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A CHARACTERIZATION OF COMBINATORIAL

DEMAND

CHRISTOPHER P. CHAMBERS AND FEDERICO ECHENIQUE

Abstract. We prove that combinatorial demand functions are

characterized by two properties: continuity and the law of demand.

1. Introduction

We prove that combinatorial demand functions are characterized by

two properties: continuity and the law of demand. Suppose given a

finite collection of items. We are interested in the demand for packages,

or bundles of items. For each vector of item prices, we are given a

collection of demanded packages, and we want to know if there exists a

valuation function for packages such that the demanded packages are

optimal. Utility is quasilinear in money. So the valuation has to be

such that, for each price vector, the demanded packages maximize the

value of the packages when one subtracts the sum of the prices for the

items in the package.

The two properties that characterize optimal combinatorial demand

are upper hemicontinuity and the law of demand. The continuity prop-

erty is technical, but familiar. The law of demand captures the eco-

nomic nature of our problem. Demand for a single item must “slope

down,” meaning that higher prices correspond to smaller demands.

For combinatorial demand, the law of demand says that the change

in demanded items should have a negative value, when evaluated by

the change in prices. The law of demand is an aggregate, or average,
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version of the downward sloping demand property, and it has a long

history in economics (see, for example, Samuelson (1948)).

In addition to our characterization of combinatorial demand func-

tions, we show that utility functions are uniquely identified by combi-

natorial demand. Specifically, we show that, up to an additive constant,

a unique monotone utility function can be backed out from demand be-

havior.

While very natural, our result appears to be new. A long literature

investigates the combinatorial demands that satisfy specific behavioral

properties, such as gross substitutes: Murota (2003), Tamura (2004),

and Paes Leme (2014) survey the literature. Our result is more basic,

in that we seek to understand optimal demand behavior alone, with-

out additional behavioral properties. Brown and Calsamiglia (2007)

investigate a similar question to ours in the context of bundles of infin-

itely divisible goods, but their result does not extend to combinatorial

demand. Sher and il Kim (2014) show that aggregate combinatorial

demand genericall identifies individual valuation functions. Finally,

we should mention the paper by Baldwin and Klemperer (2012) which

introduces a new framework for the study of discrete demand, inves-

tigates many of its properties, and their implications for markets for

discrete goods.

Our main result (Theorem 1) follows along the lines of Rochet’s ap-

proach to revealed preference theory (see Rochet (1987)). The property

of cyclic monotonicity is crucial to obtain a rationalizing valuation. We

use the results of Lavi et al. (2003) or Saks and Yu (2005) (in a version

due to Ashlagi et al. (2010)) to establish that the law of demand is suf-

ficient for cyclic monotonicity. The main issue in adapting these various

results to our problem is that cyclic monotonicity is not enough to ob-

tain a strict rationalization: the difficulty is that one may add optimal

packages when constructing the rationalization from cyclic monotonic-

ity. The crucial idea to overcome this difficulty is contained in Lemma 5

in the proof.

Our result on identification (Theorem 3) is essentially an adaptation

of Theorem 24.9 in Rockafellar (1970).
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2. Results

2.1. Notation: Let X be a finite set. Let S be the set of all nonempty

subsets of 2X (so the empty set is not in S, but {∅} is).

We identify a set A ⊆ X with its indicator function 1A ∈ RX .

The inner product of a vector p ∈ RX and 1A is denoted by 〈p, A〉 =∑
x∈A px.

2.2. Rationalizable demand. A demand function is a function D :

RX
++ → S with the property that there is p̄ ∈ RX

++ such that D(p) =

{∅} for all p ≥ p̄.

The relevant properties for a demand function are three: A demand

function D

• is quasilinear rationalizable if there exists v : 2X → R such that

D(p) = argmax{v(A)− 〈p, A〉 : A ⊆ X};

• satisfies the law of demand if for all p, q ∈ RX
++, and all A ∈

D(p) and B ∈ D(q),

〈p− q, A−B〉 ≤ 0;

• is upper hemicontinuous if, for all p ∈ RX
++, there is a neigh-

borhood V of p such that D(q) ⊆ D(p) when q ∈ V .

Theorem 1. A demand function is quasilinear rationalizable iff it is

upper hemicontinuous and satisfies the law of demand.

A stronger condition places more restrictions on the rationalization.

We say a function g : RX
+ → R is monotone if for all x, y ∈ RX

+ , x ≤ y

(coordinatewise) implies g(x) ≤ g(y). D is monotone, concave, quasi-

linear rationalizable (MCQ-rationalizable) if there exists a monotone,

concave g : RX
+ → R such that v(A) = g(1A), and

D(p) = argmax{v(A)− 〈p, A〉 : A ⊆ X}.

