast IF algorithm (Algorithm 3), we ap-

plied the algorithm on the measured aortic pressure signal from one dog experiencing various

pharmacological interventions, see Figure 4. During the experiment, the dog was under the fol-

lowing pharmacological influences: infusion of dobutamine (5-20 µg/kg/min), phenylephrine (2-8

µg/kg/min) and nitroglycerin (4 µg/kg/min) during different time intervals.

The third panel, in Figure 4, shows the dosage and duration of each drug in the experiment. In the

first phase of the experiment dobutamine has been injected at a low dosage followed by a fluctuation

in the dosage of injection. The effect of dobutamine on the cardiovascular system is to increase the

strength and force of the heartbeat. Consequently, it forces more blood to circulate throughout

the body. In previous works [25, 26], we hypothesized that ω1 would be a representative of heart

functionality. We also hypothesized that ω1 and ω2 would try to keep a balance during changes.

These hypotheses can be seen during the injection of dobutamine in this figure.
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Next, phenylephrine has been injected at a low dosage and the dosage is then increased over time.

Phenylephrine is a decongestant which affects the cardiovascular system by shrinking blood vessels.

ω2 shows an almost monotone decrease during the infusion of phenylephrine. This is again in

qualitative accord with what we presented in [26].

Lastly, nitroglycerin has been injected at a constant dosage. Nitroglycerin helps to dilate the blood

vessels. This dilation can be captured with ω2, as can be seen from the figure. Generally, based

on this figure, IFs are able to capture changes in the dynamics of the system under the effects of

different drugs.

7. Conclusion

In this paper, we provided a mathematical foundation for the IF model [31]. We showed how to

derive an estimation of the IF model (2.1) by considering basic physics principles. More precisely,

we showed that the IF model can be estimated from Navier-Stokes and elasticity equations.

We further analysed the IF model (4.1). This helped to introduce a fast algorithm for the IF method

(Algorithm 3). What made this algorithm fast was embedded in the proper set up of the initial

guesses based on the topology of the problem, fast analytic solution at each point iteration, and

substituting the brute force algorithm with a pattern search method. These changes would convert

an iterative and brute-force method (Algorithm 1) into an algebraic and iterative method (Algorithm

3). The presented fast algorithm, in this article, has a speed up of more than 100 times compared

to the brute-force algorithm provided in [31]. From a statistical perspective, we have also shown

that the algorithm presented in this article complies well with the brute-force implementations of

this method.

We also showed, on a real dataset, that the fast IF Algorithm 3 can depict correlations between its

outputs and infusion of certain drugs. This part of our paper can be subject to further physiological

and clinical investigations in a future work.
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Figure 2. Up-Left: A dog aortic pressure cycle (in blue), its dicrotic notch (black

dot), and the IMF (in red). Up-Right: heat-map plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

for

the cycle in left with the location of the solution marked with red dot. Down-Left:

Contour plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

. The location of the minimizer of P is shown by

a red dot. Down-Right: Contour plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

and the location of the

minimizer of P tracked by the pattern search. The true optimum point is marked
with a red asterisk. The upper pattern search set (in black) has converged towards
the correct optimum. The lower pattern search set (in magenta) has converged to a
local minima near the node.
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Figure 3. Up-Left: A dog aortic pressure cycle (in blue), its dicrotic notch (black

dot), and the IMF (in red). Up-Right: heat-map plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

for

the cycle in left with the location of the solution marked with red dot. Down-Left:

Contour plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

. The location of the minimizer of P is shown by

a red dot. Down-Right: Contour plot of P
(

ω1T0

π
, ω2(T−T0)

π

)

and the location of the

minimizer of P tracked by the pattern search. The true optimum point is marked
with a red asterisk. The lower pattern search set (in black) has converged towards
the correct optimum. The upper pattern search set (in magenta) has converged to
a local minima near the node.
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Figure 4. Drug effects on ω1 and ω2. First Panel: The measured aortic pres-
sure waveform recorded in time. Second Panel: Dosage of dobutamine (in red),
phenylephrine (in purple), and nitroglycerin (in green) during the aortic pressure
measurement. Third Panel: Changes of ω1 in units of bit per minute (bpm) over
the measurement time. Each drug effect is projected with its corresponding color.
No drug areas are in blue. Fourth Panel: Changes of ω2 in units of bpm over the
measurement time. Each drug effect is projected with its corresponding color. No
drug areas are in blue.
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Appendix A

In this appendix, we show how one can derive (3.2) and (3.1), from the Navier-Stokes and elasticity

equations. Having x, r and θ as the cylindrical coordinate system, with x in the direction of the

aortic length, the momentum and the continuity equations are

(13.1)
ρ
(

∂u
∂t

+ u∂u
∂x

+ v ∂u
∂r

+ ω
r
∂u
∂θ

)

+ ∂P
∂x

=

µ
(

∂2u
∂x2 + ∂2u

∂r2
+ 1

r
∂u
∂r

+ 1
r2

∂2u
∂θ2

)

