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Consider a normal matrix M (i.e., M M∗ = M∗M) of some large order n, picked
randomly with respect to a probability measure of the form

dμn(M) = 1

Zn
e −n tr Q(M) d M. (0.1)

Here d M is the surface measure on normal n × n matrices inherited from 2n2-
dimensional Lebesgue measure via the natural embedding intoC n2 , Q(ζ ) is a suitable
real-valued function defined on C (“large” as ζ → ∞), and Zn is a normalizing con-
stant; tr Q(M) = ∑n

1 Q(ζ j ) is the usual trace of the matrix Q(M), where ζ j denote
the eigenvalues.

A random sample {ζ j }n
1, where ζ j are the eigenvalues of M , is known as a random

normal eigenvalue ensemble. It is convenient to briefly call it a “system.”
If Q is just defined on R and d M is surface measure on the Hermitian matrices

(i.e., M∗ = M), we have random Hermitian matrices. The study of such ensembles,
e.g., using the technique of Riemann–Hilbert problems, is a classical and active area
of research.

As n → ∞, the system tends to occupy a certain compact set S called the droplet.
We will here fix a point p ∈ S and study microscopic properties of the system near p.
This corresponds to the study of spacing distribution in Hermitian theory.

The simplest case is the well-known Ginibre ensemble, in which Q(ζ ) = | ζ | 2
and S is the closed unit disc. In this case, the system {ζ j }n

1 can be interpreted as the
eigenvalues of an n × n matrix whose entries are i.i.d. complex, centered Gaussian
random variables of variance 1/n. We note a few facts about this ensemble.

If we rescale about the point p = 0 in the interior of S, by letting z j = √
nζ j , and

let n → ∞, then simple calculation shows that the rescaled system {z j }n
1 converges

to a determinantal random point field with the correlation kernel

G(z, w) := e zw̄− | z | 2/2− |w | 2/2.

It is convenient to refer to G as the Ginibre kernel and the corresponding point field
as the “bulk Ginibre point field.”

If we instead rescale about the boundary point p = 1 by z j = √
n

(
ζ j − 1

)
, then

again there is a limiting point field, but the correlation kernel turns out to be

K (z, w) = G(z, w)F (z + w̄) , (0.2)

where F is the entire function given by

F(z) = 1

2
erfc

( z√
2

)
≡ 1√

2π

∫ ∞

z
e−ζ 2/2 dζ. (0.3)

Here “erfc” is the complementary error function, while F is closely related to the
“plasma dispersion function” in the physics literature, see [19]. Sometimes we will
refer to F as the plasma function (Figs. 1, 2).
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Fig. 1 A sample of the free boundary Ginibre process for a large value of n
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Fig. 2 The free boundary and hard edge profiles, respectively

To the best of our knowledge, the above formula first appeared in the paper [18] by
Forrester and Honner; cf. [10,12] for some alternative proofs. We call the point field
with the correlation kernel (0.2) the “boundary Ginibre point field.”

We will start this paper with an alternative simple argument that depends on the
normal approximation of the Poisson distribution. This argument works in some other
situations as well. In particular, we show how to use it to compute the limiting kernel
of the hard edge Ginibre ensemble, where the potential is redefined as +∞ outside
the unit disc S. In this case, we get

K (z, w) = G(z, w)H(z + w̄) 1L(z) 1L(w), (0.4)

where 1L is the indicator function for the left half-plane L = { z ; Re z < 0 },

H(z) = 1√
2π

∫ 0

−∞
e − (z−t) 2/2

F(t)
dt, (0.5)

and F is given by (0.3) (cf. Fig. 2).
Analogously towell-known“universality” results in the theoryof randomHermitian

matrices, where thewell-known sine, Airy, and Bessel processes crop up, one can hope
to find analogous processes in the normal matrix case. Here the starting point is the
well-known fact (observed in [2]) that if we rescale properly at a point p in the interior
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Fig. 3 The level sets of the Berezin kernel B(0, w) for the free boundary Ginibre ensemble

of S with�Q(p) > 0, then the rescaled processes converge to the bulk Ginibre point
field.

Full universality at boundary points remains an open problem, but we will here
obtain some partial results by suggesting and exploring a new approach that is based
on rescaling of Ward’s identities (or loop equations). This approach is of interest also
in other contexts, see, e.g., [1,8].

We will derive a “universal” (independent of Q) equation that is satisfied by all
sequential limits K of the rescaled correlation kernels. In the case of a regular point
on the free boundary, the equation has the following form:

∂̄C = R − 1 − ∂∂̄ log R, (0.6)

where R(z) = K (z, z) is the intensity 1-point function and

C(z) = 1

π

∫

C

B(z, w)

z − w
d2 w

is the Cauchy transform of the Berezin kernel B(z, w) (see Fig. 3),

B(z, w) = |K (z, w)|2
K (z, z)

.

Equation (0.6) is an equation for R = R(z) because (as we’ll see) R determines K
and therefore B and C by means of analytic continuation.
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The analysis of equation (0.6) is one of the main points of this paper. We will
describe all (vertically) translation invariant solutions R to Ward’s equation, i.e.,
solutions for which R(z) depends only on Re z. If we rescale properly about a regular
boundary point, the boundary of the droplet will approach the imaginary axis, making
it very plausible that the intensity of eigenvalues should be translation invariant. We
will obtain results that strongly indicate that this is in fact the case, but we are not able
to completely settle the issue here. It is however easy to verify translation invariance
for radially symmetric potentials, so we do get universality for that class.

The method of rescaledWard identities is quite general and can be used in a variety
of different settings. In addition to the already mentioned cases of regular points in the
bulk, or on a free or hard edge boundary, one can consider various types of singular
points as well. We get certain equations that depend only on the setting but not on
Q (“universality”). We will derive such Ward’s equations in several settings but will
focus most on the regular free boundary case (0.2). The analysis of other cases appear
elsewhere, see [5,6,8].

A detailed description of our results is given in the following section.

Notational conventions. By D(ζ ; r)we denote the open disc with center ζ and radius
r . We write ∂E , Int E , cl E , and Ec for the boundary, the interior, the closure, and
the complement of a set E ⊂ C. The indicator function of a set E is denoted by
1E . We write ∂ = 1

2 (∂/∂x − i∂/∂y) and ∂̄ = 1
2 (∂/∂x + i∂/∂y) for the complex

derivatives and� = ∂∂̄ for the normalized Laplacian. Thus� is 1
4 times the standard

Laplacian. We write d A(z) = d 2z/π for normalized Lebesgue measure. Thus the
unit disc has measure 1. The volume measure on Ck is defined by dVk(ζ1, . . . , ζk) =
d A(ζ1) · · · d A(ζk). The intensities and the correlation kernel of the original point
processes are boldfaced as Rn,k and Kn , respectively, and those of the rescaled point
processes are italicized as Rn,k and Kn , respectively.

A continuous function f : C2 → C is termed Hermitian if f (z, w) = f (w, z).
We shall say that f is Hermitian-analytic (or Hermitian-entire) if f is Hermitian and
analytic (entire, respectively) as a function of z and w̄. A Hermitian-entire function
is uniquely determined by its values f (z, z) on the diagonal, see [23, Lemma 2.5.1].
A Hermitian function c is called a cocycle if c(z, w) = g(z)g(w) for a continuous
unimodular function g. The determinant of a matrix (mi j ) remains unchanged if we
multiply each mi j by c(zi , z j ).

1 Introduction and Results

1.1 Potential Theory and Droplets

Fix a suitable function (“external potential”) Q : C → R ∪ {+∞}. Let P denote the
class of positive, compactly supported Borel measures on C.

Define the weighted logarithmic energy of μ ∈ P in external field Q by

IQ [μ] =
∫∫

C2
log

1

| ζ − η | dμ(ζ ) dμ(η)+
∫

C

Q dμ.
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Thinking ofμ as the distribution of an electric charge, IQ[μ] is the sumof theCoulomb
interaction energy and the energy of interaction of μ with the external field Q.

We always assume that Q is lower semi-continuous and that Q is finite on some
set of positive logarithmic capacity. We will also assume that Q is sufficiently large
at infinity so as to confine the system to a finite portion of the plane. To be precise, it
suffices to assume that lim infζ→∞ Q (ζ ) / log | ζ | > 2.

A classical theorem of Frostman states that there exists a unique equilibrium mea-
sure σ that minimizes the weighted energy,

IQ[σ ] = min
μ(C)=1

IQ[μ], (μ ∈ P).

See [32]. We denote the compact support of the equilibrium measure by

S = S [Q] = supp σ.

We refer to S as the droplet in the external field Q. It is known that if Q is smooth in
some neighborhood of S, then σ is absolutely continuous and takes the explicit form
(see [32])

dσ = 1S ·�Q d A.

Since σ is a probability measure, we have �Q ≥ 0 on S.
Our main assumptions throughout are that there is some neighborhood� of S such

that

Q is real analytic in �,

�Q > 0 in �.

With these assumptions, the complement Sc has a local Schwarz function at each
boundary point, and we can rely on the fundamental theorem of Sakai [33] concerning
domains with local Schwarz functions. In particular, we can apply Sakai’s regularity
theorem, which implies that all but finitely many boundary points p ∈ ∂S are regular
in the sense that there is a disc D = D(p; ε) such that D \ S is a Jordan domain
and D ∩ (∂S) is a real analytic arc. A nonregular point p ∈ ∂S is called a singular
boundary point. Such points can be classified further as cusps or double points.