An easy corollary, demonstrated by our proof is the following:

Corollary 2. If a demand function is quasilinear rationalizable, then

it is MCQ-rationalizable.
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The corollary demonstrates that there is no additional empirical con-

tent delivered by the hypotheses of concavity and monotonicity.

2.3. Identification. Say that v : 2X → R (quasilinear) rationalizes

D if for all p ∈ RX
++, D(p) = argmaxA∈S v(A)− 〈p, A〉.

If v rationalizes D, then so does v+c for any constant function c. So

one can only hope to obtain identification up to an additive constant,

and that is indeed what one obtains.

We say that v is monotone if for all A,B ∈ S, if A ⊆ B, then

v(A) ≤ v(B). It is easy to see (see Remark 9 below) that if D is

quasilinear rationalizable then there is a monotone v that quasilinear

rationalizes it.

Theorem 3. For any quasilinear rationalizable D, there is a unique

monotone v for which v(∅) = 0 which rationalizes D.

3. Proof of Theorem 1

Lemma 4. If D is quasilinear rationalizable then it is upper hemicon-

tinuous and satisfies the law of demand

Proof. Let v rationalize B. Let u(p) = max{v(A)− 〈p, A〉 : A ⊆ X}.

First we show that D is upper hemicontinuous. Since X is finite,

there is ε > 0 such that u(p)− (v(B′)− 〈p, B′〉) > ε for all B′ /∈ D(p).

Let V be a ball with center p and radius small enough that for all q ∈ V ,

and all B′ /∈ D(p), u(q)− (v(B′)− 〈q, B′〉) > ε. Then D(q) ⊆ D(p) for

all q ∈ V .

Second we show the law of demand. Let A ∈ D(p) and A′ ∈ D(p′).

Then v(A)−〈p, A〉 ≥ v(A′)−〈p, A′〉 and v(A′)−〈p′, A′〉 ≥ v(A)−〈p′, A〉.

Adding these two inequalities and rearranging yields 〈p− p′, A−A′〉 ≤

0. �

Lemma 4 establishes the necessity direction in the theorem. We

now turn to sufficiency. The upper hemicontinuity of D implies the

following property: A demand function D satisfies condition ♠ if for

all p and B /∈ D(p) there is A ∈ D(p) and p′ such that A ∈ D(p′) and

〈p′, A−B〉 > 〈p, A− B〉.
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Lemma 5. If D is upper hemicontinuous, then it satisfies condition

♠.

Proof. Let p ∈ RX
++ and B /∈ D(p). Let V be a neighborhood of p as in

the definition of upper hemicontinuity. So D(q) ⊆ D(p) for all q ∈ V .

Let W = ∪A′∈D(p)(A
′ \B) and E = ∪A′∈D(p)(B \ A′). Note that

(1) (B \ A′) ∪ (A′ \B) 6= ∅

for each A′ ∈ D(p).

Let λ, λ′ > 0. By definition of W , 〈1W , B〉 = 0. So

〈λ1W − λ′1E, A
′ − B〉 = λ〈1W , A′〉 − λ′〈1E, A

′〉+ λ′〈1E, B〉.

Then for each A′ ∈ D(p), (1) implies that 〈1W , A′〉 6= 0 or 〈1E, B〉 6= 0,

or both. Moreover, if 〈1W , A′〉 = 0 then it must be true that A′ ( B,

which implies that

(2) − 〈1E, A
′〉+ 〈1E, B〉 = 〈1E, B − A′〉 > 0.

Choose λ, λ′ > 0 such that λ〈1W , A′〉 − λ′〈1E, A
′〉 + λ′〈1E , B〉 > 0

for all A′ ∈ D(p). This is possible by equation (2), and for example by

letting λ/λ′ > |X|. Also choose λ, λ′ such that p′ = p+(λ1W −λ′1E) ∈

V .

Now, for any A′ ∈ D(p′),

〈p′, A′ −B〉 − 〈p, A′ − B〉 = 〈(λ1W − λ′1E), A
′ − B〉 > 0.

Moreover, A′ ∈ D(p), as p′ ∈ V and thus D(p′) ⊆ D(p). �

A demand function satisfies cyclic monotonicity if, for all n, and

using summation mod n,

n∑
i=1

〈pi, Ai − Ai+1〉 ≤ 0,

where Ai ∈ D(pi), for all sequences {pi}
n
i=1.

The following argument is mostly standard, adapting the construc-

tion of Rockafellar (1966) and Rochet (1987). A potential novelty is

the use of the upper hemicontinuity condition in guaranteeing strict

inequalities when necessary.
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Lemma 6. If D satisfies cyclic monotonicity, and condition ♠, then

it is quasilinear rationalizable.

Proof. We have assumed that there is p∗ for which {∅} = D(p∗). For

any A ⊆ X , define:

v(A) = inf〈p1, A−A1〉+ . . .+ 〈p∗, Ak −∅〉,

where the infimum is taken over all finite sequences (pi, Ai)
k
i=1 for

which Ai ∈ D(pi).