,

(13.2)
ρ
(

∂v
∂t

+ u∂v
∂x

+ v ∂v
∂r

+ w
r
∂v
∂θ

− w2

r

)

+ ∂P
∂r

=

µ
(

∂2v
∂x2 + ∂2v

∂r2
+ 1

r
∂v
∂r

− v
r2

+ 1
r2

∂2v
∂θ2

− 2
r2

∂w
∂θ

)

,

(13.3)
ρ
(

∂w
∂t

+ u∂w
∂x

+ v ∂w
∂r

+ w
r
∂w
∂θ

+ vw
r

)

+ 1
r
∂P
∂θ

=

µ
(

∂2w
∂x2 + ∂2w

∂r2
+ 1

r
∂w
∂r

− w
r2

+ 1
r2

∂2w
∂θ2

+ 2
r2

∂v
∂θ

)

,

(13.4)
∂u

∂x
+

∂v

∂r
+

v

r
+

1

r

∂w

∂θ
= 0.

Here, u, v and w are velocity vector components in x, r and θ directions, respectively. We assume

that aorta is a straight and sufficiently long tube with constant circular cross section with the tube

wall following classical elasticity theory dynamics and blood is considered to be an incompressible

Newtonian fluid with the velocity field being axisymmetric. In the absents of any external forces

causing flow rotation, the assumption that the flow field is symmetrical about the longitudinal axis

of the tube is justified. This means w = ∂w
∂θ

= ∂v
∂θ

= ∂u
∂θ

= ∂P
∂θ

= 0. Hence, Equations (13.1)-(13.4)

26



will be simplified as

(13.5) ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r

)

+
∂P

∂x
= µ

(

∂2u

∂x2
+

∂2u

∂r2
+

1

r

∂u

∂r

)

,

(13.6) ρ

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r

)

+
∂P

∂r
= µ

(

∂2v

∂x2
+

∂2v

∂r2
+

1

r

∂v

∂r
−

v

r2

)

,

(13.7)
∂u

∂x
+

∂v

∂r
+

v

r
= 0.

Since the radius of the tube a is smaller than the length of the tube, a ≪ h, and also the average

velocity of the blood in aorta is smaller than the speed of wave propagation [35], we have

(13.8) u
∂u

∂x
≪

∂u

∂t
,

(13.9) v
∂u

∂r
≪

∂u

∂t
,

(13.10) u
∂v

∂x
≪

∂v

∂t
,

(13.11) v
∂v

∂r
≪

∂v

∂t
,

(13.12)
∂2u

∂x2
≪

∂2u

∂r2
,

(13.13)
∂2v

∂x2
≪

∂2v

∂r2
.

Using these, Equations (13.5)-(13.7) will reduce to

(13.14) ρ
∂u

∂t
+

∂P

∂x
= µ

(

∂2u

∂r2
+

1

r

∂u

∂r

)

(13.15) ρ
∂v
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∂P

∂r
= µ

(

∂2v

∂r2
+

1

r

∂v

∂r
−

v

r2

)

(13.16)
∂u

∂x
+

∂v

∂r
+

v

r
= 0
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It is important to mention that the velocity vector is a function of time and location. In other

words, we have u (x, r, t) and v (x, r, t). Based on the characteristic length of the problem, pressure

P can be assumed to be a function of x and t and not r, i.e. P (x, t) (See Chapter 5 of [35]). Hence

we can set ∂P
∂r

≈ 0 in (13.15).

Momentum Equations: Considering (13.14), one can integrate both sides with respect to the

differential element of the area 2πrdr.

(13.17)

a(x,t)
ˆ

0

2πrρ
∂u

∂t
dr +

a(x,t)
ˆ

0

2πr
∂P

∂x
dr =

a(x,t)
ˆ

0

2πrµ

(

∂2u

∂r2
+

1

r

∂u

∂r

)

dr.

The upper boundary of this integral is the radius a (x, t) of the tube. We know that the flow Q (x, t)

is defined as

(13.18) Q (x, t) =

a(x,t)
ˆ

0

2πru (x, r, t) dr.

Hence, using Leibniz rule we can find the derivative of the flow with respect to time as

(13.19)
∂Q

∂t
(x, t) =

a(x,t)
ˆ

0

2πr
∂u

∂t
(x, r, t) dr + 2πa (x, t)

∂a

∂t
(x, t) u (x, a (x, t) , t) .

Considering no slip boundary condition u (x, a (x, t) , t) = 0 on the tube wall, Equation (13.19)

reduces to

(13.20)
∂Q

∂t
(x, t) =

a(x,t)
ˆ

0

2πr
∂u

∂t
(x, r, t) dr.

Therefore Equation (13.17) will be simplified to

(13.21) ρ
∂Q

∂t
+ πa2

∂P

∂x
= 2πµ

a(x,t)
ˆ

0

r

(

∂2u

∂r2
+

1

r

∂u

∂r

)

dr.