1.2 Rescaling Eigenvalue Ensembles

Consider a random eigenvalue ensemble {ζ j }n
1 from (0.1). It is well known that we

can alternatively regard the system as being picked randomly with respect to the
Boltzmann–Gibbs law,

dPn(ζ ) = 1

Zn
e − Hn(ζ ) dVn(ζ ), ζ = (ζ1, . . . , ζn) ∈ C

n, (1.1)
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where Hn , the Hamiltonian, is defined by

Hn (ζ1, . . . , ζn) =
∑

j �=k

log
1

∣
∣ ζ j − ζk

∣
∣

+ n
n∑

j=1

Q
(
ζ j

)
. (1.2)

The normalizing constant Zn = ∫
e − Hn dVn is the so-called partition function.

We can thus think of the point-process (ζ j )
n
1 either as a system of repelling point-

charges in external field nQ, with logarithmic interactions, or as eigenvalues of random
normal matrices from the ensemble above.

An important feature of this kind of point process is that it is determinantal. This
means that if Rn,k denotes the k-point intensity function of the process {ζ j }n

1, then

Rn,k(ζ1, . . . , ζk) = det
(
Kn(ζi , ζ j )

)k
i, j=1 ,

where Kn,k is a certain Hermitian function known as a correlation kernel. Indeed, by
Dyson’s determinant formula, given in, e.g., [32, Section IV.7.2] or [17,28], we have
the formula

Kn(ζ, η) =
n−1∑

j=0

q j (ζ ) q̄ j (η) e −nQ(ζ )/2−nQ(η)/2. (1.3)

Here q j is the j :th orthonormal polynomial with respect to themeasure e−nQ(ζ )d A(ζ ).
We remind the reader that the k-point function of Pn is defined for distinct points

η j by

Rn,k(η1, . . . , ηk) = lim
ε→0

⎡

⎣ε−2k · En

⎛

⎝
k∏

j=1

ND(η j ;ε)

⎞

⎠

⎤

⎦ .

Here NB is the number of points ζ j that fall in a set B; En is expectation with respect
to Pn .

It should be mentioned that the so-called β-ensembles corresponding to the
Boltzmann–Gibbs law dP(β)n (ζ ) ∝ e −β Hn(ζ ) dVn(ζ ) are not determinantal if β �= 1,
and some aspects of the methods we develop in this manuscript do not work for them.

We are interested in microscopic properties of the system {ζ j }n
1 near a point p ∈ S.

It is natural to magnify distances about p by a factor
√

n�Q(p). We also fix an angle
θ ∈ R; when p is a regular boundary point, we choose θ so that eiθ as the outer normal
to ∂S at p; in other cases, we may choose it arbitrarily.

Consider the rescaled system n = {z j }n
1, given by

z j = e−iθ
√

n�Q(p) · (ζ j − p), j = 1, . . . , n. (1.4)

We can choose the coordinate system so that p = 0 and θ = 0. This will be done
hereafter, except in some cases where other choices are natural. More generally, we
can rescale about an n-dependent point p = pn, or alternatively, let 0 denote the origin
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in an n-dependent coordinate system. This generalization presents no new difficulties
as long as the sequence pn is contained in a sufficiently small neighborhood of the
droplet and satisfies the decisive condition �Q(pn) ≥ const. > 0. See [1,6].

The law ofn is defined as the image of the Boltzmann–Gibbs measure (1.1) under
the map (1.4). The rescaled system n then has intensities denoted by Rn,k , where

Rn,k (z1, . . . , zk) = 1

(n�Q(0))k
Rn,k (ζ1, . . . , ζk) . (1.5)

The point process n is determinantal with kernel Kn given by

Kn(z, w) = 1

n�Q(0)
Kn(ζ, η), where

{
z = √

n�Q(0) · ζ,
w = √

n�Q(0) · η.

The fundamental problem is existence and uniqueness of a limiting point field of the
rescaled processes n as n → ∞. For our purposes, convergence will mean locally
uniform convergence of all intensities Rn,k to some limits Rk as n → ∞. Whenever
this is the case, Rk can be interpreted as a k-point function for a “point field” in C,
meaning a probability law on a suitable space of infinite configurations {zi }∞1 ⊂ C

(cf. [34], see also a forthcoming version of [6]).
It suffices here to note that the desired convergence of the processesn holds if the

correlation kernels Kn converge to a limit K locally uniformly on C
2. Moreover, the

limiting point field is uniquely determined by K if the functions Kn(z, z) are uniformly
bounded, and it is then determinantal with intensity functions

Rk(z1, . . . , zk) = det
(
K (zi , z j )

)k
i, j=1 .

More generally, if Kn is a correlation kernel and (cn)
∞
1 is a sequence of cocycles, then

cn Kn is another kernel giving rise to the same joint intensities Rn,k . The problem is
thus to show that there exists a sequence of cocycles such that cn Kn converges locally
uniformly to a nontrivial limit K with bounded convergence on the diagonal in C

2.

1.3 Compactness, Nontriviality, and Ward’s Equation

Ourfirst theorem states the existence of sequential limits of the rescaled point processes
n and specifies the form of limiting correlation kernels.

Theorem 1.1 (i) There is a sequence cn of cocycles such that every subsequence of
(cn Kn)

∞
1 has a further subsequence that converges uniformly to some limit K on

compact subsets of C2.

(ii) Each K in (i) has the form K = G�, where � is a Hermitian entire function and
G is the Ginibre kernel.
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Analyticity of �(z, w̄) allows us to use analytic continuation. It is clear that a
limiting kernel K in Theorem 1.1 is a positive kernel in Aronszajn’s sense [9]; i.e., for
all finite sequences (z j )

N
1 of points and all choices of scalars (α j )

N
1 , we have

N∑

j,k=1

α j ᾱk K (z j , zk) ≥ 0.

The next theorem describes some additional positivity properties of a limiting kernel.
We denote by L2

a(μ) the Bargmann–Fock space of entire functions square-integrable
with respect to the measure

dμ(z) = e−|z|2 d A(z).

Theorem 1.2 Let K = G� be any limiting kernel in Theorem 1.1.

(i) K satisfies the following “mass-one inequality”:

for all z ∈ C,

∫

C

|K (z, w)|2 d A(w) ≤ K (z, z). (1.6)

(ii) Let L(z, w) := ezw̄�(z, w). Then L is the reproducing kernel for a certain
Hilbert space H∗ of entire functions that sits contractively in L2

a(μ).
(iii) Also we have

0 ≤ K ≤ G

in the sense that K and G − K are positive kernels.

By the general theory mentioned in the previous subsection, a limiting kernel K is
the correlation kernel of some point field in the plane, which we call a limiting point
field. The 1-point function of this point field is denoted by R(z) = K (z, z). If R does
not vanish on C, we can consider the Berezin kernel B(z, w) = |K (z, w)|2/K (z, z)
and define the Cauchy transform

C(z) =
∫

C

B(z, w)

z − w
d A(w). (1.7)

Theorem 1.3 Let K = G� be a limiting kernel in Theorem 1.1.

(i) Either R is trivial, in the sense that R = 0 identically in C, or R > 0 everywhere.
(ii) Ward’s equation: if R is nontrivial, then the integral C(z) in (1.7) converges and

defines a smooth function such that

∂̄C(z) = R(z)− 1 −� log R(z), z ∈ C.
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The first part of this theorem says that we have a dichotomy (some sort of “zero-one
law”). Both cases are possible. The next theorem implies that we have nontriviality at
regular boundary points, whereas triviality (i.e. R ≡ 0) occurs, for example, if p is a
singular boundary point, see [6].

1.4 A Priori Estimates

Ward’s equation has many solutions. In order to fix a solution uniquely, we need to
know that certain additional conditions are satisfied. These conditions depend on the
nature of the point we are rescaling about. For regular points, the results are as follows.

Theorem 1.4 Suppose that 0 is a regular boundary point, and let K be a correspond-
ing limiting kernel in Theorem 1.1. Write x = Re z.

(i) Exterior estimate: There is a constant C such that

R(z) ≤ C e − 2 x 2
for x ≥ 0.

(ii) Interior estimate: If � is any number with � < 1/2, then there is a constant C
(depending on �) such that

0 ≤ 1 − R(z) ≤ C e − � x 2
for x ≤ 0.

Theorem 1.5 Assume that the droplet S is connected and all boundary points of S are
regular. For almost all boundary points, the following identity holds for all limiting
kernels: ∫ +∞

−∞
x · (R(x)− 1(−∞,0)(x)) dx = 1

8
.

1.5 Translation Invariant Solutions to Ward’s Equation

Let K = G� be a limiting kernel in Theorem 1.1. We say that� (or K ) is (vertically)
translation invariant (in short: t.i. ) if

� (z + i t, w + i t) = � (z, w) , t ∈ R.

In this case, � can be represented in the form

�(z, w) = �(z + w̄) (1.8)

for some entire function �. We can describe a relevant class of such � by means of
the “Gaussian kernel”

γ (z) := 1√
2π

e − z 2/2, z ∈ C.
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Let f be a bounded function on R. Then we define the entire function γ ∗ f by the
equation

(γ ∗ f )(z) =
∫ +∞

−∞
γ (z − t) f (t) dt, z ∈ C,

so γ ∗ f is the analytic continuation of usual convolution inR. For example, the plasma
function F in (0.3) can be represented as

F(z) = γ ∗ 1(−∞,0)(z) =
∫ 0

−∞
γ (z − t) dt. (1.9)

We will see that positivity properties of the limiting kernels in Theorem 1.2 imply that
if the kernel is t.i. , the entire function � in (1.8) in has the form � = γ ∗ f with a
bounded function f.