Observe that by cyclic monotonicity, v(∅) ∈ R; in fact v(∅) ≥

0. By construction, v is nondecreasing, as it is the lower envelope of

nondecreasing functions. Hence v(A) ∈ R for all A. Finally, observe

that v is the lower envelope of restriction of affine functions on RX .

Conclude that v is the restriction of a concave function on RX .

Finally, observe by construction that if A ∈ D(p), then for any

B ⊆ X ,

v(B) ≤ 〈p, B − A〉+ v(A),

from which we obtain v(A)− 〈p, A〉 ≥ v(B)− 〈p, B〉.

Finally, to prove the lemma we need to show that if in addition

B /∈ D(p) then v(A)− 〈p, A〉 > v(B)− 〈p, B〉, or that v(A) > 〈p, A−

B〉 + v(B). By condition ♠, there is A′ ∈ D(p) and p′ such that

A′ ∈ D(p′) and 〈p′, A′ − B〉 > 〈p, A′ −B〉.

Suppose that {(Ai, pi)} is a sequence as in the definition of v(A′).

Then

v(B) ≤ 〈p′, B−A′〉+

n∑
i=1

〈pi, Ai−Ai+1〉 < 〈p, B−A′〉+

n∑
i=1

〈pi, Ai−Ai+1〉,

so v(B) < 〈p, B − A′〉+ v(A′); and thus

v(A)− 〈p, A〉 = v(A′)− 〈p, A′〉 > v(B)− 〈p′, B〉.

�
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We finish the proof by using a recent result in the mechanism design

literature, establishing conditions under which monotonicity (a condi-

tion that coincides with the law of demand) implies cyclic monotonicity:

see Lavi et al. (2003) and Saks and Yu (2005).

Lemma 7. A demand function satisfies cyclic monotonicity if it sat-

isfies the law of demand.

Proof. So let D satisfy the law of demand and suppose towards a con-

tradiction that there is a sequence (pi, Ai)
n
i=1, with Ai ∈ D(pi) and∑n

i=1〈pi, Ai − Ai+1〉 > 0 (summation mod n), but no such sequence

with n ≤ 2. Choose such a sequence with minimal n, and observe that

n ≥ 3.

For any selection f(p) ∈ D(p), if f is monotone then it is cyclically

monotone, see e.g. Saks and Yu (2005) or Ashlagi et al. (2010), The-

orem S.7 in the supplementary material.1 Since D satisfies the law of

demand, any selection f is monotone, and therefore cyclically mono-

tone.

If pi 6= pj for all i, j = 1, . . . , n with i 6= j, then we can choose a

selection f of D with f(pi) = Ai, violating cyclic monotonicity of f ,

and hence contradicting the fact that it is monotone.

We now claim that in fact it is the case that pi 6= pj for all i 6= j.

Observe first that if pi = pi+1 for some i, then 〈piAi − Ai+1〉 +

〈pi+1Ai+1 − Ai+2〉 = 〈piAi − Ai+2〉, implying the existence of a shorter

sequence, a contradiction.

Suppose then that pi = pj . By the preceding, we know that j = i+1

is false, and i = j + 1 is false. Without loss, suppose that i = 1. Then

j 6= n and j 6= 2. Further, 〈pj , Aj − Aj+1〉 = 〈pj, Aj − A1〉 + 〈p1, A1 −

1Technically, the Ashlagi et al. (2010) result requires the output of f to be a prob-
ability measure. To modify the construction to fit our environment, simply let
y∗ 6∈ X , and consider the set Y ⊆ R

X∪{y∗} given by Y = {(p, 0) : p ∈ R
X
++}. De-

fine the function f∗ : Y → ∆(X ∪{y∗}) by f∗(p, 0)(x) =
1x∈f(p)

|X| and f∗(p, 0)(y∗) =

1− |f(p)|
|X| . Observe that 〈(q, 0), f∗(p, 0)〉 = 〈q, f(p)〉 1

|x| , and therefore monotonicity

of f is equivalent to that of f∗ and cyclic monotonicity of f is equivalent to that
of f∗.
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Aj+1〉, so

0 <

n∑
i=1

〈pi, Ai −Ai+1〉 = 〈p1, A1 − A2〉+ · · ·+ 〈pj, Aj − A1〉+ 〈p1, A1 − Aj+1〉

+〈pj+1, Aj+1 −Aj+2〉+ · · ·+ 〈pn, A1 −An〉.

Consequently, either 〈p1, A1−A2〉+ · · ·+ 〈pj, Aj −A1〉 > 0 or 〈p1, A1−

Aj+1〉 + · · ·+ 〈pj+1, Aj+1 − Aj+2〉 + · · ·+ 〈pn, A1 − An〉 > 0. In either

case, we have demonstrated the existence of a shorter cycle violating

cyclic monotonicity, a contradiction.

