CaltechAUTHORS
  A Caltech Library Service

Lindblad resonance torques in relativistic discs - II. Computation of resonance strengths

Hirata, Christopher M. (2011) Lindblad resonance torques in relativistic discs - II. Computation of resonance strengths. Monthly Notices of the Royal Astronomical Society, 414 (4). pp. 3212-3230. ISSN 0035-8711. https://resolver.caltech.edu/CaltechAUTHORS:20180329-155051038

[img] PDF - Published Version
See Usage Policy.

860Kb
[img] PDF - Accepted Version
See Usage Policy.

462Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180329-155051038

Abstract

We present a fully relativistic computation of the torques due to Lindblad resonances from perturbers on circular, equatorial orbits on discs around Schwarzschild and Kerr black holes. The computation proceeds by establishing a relation between the Lindblad torques and the gravitational waveforms emitted by the perturber and a test particle in a slightly eccentric orbit at the radius of the Lindblad resonance. We show that our result reduces to the usual formula when taking the non-relativistic limit. Discs around a black hole possess an m= 1 inner Lindblad resonance (ILR) with no Newtonian–Keplerian analogue; however, its strength is very weak even in the moderately relativistic regime (r/M∼ few tens), which is in part due to the partial cancellation of the two leading contributions to the resonant amplitude (the gravitoelectric octupole and gravitomagnetic quadrupole). For equatorial orbits around Kerr black holes, we find that the m= 1 ILR strength is enhanced for retrograde spins and suppressed for prograde spins. We also find that the torque associated with the m≥ 2 ILRs is enhanced relative to the non-relativistic case; the enhancement is a factor of 2 for the Schwarzschild hole even when the perturber is at a radius of 25M.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1111/j.1365-2966.2011.18619.xDOIArticle
https://academic.oup.com/mnras/article/414/4/3212/994957PublisherArticle
https://arxiv.org/abs/1010.0759arXivDiscussion Paper
ORCID:
AuthorORCID
Hirata, Christopher M.0000-0002-2951-4932
Additional Information:© 2011 The Author. Monthly Notices of the Royal Astronomical Society © 2011 RAS. Accepted 2011 February 28. Received 2011 February 24; in original form 2010 October 10. Published: 01 July 2011. CMH thanks Tanja Hinderer, Mike Kesden and Dave Tsang for numerous helpful conversations. CMH is supported by the US Department of Energy under contract DE-FG03-02-ER40701, the National Science Foundation under contract AST-0807337 and the Alfred P. Sloan Foundation.
Group:TAPIR
Funders:
Funding AgencyGrant Number
Department of Energy (DOE)DE-FG03-02-ER40701
NSFAST-0807337
Alfred P. Sloan FoundationUNSPECIFIED
Subject Keywords:accretion, accretion discs – black hole physics – relativistic processes
Issue or Number:4
Record Number:CaltechAUTHORS:20180329-155051038
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20180329-155051038
Official Citation:Christopher M. Hirata; Lindblad resonance torques in relativistic discs – II. Computation of resonance strengths, Monthly Notices of the Royal Astronomical Society, Volume 414, Issue 4, 11 July 2011, Pages 3212–3230, https://doi.org/10.1111/j.1365-2966.2011.18619.x
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:85514
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:29 Mar 2018 22:58
Last Modified:03 Oct 2019 19:32

Repository Staff Only: item control page