Theorem 1.6 Let � = γ ∗ f , where f is a bounded function. Then the kernel
K (z, w) = G(z, w)�(z + w̄) satisfies Ward’s equation if and only if � = γ ∗ 1I

for some connected set I ⊂ R.

Using a priori estimates in Theorem 1.4, we obtain the following corollary.

Theorem 1.7 If the limiting kernel K at a regular boundary point is translation invari-
ant, then K (z, w) = G(z, w)�(z + w̄) and there is some a such that

� = γ ∗ 1(−∞,a).

Since a = 0 is the only choice of a consistent with the 1/8-formula in Theorem
1.5, we have the following result for radially symmetric potentials, Q(z) = Q(|z|).
Theorem 1.8 Assume that the droplet S is connected. If Q is radially symmetric and
p is any boundary point, then the rescaled point processes converge to the boundary
Ginibre point field.

As we mentioned, it is natural to expect that the boundary Ginibre point process
is universal at all regular boundary points for all potentials. A possible approach to
ruling out the existence of non-translation-invariant solutions, which satisfy the given
apriori estimates, is outlined in Section 8.3.

Recently (after this work was completed) Lee and Riser [25] established this type
of convergence for the nonsymmetric “elliptic” potentials Q = | ζ | 2 − t Re(ζ 2), 0 <
t < 1. Their proof depends on explicit computations with the orthogonal polynomials
in [31]. Very recently, it seems that universality has been verified in a rather satisfactory
generality, by Hedenmalm and Wennman [21]. The approach there depends on a new
asymptotic formula for planar orthogonal polynomials. Our approach is quite different,
and in fact both methods seem to be of independent interest.

Remark The solutions � = γ ∗ 1I with bounded intervals I in Theorem 1.6 seem to
be of interest in the connection with the study of singular boundary points, see [6].
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1.6 Berezin Kernel and Mass-One Equation

Let Bn be the Berezin kernels of the rescaled processes n , i.e.,

Bn(z, w) = | Kn(z, w) | 2
Kn(z, z)

.

We have for all z, ∫

C

Bn(z, w) d A(w) = 1.

This equation is clear, e.g., from the probabilistic interpretation of Bn :

Bn(z, w) = Rn(w)− R (z)
n−1(w),

where Rn = Rn,1 is the 1-point function for the n-point process and R (z)
n−1 is the

1-point function for the conditional (n − 1)-point process n| {z ∈ n}.
If K is a limiting kernel, we define

B(z, w) = | K (z, w) | 2
K (z, z)

.

We say that K satisfies the mass-one equation if for all z,

∫

C

B(z, w) d A(w) = 1.

We will see that the mass-one equation is technically quite similar to Ward’s equa-
tion and has a nice spectral interpretation: the Hilbert spaceH∗ of entire functions in
Theorem 1.2 (ii) sits isometrically in the Fock space.

We can describe solutions to the mass-one equation in the t.i. case.

Theorem 1.9 Let � = γ ∗ f , where f is a bounded function. Then the kernel
K (z, w) = G(z, w)�(z + w̄) satisfies the mass-one equation if and only if there
is a Borel set E ⊂ R of positive measure such that f = 1E .

1.7 Organization of the Paper

In Section 2, we consider the boundary Ginibre ensembles, both for the free boundary
and the hard edge. We give a short proof of the convergence of rescaled ensembles to
the boundary Ginibre point fields with kernels (0.2) and (0.4), respectively.

In Section 3, we prove Theorem 1.1 (compactness and analyticity) and Theorem
1.2 (mass-one inequality and positivity of K and G − K ).

In Section 4, we derive Ward’s equation and prove Theorem 1.3.
In Section 5, we establish a priori bounds for regular points (Theorem 1.4). We also

prove the 1/8-formula in Theorem 1.5 at almost every boundary point.
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In Section 6, we specialize to t.i. solutions and prove Theorems 1.6–1.9.
In Section 7, we write down versions of Ward’s equation in some settings (hard

edge, bulk singularities, and β-ensembles) that are different from the free boundary
case discussed above.

The last section, Section 8, contains some general remarks. We relate our methods
and results to classical asymptotics for sections of power series. We discuss Hilbert
spaces of entire functions associated with limiting kernels. We also comment on the
nature of the mass-one equation andWard’s equation and show that they take the form
of twisted convolution equations.

2 The Ginibre Ensembles

2.1 Principles of Notation

Consider first a general potential Q. By a weighted polynomial of order n, we mean a
function of the form f = q · e−nQ/2, where q is an (analytic) polynomial of degree at
most n−1. LetWn denote the space of all weighted polynomials of order n, considered
as a subspace of L2 = L2(C, d A). It is well known that the reproducing kernel
Kn(ζ, η) for the spaceWn is a correlation kernel for the process {ζ j }n

1 corresponding
to Q. This implies that one has the formula (1.3) for Kn(ζ, η). Recall the Ginibre
potential Q = | ζ | 2. The corresponding droplet is S = { ζ ; | ζ | ≤ 1 }.

We shall give an elementary proof for convergence to the boundary Ginibre point
field using Poisson approximation of the normal distribution. Our proof is somewhat
similar to the argument in the paper [30], where the spectral radius of a Ginibre matrix
is studied.

2.2 Free Boundary Ginibre Ensemble

Let {ζ j }n
1 denote a random configuration for the free boundary Ginibre process. We

rescale about the boundary point p = 1 in the outer normal direction, via z j =√
n

(
ζ j − 1

)
,writingn = {z j }n

1 for the rescaled process.We shall prove the following
theorem, found in [18] (cf. [12]).

Theorem 2.1 The processes n converge to the boundary Ginibre point field as n →
∞ with locally uniform convergence of intensity functions.

Since K (z, z) < 1, it suffices to prove the statement about convergence of intensity
functions.

By (1.3), a correlation kernel for the process {ζ j }n
1 is computed to

Kn(ζ, η) = n
n−1∑

j=0

(nζ η̄) j

j ! e −n | ζ | 2+| η | 2
2 . (2.1)

123



76 Constr Approx (2019) 50:63–127

Now rescale according to

ζ = 1 + z/
√

n, η = 1 + w/
√

n.

and note that the rescaled process n has correlation kernel Kn(z, w) = 1
nKn (ζ, η) .

Using (2.1), we write Kn in the form

Kn(z, w) =
n−1∑

j=0

(
nζ η̄

λ

) j
λ j

j ! e −λ,

where

λ = λ(n) = n

2

(
| ζ | 2 + | η | 2

)
= n + √

n Re(z + w)+ 1

2

(
| z | 2 + |w | 2

)
. (2.2)

We next let Xn be a Poisson distributed random variable with intensity λ = λ(n) (in
short: Xn ∼ Po(λ)), i.e.,

P {Xn = k} = λk

k! e − λ, k = 0, 1, . . . .

We then have the identity

Kn(z, w) = E

[(
nζ η̄

λ

)Xn

· 1{Xn<n}

]

.

Now introduce a new random variable Yn by

Xn = λ+ √
λ Yn .

By the central limit theorem, Yn converges in distribution to the standard normal as
n → ∞; the convergence is moreover uniform. (This is the well-known “normal
approximation of the Poisson distribution”; uniform convergence follows, e.g., by the
Berry–Esseen theorem.)

Now factorize Kn(z, w) in the following way:

Kn(z, w) = An · Bn :=
(

nζ η̄

λ

)λ

· E
[(

nζ η̄

λ

)√
λ·Yn

· 1{Yn<αn}

]

, (2.3)

where αn = (n − λ)/
√
λ. Note that αn → −Re(z + w) as n → ∞.

Lemma 2.2 We have the convergence

Bn → e −b2/2F(z + w̄) as n → ∞,
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where b = b(z, w) = Im(z + w̄) and F is the free boundary kernel (1.9). Moreover,

An = e ib
√

ne b2/2G(z, w)(1 + o(1)),

where G is the Ginibre kernel and o(1) → 0 uniformly on compact sets as n → ∞.

Proof By a straightforward calculation, we have

nζ η̄

λ
= 1 + i√

n
Im(z + w̄)+ 1

n
a + O

(
n−3/2

)
, (2.4)

where

a = a(z, w) = zw̄ − (z + w̄)Re(z + w)− 1

2

(
| z | 2 + |w | 2

)
+ [Re(z + w)] 2 .

Inserting these expressions into Bn (see (2.3)) using the fact that the Yn are asymptot-
ically normal, we now approximate as follows (the symbol “∼” stands for asymptotic
equality as n → ∞):

Bn ∼ 1√
2π

∫ αn

−∞

(

1 + i√
n
Im(z + w̄)+ O(1/n)

)√
n·t

e − t 2/2 dt

∼ 1√
2π

∫ −Re(z+w̄)

−∞
e i Im(z+w̄)t e − t 2/2 dt = e − b 2/2 · F(z + w̄).

We now turn to the factor An in (2.3). To deal with it, we write c = Re(z +w). By
(2.4), we then have

An =
(

1 + ib√
n

+ a

n
+ O

(
n−3/2

))n+c
√

n+O(1)

= e ib
√

n e b 2/2 e ibc+a e o(1).

Noting that ibc + a = zw̄ − 1
2

(| z | 2 + |w | 2)
, we finish the proof of the lemma. ��

By the lemma and relation (2.3), we have

Kn(z, w) = e i
√

n Im(z−w)K (z, w)(1 + o(1)),

where K is the free boundary kernel defined in (0.2). Since the factor cn(z, w) =
ei

√
n Im(z−w) is a cocycle, this factor can be dropped when computing intensity func-

tions Rn,k(z) = det(Kn(zi , z j )). This proves the desired convergence of intensity
functions, at the same time establishing existence and uniqueness of the boundary
Ginibre point field. The proof of Theorem 2.1 is complete. ��
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2.3 Hard Edge Ginibre Ensemble

Let QS(z) = | z | 2 when | z | ≤ 1 and QS = +∞ otherwise. Let {ζi }n
1 denote a

random configuration from the corresponding ensemble. Rescaling about p = 1 via
z j = √

n (ζ j − 1), we obtain a process n . Let H be the hard edge function (0.4).