�

4. Proof of Theorem 3

As usual, D(RX
++) =

⋃
p∈RX

++

D(p) is the range of D, and similarly

for a function f : RX
++ → 2X .

First, we characterize those bundles which are demanded at some set

of prices.

Lemma 8. Given v which rationalizes D, A ∈ D(RX
++) iff for all

B ⊂ A, B 6= A, v(B) < v(A).

Proof. First suppose that A ∈ D(p) for some p. Then for all B ⊂ A,

B 6= A, v(A)−〈p, A〉 ≥ v(B)−〈p, B〉, implying v(A) ≥ v(B)+ 〈p, A−

B〉 > v(B).

Conversely, suppose that for all B ⊆ A, B 6= A, we have v(B) <

v(A). We want to show that there is p∗ for which v(A) − 〈p∗, A〉 ≥

v(B)− 〈p∗, B〉. To ensure this inequality is satisfied, we simply choose

p∗(x) small for x ∈ A and large for x /∈ A. �

Remark 9. By Lemma 8, it is straightforward to see that for any h :

S → R, there is a monotone h which rationalizes the same demand as

h, namely, h is the smallest monotone function pointwise dominating

h:

h(A) = sup
B⊆A

h(B).
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4.1. Proof of Theorem 3. We proceed to show that if v and w are

monotone and both rationalize D, they differ by a constant.

For all p ∈ RX
++, let f(p) ∈ D(p). First we show that any two

functions that rationalize D must differ by a constant on the range of f .

So let v rationalizeD. Define Uv(p) = supA∈S v(A)−〈p, A〉 (the indirect

utility function). Observe that by definition, Uv(p) ≥ v(A)− 〈p, A〉 for

all (p, A), and A ∈ D(p) iff v(A) − 〈p, A〉 = U(p). Consequently,

v(A) ≤ Uv(p) + 〈p, A〉 for all (p, A), with equality iff A ∈ D(p). It

follows that A ∈ D(p) iff for all q, Uv(p) + 〈p, A〉 ≤ Uv(q) + 〈q, A〉; i.e.

Uv(q) ≥ Uv(p) + 〈p − q, A〉; or Uv(q) ≥ Uv(p) + 〈q − p,−A〉. In other

words, −A is a subgradient of Uv at p iff A ∈ D(p). In particular, f(p)

is a subgradient of Uv.

Observe that Uv is convex, real-valued, and continuous, and defined

on RX
++, an open domain. Since Uv is convex, for any x1, x2, the

function h(λ) = Uv(λx2+(1−λ)x1) is convex. Since f is a subgradient

of Uv at each p, we obtain that

h(λ+ δ)− h(λ) = Uv(λx2 + (1− λ)x1 + δ(x2 − x1))− Uv(λx2 + (1− λ)x1)

≥ 〈f(λx2 + (1− λ)x1), δ(x2 − x1)〉

= δ〈f(λx2 + (1− λ)x1), (x2 − x1)〉.

Hence, (h(λ + δ)− h(λ))/δ ≥ 〈f(λx2 + (1 − λ)x1), (x2 − x1)〉 if δ > 0

and (h(λ + δ) − h(λ))/δ ≤ 〈f(λx2 + (1 − λ)x1), (x2 − x1)〉 if δ < 0.

Thus, h′
−(p) ≤ f(p) · (x2 − x1) ≤ h′

+(p)

Observe also that
∫ 1

0
h′
−(x)dx =

∫ 1

0
h′
+(x)dx, by Rockafellar (1970)

Corollary 24.2.1. So in particular Uv(x2) = Uv(x1)+
∫ 1

0
f(p) · (x2−x1).

Recall that f is an arbitrary selection from D and does not depend on

v. Suppose that w rationalizes D, and define Uw analogously to Uv.

Then we obtain that

Uv(x2)− Uv(x1) =

∫ 1

0

f(p) · (x2 − x1) = Uw(x2)− Uw(x1).

Thus Uv = Uw + c, for some constant c.

Now for all A ∈ f(RX
++), v(A) = infp Uv(p) + 〈p, A〉 = infp Uw(p) +

〈p, A〉+ c = w(A) + c. So we have shown that v and w differ at most
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by a constant on the range of f . Again, since f was arbitrary, v and

w differ at most by a constant on the range of D.

Recalling that there is always p∗ ∈ RX
++ for which ∅ ∈ D(p∗), by

Lemma 8 and monotonicity of v, for any A not in the range of D, we

have

v(A) = sup
{B⊂A:B∈D(RX

++
)}

v(B).

A similar equality holds for w, hence v and w differ by a constant.

Therefore there is a unique monotone v with v(∅) = 0 which ratio-

nalizes D.
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