Since we have

(13.22)

a(x,t)
ˆ

0

r

(

∂2u

∂r2
+

1

r

∂u

∂r

)

dr =

a(x,t)
ˆ

0

∂
(

r ∂u
∂r

)

∂r
dr,

Equation (13.21) would become
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(13.23) ρ
∂Q

∂t
+ πa2

∂P

∂x
= 2πµr

∂u

∂r
|
a(x,t)
0 .

Using separation of variables u (x, r, t) = U (r) ū (x, t), for some function U (r) and ū (x, t), Equation

(13.23) will be simplified to

(13.24) ρ
∂Q

∂t
+ πa2

∂P

∂x
= 2πµa (x, t) ū (x, t)

(

dU

dr
|a(x,t)

)

.

From Equation (13.18) and u (x, r, t) = U (r) ū (x, t), we have

(13.25) ū (x, t) = Q (x, t)






2π

a(x,t)
ˆ

0

rU (r) dr







−1

.

Therefore equation (13.24) will be simplified to

(13.26) ρ
∂Q

∂t
(x, t) + πa2 (x, t)

∂P

∂x
(x, t) = µa (x, t)

(

dU

dr
|a(x,t)

)







a(x,t)
ˆ

0

rU (r) dr







−1

Q (x, t) .

From (13.26), we can relabel some terms and introduce the inductance L and resistance R as

(13.27) L (x, t) =
ρ

πa2 (x, t)
,

(13.28) R (x, t) = −µ

(

dU

dr
|a(x,t)

)






πa (x, t)

a(x,t)
ˆ

0

rU (r) dr







−1

.

These will convert (13.26) into

(13.29) −
∂P

∂x
(x, t) = L (x, t)

∂Q

∂t
(x, t) +R (x, t)Q (x, t) .
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Continuity Equation: Again, applying Leibniz rule to equation (13.18) we can find the derivative

of the flow with respect to x

(13.30)
∂Q

∂x
(x, t) =

a(x,t)
ˆ

0

2πr
∂u

∂x
(x, r, t) dr + 2πa (x, t)

∂a

∂x
(x, t) u (x, a (x, t) , t) .

Considering the no slip boundary condition u (x, a(x, t), t) = 0, equation (13.30) reduces to

(13.31)
∂Q

∂x
(x, t) =

a(x,t)
ˆ

0

2πr
∂u

∂x
(x, r, t) dr.

Now, we can rewrite the equation of continuity (13.16) as

(13.32)

a(x,t)
ˆ

0

2πr
∂u

∂x
dr +

a(x,t)
ˆ

0

2π

(

r
∂v

∂r
+ v

)

dr = 0.

This equation, using (13.31), will result in

(13.33)
∂Q

∂x
+

a(x,t)
ˆ

0

2π
∂ (rv)

∂r
dr = 0.

Simplifying the latter would show that

(13.34)
∂Q

∂x
+ 2πa (x, t) v (a (x, t)) = 0.

We note that v (a (x, t)) = ∂a
∂t

(x, t). Hence, having A = πa2 (x, t), we can conclude ∂A
∂t

=

2πa (x, t) v (a (x, t)). Consequently, Equation (13.34) can be written as

(13.35)
∂Q

∂x
+

∂A

∂t
= 0.

Using the chain rule we have

(13.36)
∂A

∂t
=

∂A

∂P

∂P

∂t
.

Considering the wave speed c0 of an incompressible fluid in an elastic tube we have ∂A
∂P

= A
ρc2

0

[27].

Matching this with Equations (13.35) and (13.33) would result in

(13.37)
∂Q

∂x
(x, t) +

πa2 (x, t)

ρc20

∂P

∂t
(x, t) = 0.
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In this equation, we can relabel πa2(x,t)
ρc2

0

as the compliance C (x, t). Hence, (13.37) would become

(13.38) −
∂Q

∂x
(x, t) = C (x, t)

∂P

∂t
(x, t) .

Wave Equations: As depicted so far, using the approximations in this appendix, and considering

the mentioned assumptions, we can characterize the wave dynamics of the blood flow in aorta using

the hyperbolic equations (13.38) and (13.29), namely

(13.39) −
∂Q

∂x
(x, t) = C (x, t)

∂P

∂t
(x, t) ,

(13.40) −
∂P

∂x
(x, t) = L (x, t)

∂Q

∂t
(x, t) +R (x, t)Q (x, t) .

The coefficients C (x, t), L (x, t) and R (x, t), in Equations (13.38) and (13.29), are all positive and

functions of a (x, t). However, since a (x, t) is not changing drastically with respect to x and t, we

can approximate all these coefficients with their corresponding constant mean values C, L and R.

Using this approximation, we can rewrite the wave equations as

(13.41) −
∂Q

∂x
(x, t) = C

∂P

∂t
(x, t) ,

(13.42) −
∂P

∂x
(x, t) = L

∂Q

∂t
(x, t) +RQ (x, t) .
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