Theorem 2.3 There exists a unique point field BGh with correlation kernel

K (z, w) = G(z, w)H(z + w̄) (1L ⊗ 1L)(z, w).

The processes n converge to BGh in the sense that all intensity functions converge
locally boundedly almost everywhere, and locally uniformly in L

2, to the intensity
functions of BGh.

Note that K (z, z) < 2 for all z. Aswementioned in Subsection 1.2, the convergence
of intensity functions in the theorem implies the existence and uniqueness of a field
BGh with correlation kernel K . It thus suffices to prove convergence.

By (1.3) and a calculation, a correlation kernel for the hard edge Ginibre process
is given by

Kn(ζ, η) = n
n−1∑

j=0

(nζ η̄) j

γ ( j + 1, n)
e −nQS(ζ )/2−nQS(η)/2,

where γ ( j + 1, n) = ∫ n
0 s j e−s ds is the lower incomplete Gamma function. Now

rescale by

ζ = 1 + z/
√

n, η = 1 + w/
√

n, z, w ∈ L,

and write

Kn(z, w) = 1

n
Kn(ζ, η) =

n−1∑

j=0

(
nζ η̄

λ

) j
λ j

γ ( j + 1, n)
e−λ,

where λ = n(| ζ | 2 + | η | 2)/2 is as in (2.2). Now recall that

γ ( j + 1, n) = j !
⎛

⎝1 − e−n
j∑

k=0

nk

k!

⎞

⎠ = j !P (Un > j) ,

where Un ∼ Po(n). By normal approximation of the Poisson distribution,

P (Un > j) = ϕ
(
ξ j,n

)
(1 + o(1)),
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where ϕ(ξ) = 1√
2π

∫ ∞
ξ

e−t2/2 dt , ξ j,n = ( j − n)/
√

n, and o(1) → 0 as n → ∞
uniformly in j . We have shown that

Kn(z, w) = (1 + o(1))
n−1∑

j=0

(
nζ η̄

λ

) j
λ j

j ! e−λ 1

ϕ(ξ j,n)
.

Finally, if Xn ∼ Po(λ), we can write the last sum in the form

n−1∑

j=0

(
nζ η̄

λ

) j 1

ϕ(ξ j,n)
P(Xn = j) = E

⎡

⎣
(

nζ η̄

λ

)Xn

· 1

ϕ
(

Xn−n√
n

) · 1{Xn<n}

⎤

⎦ .

Defining Yn by Xn = λ+ √
λYn , we now get a relation of the form

Kn(z, w) = (1 + o(1))

(
nζ η̄

λ

)λ

· E
[(

nζ η̄

λ

)√
λYn 1

ϕ
(√

λ/nYn − αn
) · 1{Yn<αn}

]

= (1 + o(1))An · B̃n, αn = (n − λ)/
√

n.

Using the asymptotic identities αn ∼ −Re(z +w) and λ/n ∼ 1, we approximate the
factor B̃n as follows, using the central limit theorem,

B̃n ∼ 1√
2π

∫ −Re(z+w)

−∞
e i Im(z+w̄)t 1

ϕ
(√

λ/n t − αn
)e − t 2/2 dt

∼ e − b 2/2 1√
2π

∫ − Re(z+w)

−∞
1

ϕ (Re(z + w̄)+ t )
e − (t−i Im(z+w̄)) 2/2 dt

= e − b 2/2 1√
2π

∫ 0

−∞
1

ϕ(u)
e − (u−(z+w̄)) 2/2 du = e − b 2/2H(z + w̄).

Using the asymptotics for An in Lemma 2.2, we now conclude that

Kn(z, w) = e i
√

n Im(z−w)G(z, w)H(z + w̄)(1 + o(1)), z, w ∈ L,

where o(1) → 0 uniformly on compacts. The first factor is a cocycle. We conclude
that if K (z, w) = G(z, w)H(z + w̄)1L(z)1L(w) is the hard edge kernel, then Kn →
K almost everywhere with locally bounded convergence, finishing the proof of the
theorem.

3 Analyticity and Compactness

In this section, we prove Theorems 1.1 and 1.2. We start by introducing appropriate
notation; after that we will deduce our results using normal families coupled with
some theory for reproducing kernels.
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3.1 General Notation

For a measurable function φ : C → R ∪ {+∞}, we define L2
φ to be the space of

functions normed by

‖ f ‖ 2
φ =

∫

C

| f | 2 e −φ d A.

When φ = 0, we just write L2 for L2
φ and denote the norm by ‖ · ‖.

We denote by C (“large”) and c (“small”) various positive unspecified constants
(independent of n) whose exact value can change meaning from time to time.

3.2 Potentials and Reproducing Kernels

Fix a neighborhood � of S and a number δ0 > 0 such that Q is real-analytic and
strictly subharmonic in the 2δ0-neighborhood of �.

Let Pn be the space of analytic polynomials of degree at most n − 1; we equip
Pn with the norm of L2

nQ . The corresponding space Wn of weighted polynomials is

defined to consist of all functions of the form f = qe − nQ/2, where q ∈ Pn ; we regard
Wn as a subspace of L2 and denote the corresponding orthogonal projections by

πn : L2
nQ → Pn and �n : L2 → Wn .

We write kn and Kn for the reproducing kernels of Pn and Wn, respectively. Then

Kn(ζ, η) = kn(ζ, η)e
− nQ(ζ )/2e − nQ(η)/2.

It is easy to see that the assignment

Un : L2
nQ → L2, f �→ f e − nQ/2

is unitary, maps Pn ontoWn , and satisfies Unπn = �nUn .

3.3 Bulk Approximations

Let A(ζ, η) be a Hermitian-analytic function defined in a neighborhood in C
2 of the

set X = { (ζ, ζ ) ; ζ ∈ � } such that

A(ζ, ζ ) = Q(ζ ), ζ ∈ �.

Choose δ0 > 0 small enough that A(ζ, η) is defined and Hermitian-analytic in the set
of points whose distance to X is < 2δ0. Call this set �.

We define approximations k#n and K#
n via

k#n(ζ, η) = n
(
∂1∂̄2A

)
(ζ, η) · e n A(ζ,η), K#

n(ζ, η) = k#n(ζ, η)e
− nQ(ζ )/2e − nQ(η)/2.
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3.4 Auxiliary Estimates

We recall first the following simple pointwise-L2 estimate.

Lemma 3.1 Suppose that u is analytic in the disc D := D (p; c/�n), (�n =√
n�Q(p)), where Q is C2-smooth at p. Let f = ue− nQ/2. Then there is a number

C depending only on c and �Q(p) such that

| f (p) | 2 ≤ Cn
∫

D
| f | 2 d A.

Proof Fix a number a > 1 and consider the function Fn(z) = f (p + z/�n) ·ea| z | 2/2.
We have � log | Fn(z) | 2 ≥ −�Q (p + z/�n) /�Q (p) + a > 0 for | z | ≤ c if
n is large enough. Hence |Fn|2 is subharmonic in D, which implies the desired
estimate. ��

Let γ be the minimum of Q + 2Uσ , where Uσ (z) = ∫
C
log 1

| z−w | dσ(w) is the
logarithmic potential of the equilibrium measure σ = �Q · 1S d A. By the obstacle
function corresponding to Q, we mean the subharmonic function

Q̌ (ζ ) = −2Uσ (ζ )+ γ.

It is known (see [32]) that Q̌ = Q on S while Q̌ is harmonic on Sc and is of logarithmic
increase

Q̌ (ζ ) = log | ζ | 2 + O(1), (ζ → ∞).

Furthermore, Q̌ has a Lipschitz continuous gradient on C. This leads to the following
basic estimate, the “maximum principle of weighted potential theory.”

Lemma 3.2 If f ∈ Wn and | f | ≤ 1 on S, then | f | ≤ e
− n

(
Q−Q̌

)
/2

on C.

Proof If f = p · e−nQ/2, then 1
n log | p | 2 is a subharmonic minorant of Q that grows

no faster than log | ζ | 2+const. as ζ → ∞. It is well known that Q̌(ζ ) is the supremum
of f (ζ ) where f ranges over the functions having these properties (see, e.g., [32]). ��

To relate the above lemmas to the one-point function Rn(ζ ) = Kn(ζ, ζ ), we use a
general fact for reproducing kernels and obtain

Rn(ζ ) = sup
{

| f (ζ ) | 2 ; f ∈ Wn , ‖ f ‖ ≤ 1
}
.

Combining this with Lemma 3.2, we conclude the following basic bound.

Lemma 3.3 There a constant C = C[Q] such that Rn(ζ ) ≤ Cne
− n

(
Q−Q̌

)
(ζ )

.
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3.5 Convergence of Approximate Kernels

Let {ζ j }n
1 denote the point process corresponding to Q. A kernel Kn for the rescaled

process {z j }n
1 (about p = 0 in positive real direction) is given by

Kn(z, w) = 1

n�Q(0)
Kn(ζ, η), (z = √

n�Q(0) · ζ, w = √
n�Q(0) · η).

Let Vn denote the set of points (z, w) such that (ζ, η) ∈ �. Note that there is a
constant ρ > 0 depending only on �Q(0) such that

{
(z, w) ; | z | ≤ ρ

√
n , |w | ≤ ρ

√
n

} ⊂ Vn . (3.1)

We define the rescaled bulk approximation K #
n by

K #
n (z, w) = 1

n�Q(0)
K#

n(ζ, η).

Lemma 3.4 We have K #
n (z, w) = cn(z, w)G(z, w)(1 + o(1)) as n → ∞, where cn

are cocycles on Vn and o(1) → 0 as n → ∞, uniformly on compact subsets of C2.

Proof Put �Q(0) = δ. Recall that

K #
n (z, w) = 1

δ

(
∂1∂̄2A

)
(ζ, η)e n [A(ζ,η)−A(ζ,ζ )/2−A(η,η)/2].

By Taylor’s formula, the expression in the exponent equals

i

√
n

δ
Im {∂1A(0, 0)(z − w)} + i

2δ
Im

{
∂ 2
1 A(0, 0)

(
z 2 − w 2

)}

+ zw̄ − | z | 2/2 − |w | 2/2

up to 1/
√

n O(‖(z, w)‖ 3). The first two terms correspond to cocycles. ��
Remark The proof of the lemma shows that if | ζ | < δn , where nδ 3n → 0 as n → ∞,
then

n Re A(ζ, 0)− nQ(ζ )/2 − nQ(0)/2 = −n�Q(0) | ζ | 2 /2 + o(1).

3.6 Compactness

In the proof of Theorem 1.1, we will use the function �n defined on Vn by

Kn = �n K #
n .
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Lemma 3.5 The function �n is Hermitian-analytic in the set Vn.

Proof For (z, w) ∈ Vn , we have (ζ, η) ∈ � and

�n(z, w) = Kn(z, w)

K #
n (z, w)

= Kn(ζ, η)

K#
n(ζ, η)

,

whence

�n(z, w) = kn(ζ, η)e −nQ(ζ )/2e −nQ(η)/2
(
∂1∂̄2A

)
(ζ, η) · ne n(A(ζ,η)−Q(ζ )/2−Q(η)/2)

= kn(ζ, η)
(
∂1∂̄2A

)
(ζ, η) · ne n A(ζ,η)

.

The statement follows since ζ and η depend analytically on z and w. ��
Lemma 3.6 For each compact set K ⊂ C

2, there is a constant C = CK such that
|�n(z, w) | 2 ≤ Ce |z−w|2 when (z, w) ∈ K and n is large enough.

Proof Choose n0 large enough that K ⊂ Vn0 . Since Kn is a positive kernel, and since
(by Lemma 3.4)

∣
∣ K #

n (z, w)
∣
∣ → | G(z, w) | uniformly on compact subsets, we have

uniformly on K ,

|�n(z, w) | 2 =
∣
∣
∣
∣

Kn(z, w)

K #
n (z, w)

∣
∣
∣
∣

2

≤ C
Rn(z)Rn(w)

| G(z, w) | 2 , (Rn(z) = Kn(z, z)),

for all n ≥ n0. To finish the proof, we note, by Lemma 3.3, that we have a uniform
bound Rn ≤ C and that | G(z, w) | 2 = e − | z−w | 2 . ��
Proof of Theorem 1.1 Lemma 3.6 shows that the family {�n} is locally bounded on
C
2, viz. is a normal family. Pick a locally uniformly convergent subsequence {�nk }

converging to a limit�. Also fix z and recall that
∫ ∣

∣ Knk (z, w)
∣
∣ 2 d A(w) = Knk (z, z).

In terms of the functions �n ,

∫

D(0;ρ√
nk)

∣
∣
∣ K #

nk
(z, w) ·�nk (z, w)

∣
∣
∣
2

d A(w) = �nk (z, z)(1 + o(1)), (k → ∞),

where ρ > 0 is the constant in (3.1). Letting k → ∞, we get, by Fatou’s lemma, that
the mass-one inequality (1.6) holds.

Finally we use Lemma 3.4 to select cocycles cn such that cn K #
n → G uniformly

on compact subsets of C2. Then cnk Knk = �nk · cnk K #
nk

→ G� = K , finishing the
proof of the theorem. ��

We have shown above that the mass-one inequality (part (i) of Theorem 1.2) holds;
i.e.,

∫

e−|z−w|2 |�(z, w)|2 d A(w) ≤ R(z).

It will be useful to reformulate this inequality.
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Lemma 3.7 The mass-one inequality holds if and only if

∞∑

n=0

| ∂ n R | 2
n! ≤ R.

Proof Since R(z) = �(z, z), we have

�(z + w, z) =
∞∑

n=0

∂ n
1 �(z, z)

n! w n =
∞∑

n=0

∂ n R(z)

n! w n and

�(z, z + w) =
∞∑

n=0

∂̄ n R(z)

n! w̄ n .

It follows that
∫

e − |w | 2 |�(z, z + w) | 2 d A(w) = lim
M→∞

∫

|w |< M
e − |w | 2 |�(z, z + w) | 2 d A(w)

= lim
M→∞

∞∑

n=0

| ∂ n R(z) | 2
(n!)2

∫

|w |< M
|w | 2ne − |w | 2 d A(w) =

∞∑

n=0

| ∂ n R(z) | 2
n! .

The proof of the lemma is finished. ��
Remark The proof of Lemma 3.7 shows that the mass-one equation for a kernel
�(z, w) is equivalent to that the function R(z) = �(z, z) satisfies

R =
∞∑

n=0

| ∂ n R | 2
n! . (3.2)

One can regard this as a differential equation of infinite order.

3.7 Holomorphic Kernels and Positivity

In this subsection, we prove Theorem 1.2. Part (i), the mass-one inequality, is already
explained in the proof of Theorem 1.1.

It is convenient to prove first the corresponding properties for the holomorphic
kernel

L(z, w) := ezw̄�(z, w).

We shall find that L is the reproducing kernel for a certain Hilbert spaceH∗ of entire
functions that is contractively embedded in the Fock space L2

a(μ) of entire functions
square-integrable with respect to the measure

dμ(z) = e−|z|2 d A(z).
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We will also prove that the complementary holomorphic kernel L̃(z, w) := ezw̄(1 −
�(z, w)) is a positive kernel. Our proof of the latter fact depends on a theorem of
Aronszajn on differences of reproducing kernels.

To set things up, suppose that we rescale about the boundary point p = 0 in the
positive real direction. Suppose also that �Q(0) = 1. The rescaling is then simply

z = √
nζ, w = √

nη, etc.

Let A(ζ, η) be the Hermitian-analytic function defined in a neighborhood of the diag-
onal such that A(ζ, ζ ) = Q(ζ ). Recall (cf. Section 3) that, along some subsequence,
we have � = lim�n , where

�n(z, w) := Kn(z, w)

K #
n (z, w)

= kn(ζ, η)

n(∂1∂̄2A)(ζ, η)en A(ζ,η)
. (3.3)

By Taylor’s formula, there is δ > 0 such that

A(ζ, η) = ζ η̄ + f (ζ, η)+ H(ζ )+ H̄(η), | ζ | < δ, | η | < δ, (3.4)

where

H(ζ ) =
2∑

j=0

∂
j
1 A(0, 0)

j ! ζ j , f (ζ, η) =
∑

j+k≥3

(∂
j
1 ∂̄

k
2 A)(0, 0)

ζ j

j !
η̄k

k! .

Let us extend f to a smooth function on C
2 in some way. We will require that the

extended function satisfies f (ζ, ζ ) = Q(ζ ) − |ζ |2 − 2Re H(ζ ) for all ζ ∈ C. (The
function H is of course well-defined everywhere, being a second-degree polynomial.)
It is important to observe that f (ζ, ζ ) = O

(| ζ | 3)
as ζ → 0.

Put

fn(z, w) := n f
(
z/

√
n, w/

√
n

)
, Hn(z) := nH

(
z/

√
n

)
.

We extend the function An(z, w) = n A(ζ, η) to C2 by

An(z, w) = zw̄ + fn(z, w)+ Hn(z)+ H̄n(w).

Now define

En(z, w) := ezw̄+ fn(z,w)

and

Ln(z, w) := (∂1∂̄2An) (z, w) · En(z, w) ·�n(z, w).
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Then by (3.3) and (3.4),

Ln(z, w) = 1

n
kn

(
z√
n
,
w√

n

)

e−An(z,w)+zw̄+ fn(z,w) = kn(z, w)e
−Hn(z)−H̄n(w).

Next define an n-dimensional Hilbert space

Hn =
{

f = q · e−Hn ; q ∈ Pn

}

equipped with the norm of L2(μn), where

dμn(z) := e−|z|2− fn(z,z) d A(z).

Note that Hn consists of entire functions. Finally recall that L(z, w) = ezw̄�(z, w).

Lemma 3.8 Ln is the reproducing kernel for Hn and Ln → L locally uniformly on
C
2 as n → ∞. Moreover, for all z ∈ C, we have

∫
C

|L(z, w)|2 e−|w|2 d A(w) < ∞.

Proof To show that Ln → L locally uniformly, it suffices to note that

En(z, w) = ezw̄+n f (z/
√

n,w/
√

n) = ezw̄+O(n−1/2), (n → ∞),

where the O-constant is uniform on compact subsets of C2. Moreover, the mass-one
inequality shows that

∫

C

| L(z, w) | 2 e− |w | 2 d A(w) = e | z | 2
∫

C

e− | z−w | 2 |�(z, w) | 2 d A(w)

≤ e | z | 2�(z, z).

It remains to show that Ln has the reproducing property stated above. Write
Ln,w(z) = Ln(z, w). For an element f = q · e−Hn of Hn , we then have

〈
f, Ln,w

〉
Hn

=
∫

C

q(z) e− Hn(z) L̄n(z, w) e− | z | 2 − fn(z,z) d A(z)

= e− Hn(w)

∫

C

q(z) k̄n(z, w) e− Hn(z)−H̄n(z)− | z | 2 − fn(z,z) d A(z).

The expression in the exponent equals−Qn(z) := −nQ(z/
√

n).Writing q̃(ζ ) = q(z)
and recalling that kn is the reproducing kernel for the subspace Pn of polynomials of
the space L2

nQ normed by ‖ p ‖2nQ := ∫ | p | 2 e−nQ d A, we now find

〈
f, Ln,w

〉
Hn

= e− Hn(w)
〈
q̃,kn,η

〉
nQ = e− Hn(w) q̃(η) = e− Hn(w) q(w) = f (w).

Also Ln,w belongs to the spaceHn since Ln,w(z) = Cwkn,w(z)e−Hn(z), where Cw =
e−H̄n(w). ��
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We can now finish the proof of part (ii) of Theorem 1.2.
LetM be the algebraic linear span of the kernels Lz , z ∈ C, with semi-definite inner

product 〈Lz, Lw〉∗ := L(w, z). By the zero-one law, we can assume that L(z, z) > 0
for all z, so the inner product is actually a true (positive definite) inner product. By
Fatou’s lemma and the convergence Ln → L , we now derive a basic inequality (where
dμ(z) = e− | z | 2 d A(z)):

∥
∥
∥
∥
∥
∥

N∑

j=1

α j Lz j

∥
∥
∥
∥
∥
∥

2

L2(μ)

≤ lim inf
n→∞

N∑

j,k=1

α j ᾱk

∫

C

Ln(w, z j )L̄n(w, zk) dμn(w)

= lim inf
n→∞

N∑

j,k=1

α j ᾱk Ln(z j , zk) =
N∑

j,k=1

α j ᾱk L(z j , zk)

=
∥
∥
∥
∥
∥
∥

N∑

j=1

α j Lz j

∥
∥
∥
∥
∥
∥

2

∗
,

soM is contained in L2(μ) and the inclusion I : M → L2(μ) is a contraction.
It follows that the completionH∗ ofM can be regarded as a (possibly non-closed)

subspace of L2
a(μ). We will write H� for H∗ and speak of the space of entire func-

tions associated with the kernel L(z, w) = e zw̄ �(z, w). (The mass-one equation is
equivalent to that the inclusion I be isometric; see Subsection 8.2.)

Nowwe finish the proof of part (iii) of Theorem 1.2. Note that the Fock space L2
a(μ)

has reproducing kernel L0(z, w) = e zw̄. Let us define a Hermitian entire function L̃
by L̃ = L0 − L; i.e.,

L̃(z, w) := e zw̄ (1 −�(z, w)) .

Since the inclusion I : H∗ → L2
a(μ) is contractive, we can apply a theorem of

Aronszajn [9, Theorem II, p. 355], which implies that the corresponding reproducing
kernels then satisfy that the difference L0 − L is a positive kernel. Hence the kernel
K̃ = G(1−�) is a positive kernel aswell, since K̃ (z, w) = L̃(z, w) e− | z | 2/2− |w | 2/2.
The proof of Theorem 1.2 part (iii) is complete.

4 Ward’s Equation and the Mass-One Inequality

In this section, we prove part (ii) of Theorem 1.3. We start by deriving a slightly
modified (or “localized,”) form of the Ward identity used in [3]. This modification is
necessary when dealing with hard edge processes and is in general quite convenient.

Themain theme of the section is the rescaled form of this identity and the passage to
subsequential limits. In the process of proving this convergence, we will for instance
verify the zero one-law for limiting one-point functions.
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4.1 Ward’s Identity

To set things up, fix a test function ψ ∈ C∞
0 (C). Define a function W +

n [ψ] of n
variables by

W +
n [ψ] = In[ψ] − IIn[ψ] + IIIn[ψ],

where

In[ψ] (ζ ) = 1

2

n∑

j �=k

ψ
(
ζ j

) − ψ (ζk)

ζ j − ζk
; IIn[ψ] (ζ ) = n

n∑

j=1

[∂Q · ψ]
(
ζ j

) ;

IIIn[ψ](ζ ) =
n∑

j=1

∂ψ
(
ζ j

)
.

Here
(
ζ j

)n
1 is picked randomly with respect to the Boltzmann–Gibbs law Pn , see (1.1).

We assume only that Q is smooth in a neighborhood of the support of ψ . We can
thenmake sense of W +

n [ψ] even though ∂Q may be undefined in portions of the plane.
Indeed, we define

[∂Q · ψ] (ζ ) =
{
∂Q(ζ ) · ψ(ζ ) if ζ ∈ suppψ,

0 otherwise.

We then have the following form of Ward’s identity.

Theorem 4.1 En W +
n [ψ] = 0.

Proof We modify the argument in [3]. Given ζ ∈ C and ε > 0, we let Dεψ(ζ ) be the
closed disc centered at ζ of radius ε |ψ(ζ )|. Choosing ε = ε(ψ) > 0 sufficiently small,
there are two alternatives for each point ζ ∈ C: (i) Q is C2-smooth in a neighborhood
Dεψ(ζ ) of ζ , or (ii) ψ(ζ ) = 0.

Now fix an arbitrary sequence ζ = (ζ j )
n
1 and put η j = φ

(
ζ j

) = ζ j + εψ
(
ζ j

)
/2,

1 ≤ j ≤ n. The Jacobian forφ is J (ω) = | ∂φ (ω) | 2−∣
∣ ∂̄φ (ω)

∣
∣ 2 = 1+εRe ∂ψ (ω)+

O
(
ε2

)
, (ε → 0), whence (with IIIn = IIIn[ψ])

dVn(η) =
n∏

j=1

∣
∣J (ζ j )

∣
∣ d A(ζ j ) =

[
1 + ε Re IIIn (ζ )+ O

(
ε2

) ]
dVn(ζ ).

Moreover,

n∑

j �=k

log
∣
∣ η j − ηk

∣
∣− 1 =

n∑

j �=k

log
∣
∣ ζ j − ζk

∣
∣− 1 − εRe In(ζ )+ O

(
ε2

)
, (ε → 0).

(4.1)
If Dεψ(ζ j ) is contained in a domain where Q isC2-smooth, then, by Taylor’s formula,

Q
(
η j

) = Q
(
ζ j + ε

2
ψ

(
ζ j

))
= Q

(
ζ j

) + ε Re [∂Q · ψ] (ζ j )+ O
(
ε2

)
. (4.2)

123



Constr Approx (2019) 50:63–127 89

For other j’s we have ψ(ζ j ) = 0 and η j = ζ j , whence (4.2) holds, since
[∂Q · ψ] (ζ j ) = 0 by definition. Hence (4.2) holds in all cases, so

n
n∑

j=1

Q
(
η j

) = n
n∑

j=1

Q
(
ζ j

) + ε Re IIn(ζ )+ O
(
ε2

)
. (4.3)

Now (4.1) and (4.3) imply that the Hamiltonian (1.2) satisfies

Hn (η) = Hn (ζ )+ ε · Re (−In(ζ )+ IIn(ζ ))+ O
(
ε2

)
.

It follows that the partition function Zn := ∫
Cn e−Hn(η) dVn (η) satisfies

Zn =
∫

Cn
e−Hn(ζ )−εRe (−In(ζ )+IIn(ζ ))+O

(
ε2

) [
1 + εRe IIIn(ζ )+ O

(
ε2

)]
dVn(ζ ).

Since the integral is independent of ε, the coefficient of ε in the right-hand side must
vanish; i.e.,

Re
∫

Cn
(IIIn(ζ )+ In(ζ )− IIn(ζ )) e−Hn(ζ ) dVn(ζ ) = 0,

or ReEn W +
n [ψ] = 0. Replacing ψ by iψ in the preceding argument gives

ImEn W +
n [ψ] = 0, and the theorem follows. ��

4.2 Rescaled Version

We now fix a point p in a small neighborhood � of S, where Q is C2-smooth. We
rescale the system

{
ζ j

}n
1 about p in the usual way, obtaining the rescaled system

n = {z j }n
1, where z j = e −iθ√n�Q(p) (ζ j − p). The Berezin kernel rooted at p is

defined by

Bn(z, w) = Rn,1(z)Rn,1(w)− Rn,2(z, w)

Rn,1(z)
,

where Rn,k are the rescaled intensity functions, see (1.5).

Theorem 4.2 We have

∂̄Cn(z) = Rn(z)− 1 −� log Rn(z)+ o(1), z ∈ C,

where

Cn(z) :=
∫

C

Bn(z, w)

z − w
d A(w) and Rn(z) := Rn,1(z) = Bn(z, z),

and o(1) → 0 uniformly on compact subsets of C as n → ∞.
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Proof We can without loss of generality assume that p = 0 and θ = 0. Fix a test
function ψ supported in the dilated set

√
nδ · U , where δ = �Q(0). Write

z = √
nδ · ζ, w = √

nδ · η,

and let ψn (ζ ) = ψ (z). Thus suppψn ⊂ U . The change of variables (ζ, η) �→ (z, w)
gives

En In[ψn] = 1

2

∫∫

C2

ψ
(
ζ
√

nδ
)

− ψ
(
η
√

nδ
)

ζ − η
Rn,2(ζ, η) dV2(ζ, η)

= √
nδ

1

2

∫∫

C2

ψ(z)− ψ(w)

z − w
Rn,2(z, w) dV2(z, w)

= √
nδ

∫

√
nδ·U

ψ(z) d A(z)
∫

C

Rn,2(z, w)

z − w
d A(w).

Similarly, since suppψn ⊂ U ,

En IIn[ψn] = n
∫

U
[∂Q · ψn] (ζ ) Rn,1(ζ ) d A(ζ )

= n
∫

√
nδ·U

∂Q

(
z√
nδ

)

· ψ(z) · Rn,1(z) d A(z).

Finally, in the sense of distributions,

En IIIn[ψn] =
∫

U
∂ψn · Rn,1 d A = √

nδ
∫

U
∂ψ

(
ζ
√

nδ
)
Rn,1 (ζ ) d A (ζ )

= √
nδ

∫

√
nδ·U

∂ψ · Rn,1 d A = −√
nδ

∫

√
nδ·U

ψ · ∂Rn,1 d A.

After dividing by
√

nδ in Ward’s identity (Theorem 4.1), we deduce that

∫

√
nδ·U

ψ(z)

[ ∫

C

Rn,2(z, w)

z − w
d A(w)

]

d A(z)

=
∫

√
nδ·U

√
n√
δ
∂Q

(
z√
nδ

)

· ψ(z) · Rn,1(z) d A(z)+
∫

√
nδ·U

ψ · ∂Rn,1 d A.

Since ψ is arbitrary, we get the following identity, in the sense of distributions,

∫

C

Rn,2(z, w)

z − w
d A(w) =

√
n√
δ
∂Q

(
z√
nδ

)

· Rn,1(z)+ ∂Rn,1(z), z ∈ √
nδ · U.

(4.4)
But

Rn,2(z, w)

Rn,1(z)
= Rn,1(w)− Bn(z, w),
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so we can write (4.4) as

∫

C

Rn,1(w)

z − w
d A(w)− Cn(z) =

√
n√
δ
∂Q

(
z√
nδ

)

+ ∂ log Rn,1(z).

Taking a ∂̄-derivative now gives

Rn,1(z)− ∂̄ Cn(z) = 1

δ
�Q

(
z√
nδ

)

+� log Rn,1(z), z ∈ √
nδ · U.

As n → ∞, we have that �Q(z/
√

nδ)/δ → 1 uniformly on compact subsets of C.
We have shown

Rn,1(z)− ∂̄Cn(z) = 1 +� log Rn,1(z)+ o(1), z ∈ C.

Recalling that Rn,1(z) = Bn(z, z), we conclude the proof of Theorem 4.2. ��

4.3 Ward’s Equation

Let K = G� denote any limiting kernel in Theorem 1.1. Referring to a suitable
subsequence, we write

R(z) = lim
k→∞ Rnk (z) = K (z, z) = �(z, z)

for the one-point function. In the following, we shall assume that R does not vanish
identically.

We shall also use the corresponding holomorphic kernel

L(z, w) := ezw̄�(z, w)

and write Lz(w) := L(w, z).

Lemma 4.3 L(z, w) is a positive kernel, and z �→ L(z, z) is logarithmically subhar-
monic; i.e., the function |z|2 + log R(z) is subharmonic.

Proof Since K (z, w) = L(z, w)e−|z|2/2−|w|2/2 is a positive matrix, i.e.,
∑

α j ᾱk

K (z j , zk) ≥ 0 for all choices of points z j and scalars α j , we infer that
∑

β j β̄k L(z j , zk) ≥ 0, where β j = α j e−|z j |2/2; i.e., L is a positive kernel. Following
Aronszajn [9], we can then define a semi-definite inner product on the span of the Lz’s
by 〈Lz, Lw〉∗ = L(w, z). The completion of the span the functions Lz (z ∈ C) is a
semi-normed Hilbert spaceH∗ of entire functions, and the reproducing kernel in this
space is L .

Since the kernel L is Hermitian-entire, the function F(z, w) = 〈Lw, Lz〉∗ is
also Hermitian-entire. Moreover, since ∂z F(z, w) = 〈

Lw, ∂̄z Lz
〉
∗, ∂̄w∂z F(z, w) =
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〈
∂̄wLw, ∂̄z Lz

〉
∗, etc., it follows that at points where L(z, z) > 0, we have

� log L(z, z) =
∥
∥ ∂̄z Lz

∥
∥ 2

∗ · ‖ Lz ‖ 2∗ − ∣
∣〈∂̄z Lz, Lz〉∗

∣
∣ 2

L(z, z) 2
≥ 0,

where we used the Cauchy–Schwarz inequality. On the other hand, when L(z, z) = 0,
we have log L(z, z) = −∞. It follows that log L(z, z) has the sub-mean value property
and hence is subharmonic. ��
Lemma 4.4 If R(z0) = 0, then there is a real-analytic function R̃ such that

R(z) = | z − z0 | 2 R̃(z).

Moreover, if R does not vanish identically, then all zeros of R are isolated.

Proof By Lemma 3.7, we have the mass-one inequality

∞∑

j=0

∣
∣ ∂ j R(z)

∣
∣ 2

j ! ≤ R(z), (z ∈ C),

so since R(z0) = 0, we have ∂ j R(z0) = 0 for all j . However, ∂ j R(z0) = ∂
j
1�(z0, z0)

and ∂̄ j R(z0) = ∂̄
j
2�(z0, z0), so the Hermitian function �(z, w) vanishes whenever

(z − z0)(w − z0) = 0. Hence we can write �(z, w) = (z − z0)(w̄ − z̄0)�1(z, w),
where�1 is another Hermitian-entire function. If we define R̃(z) = �1(z, z), we now
have R(z) = | z − z0 | 2 R̃(z).

To prove the second statement, assume that the zeros of R have an accumulation
point, i.e., that there exists a convergent sequence (z j )

∞
1 of distinct zeros of R. Fix a

pointw, and putψw(z) = �(z, w). By the argument above, we have that�(z, w) = 0
if z = z j , so the holomorphic function ψw vanishes at all points z j , whence ψw
vanishes identically. Sincew was arbitrary,� = 0, and hence R(z) ≡ �(z, z) ≡ 0. ��

Note that Lemma 4.3 says that the distribution 1 +� log R is a positive measure.

Lemma 4.5 In the situation of Lemma 4.4, the measure 1 + � log R̃ is positive in a
neighborhood of z0.

Proof Let z0 be a zero of R, and let χ = 1D be the characteristic function of some
small disc D = D(z0; ε) about z0. Putμ = χ ·(1+� log R) soμ is a positivemeasure
by the previous lemma. By Lemma 4.4, we can write μ = δz0 + χ · (1+� log R̃), so
the function

S(z) := log
(

e|z|2 R̃(z)
)

must satisfy that �S ≥ 0 in the sense of distributions on the punctured disc D′ =
D \ {z0}. If R̃(z0) > 0, then S extends analytically to z0 and is hence subharmonic in
D. Otherwise S(z0) = −∞. Then S has the sub-mean value property in D. Since S
is also upper semicontinuous, S is subharmonic in the entire disc D as desired. ��
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Write Z for the set of isolated zeros of R. When z /∈ Z , we can write B(z, w) =
| K (z, w) | 2/K (z, z) and define

C(z) =
∫

C

B(z, w)

z − w
d A(w).

This clearly defines a smooth function in the complement of Z .

Lemma 4.6 Cnk converges boundedly and locally uniformly on Zc to C as k → ∞.
In particular, C is uniformly bounded on Zc.

Proof Fix a number ε with 0 < ε < 1. By the locally uniform convergence cnk Knk →
K , we can pick N such that if k > N , | z | < 1/ε, dist(z, Z) ≥ ε, and |w | < 2/ε,
then

∣
∣ Bnk (z, w)− B(z, w)

∣
∣ < ε 2.

For k > N and z with dist(z, Z) ≥ ε, | z | < 1/ε, it follows that

|Cnk (z)− C(z)| ≤
∫ ∣

∣
∣
∣

Bnk (z, w)− B(z, w)

z − w

∣
∣
∣
∣ d A(w)

≤
(∫

| z−w |<1/ε
+

∫

| z−w |>1/ε

) ∣
∣
∣
∣

Bnk (z, w)− B(z, w)

z − w

∣
∣
∣
∣ d A(w)

≤ ε 2
∫

| z−w |<1/ε

1

| z − w | d A(w)+ ε

∫
∣
∣ Bnk (z, w)− B(z, w)

∣
∣ d A(w) ≤ 4ε.

We have shown that the convergence Cnk → C is uniform on compact subsets of
Zc. We next recall the inequalities

Bnk (z, w) ≤ Rnk (w) ≤ 1 + o(nk),

where o(nk) → 0 uniformly on compacts as k → ∞. (Note that R ≤ 1, since the
mass-one inequality implies R − R2 ≥ 0). It follows that

∣
∣ Cnk (z)

∣
∣ ≤ (1 + o(nk))

∫

|w−z|≤1

1

|w − z | d A(w)

+
∫

|w−z |>1
Bnk (z, w) d A(w) ≤ 3 + o(nk).

This proves the uniform bound | C(z) | ≤ 3 on the complement of Z . ��
Lemma 4.7 Suppose that K is nontrivial. Then Ward’s equation

∂̄C = R − 1 −� log R (4.5)

holds in the sense of distributions.
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Proof By Theorem 4.2, we know that ∂̄Cn = Rn −1−� log Rn +o(1), where “o(1)”
is some function that converges to 0 uniformly on compacts as n → ∞. By Lemma
4.6, the functions Cnk converge to C boundedly and locally uniformly on Zc. Since
Z is discrete, this implies that

∫
Cnk f d A → ∫

C f d A for each test function f , viz.
Cnk → C in the sense of distributions, and also ∂̄Cnk → ∂̄C in that sense. It follows
that the functions � log Rnk converge in the sense of distributions. Since Rnk → R
locally uniformly, the limit must be � log R. ��
Theorem 4.8 If R does not vanish identically, then R > 0 everywhere. Moreover,
Ward’s equation (4.5) holds pointwise on C.

Proof Suppose that R(z0) = 0. Let D = D(z0, ε) be a small disc about z0 and

consider the measures μ = χ · (1 +� log R) and ν = χ ·
(
1 +� log R̃

)
, where

χ = 1D . By the previous lemmata, we know that the measures μ and ν are both
positive, and clearly μ = δz0 + ν. Now consider the Cauchy transform

Cμ(z) =
∫

C

1

z − w
dμ(w).

Evidently,

Cμ(z) = 1

z − z0
+ Cν(z), |z − z0| < ε,

and ∂̄Cν = ν ≥ 0. Now when | z − z0 | < ε, the right-hand side in Ward’s equation
equals

R(z)− (1 +� log R)(z) = R(z)− ∂̄Cμ(z).

By (4.5), we have

∂̄
(
C(z)+ Cμ(z)

) = R(z),

and hence (by Weyl’s lemma)

C(z) = − 1

z − z0
− Cν(z)+ v(z),

where v is smooth in some neighborhood of z0. If Cμ(z) remains bounded as z → z0,
then μ = ν + δz0 cannot contain any point mass at z0, so ν can be written −δz0 + ρ,
where ρ({z0}) = 0. This contradicts the fact that ν ≥ 0. Hence

| C(z) | → ∞ as z → z0.

This contradicts the boundedness of C in Lemma 4.6. Hence R(z0) = 0 is impossible.
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We have shown that R > 0 everywhere. Since Ward’s equation ∂̄C = R − 1 −
� log R holds in the sense of distributions and the right-hand side is smooth, applica-
tion of Weyl’s lemma now shows that C(z) is smooth and that Ward’s equation holds
pointwise. ��

4.4 Reformulation of Ward’s Equation

It is convenient to somewhat reformulate Ward’s equation. Given a Hermitian-entire
function� (positive on the diagonal inC2), we define the functions R(z) = R�(z) =
�(z, z) and

D(z) = D�(z) =
∫

e − | z−w | 2

z − w
|�(z, w) | 2 d A(w). (4.6)

Thus D = RC .

Lemma 4.9 Ward’s equation (4.5) is satisfied if and only if there exists a smooth
function P(z) such that

∂̄P = R − 1 (4.7)

and
D = P R − ∂R. (4.8)

Proof The equation (4.5) means that

∂̄(D/R) = R − 1 − ∂̄(∂R/R). (4.9)

Let P0 be an arbitrary solution to the equation ∂̄P0 = R − 1. Then (4.9) becomes

∂̄

[
D

R
− P0 + ∂R

R

]

= 0.

This last identity is fulfilled if and only if there is an entire function E such that

D − P0R + ∂R = E R.

Setting P = P0 + E , we see that (4.7) and (4.8) are satisfied. Conversely, if (4.7) and
(4.8) hold, then

∂̄(D/R) = ∂̄(P − ∂R/R) = R − 1 − ∂̄(∂R/R);

i.e., (4.9) holds. ��

4.5 Relations for the Boundary Kernel

We finish this section by noting the following theorem.
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Theorem 4.10 The kernel K (z, w) = G(z, w)F(z + w̄) satisfies Ward’s equation
and the mass-one equation.

Proof 1 The proof ofWard’s equation in Subsection 4.3 and the example of theGinibre
ensemble in Subsection 2.2 show that Ward’s equation is satisfied. The mass-one
equation can be deduced in a similar way; in fact, we shall prove in Subsection 6 that
the mass-one equation is a consequence ofWard’s equation in the translation invariant
case. ��
Proof 2 We here give an alternative, direct verification that the function R(z) =
F(2Re z) satisfies the mass-one equation (3.2). To this end, note that

lim
x→−∞ F (n)(x) = δn0, n = 0, 1, 2, . . . .

Using this, we obtain by differentiating in (3.2) the equivalent equation

∞∑

n=0

F (n)(z)F (n+1)(z)

n! = 1

2
F ′(z). (4.10)

Dividing by F ′ and using the Rodrigues formula for the Hermite polynomial hn ,

hn(z) = (−1)nez2/2 dn

dzn

(
e−z2/2

)
= (−1)n

F (n+1)(z)

F ′(z)
,

one can rewrite (4.10) in the form

F(z)− 1

2
= F ′(z)

∞∑

n=1

hn−1(z)hn(z)

n! . (4.11)

But both sides of (4.11) have a zero at the origin, so we need only verify that the
derivatives are equal. Using the recursion h′

n(z) = nhn−1(z), one realizes that our
assertion is equivalent to that

F ′(z) = F ′(z)
∞∑

n=1

1

n!
(

nh2
n−1(z)+ (n − 1)hn−2(z)hn(z)− zhn−1(z)hn(z)

)
.

(4.12)
However, since h0 = 1, we have

∞∑

n=1

1

n!
(

nh2
n−1 − h2

n

)
=

∞∑

n=1

{
h2

n−1

(n − 1)! − h2
n

n!

}

= 1,

so the sum in the right-hand side of (4.12) equals

1 +
∞∑

n=1

1

n!hn (hn + (n − 1)hn−2 − zhn−1) ,
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and this equals 1 by the recursive definition of Hermite polynomials: h−1 = 0, h0 = 1,
and hn = zhn−1 − (n − 1)hn−2 for n ≥ 2. ��

5 A Priori Estimates at Regular Boundary Points

In this section, we prove the a priori estimates for the one-point function in Theorem
1.4. We will develop the technique of “approximate Bergman projections,” which
has the advantage of being relatively simple while still giving good enough a priori
estimates of the main term in the one-point function Rn . (A similar estimate was used
earlier in the paper [3].)

We remark that the analysis in this sectionwas adapted to various singular situations
in the paper [7], where the reader also can find references to other kinds of related
asymptotic expansions.

The section is finished by verifying the 1/8-formula in Theorem 1.5.

5.1 Heat Kernel Estimate

Fix a number ϑ < 1 (close to 1) and a smooth function ψ with ψ = 1 in D(0;ϑ)
and ψ = 0 outside D(0; 1). For given ζ ∈ C and δ > 0, we define χ by χ(ω) =
ψ ((ω − ζ )/δ). Then χ = 1 in D (ζ ;ϑδ), χ = 0 outside D (ζ ; δ), and the Dirichlet
norm

∥
∥∂̄χ

∥
∥ depends only on ϑ . We sometimes write χζ for χ .

We next fix a sequence (δn)
∞
1 of positive numbers in the interval (2γ /

√
n, δ0/2),

where γ is a sufficiently small positive number independent of n, and

nδ 3n → 0 as n → ∞.

Below we will fix a point ζ in S. We shall use the Hermitian analytic extension
A(ζ, η) satisfying A(ζ, ζ ) = Q(ζ ) for ζ ∈ � (a neighborhood of S). We assume that
δ0 is small enough that A(ζ, η) is defined whenever |ζ − η| < 2δ0, ζ ∈ S.

We will use the kernels Kn and K#
n , where we recall that (cf. Subsection 3.3)

K#
n(ζ, η) = n

(
∂1∂̄2A

)
(ζ, η) · e n A(ζ,η)e −nQ(ζ )/2e −nQ(η)/2.

For a fixed η, we will use abbreviations such as Kη(ζ ) = Kn,η(ζ ) = Kn(ζ, η), etc.
Moreover, if f is a function supported in the domain of the function K#

η , we write

�#
n f (η) =

〈
f , K#

η

〉
:=

∫

supp f
f (ζ )K̄#

η(ζ ) d A(ζ ).

Theorem 5.1 For ζ ∈ Int S, define δ = δ(ζ ) = dist(ζ, ∂S). There is a constant C
such that δ < δn implies

∣
∣
∣Kζ (ζ )−�n

[
χζK#

ζ

]
(ζ )

∣
∣
∣ ≤ C Mn(δ)

√
Kζ (ζ ),
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where

Mn(δ) = 1√
n�Q(ζ )

+ 1

δ
e −n�Q(ζ )(ϑδ)2/2.

In particular, ∣
∣
∣Kζ (ζ )−�n

[
χζK#

ζ

]
(ζ )

∣
∣
∣ ≤ C

√
n Mn(δ).

The proof relies on the following lemma.

Lemma 5.2 If f = ue−nQ/2, where u is analytic in D(ζ ; δ), then

∣
∣
∣ f (ζ )−�#

n

[
χζ f

]
(ζ )

∣
∣
∣ ≤ C Mn(δ) ‖ f ‖ .

Proof Assume that ζ = 0 and write χ = χζ . Then�#
n [χ f ] (ζ ) equals to the integral

I = e −nQ(0)/2
∫

χ(ω)u(ω)
(
∂1∂̄2A

)
(0, ω) · ne −n(A(ω,ω)−A(0,ω)) d A(ω),

which means that

I = −e −nQ(0)/2
∫

1

ω
u(ω)χ(ω)F(ω)∂̄ω

[
e −n(A(ω,ω)−A(0,ω))

]
d A(ω), (5.1)

where

F(ω) = ω
(
∂1∂̄2A

)
(0, ω)

∂̄2A(ω, ω)− ∂̄2A(0, ω)
.

By Taylor’s formula, we have F(ω) = 1 + O(ω) and ∂̄F(ω) = O(ω) as ω → 0,
where the O-constant can be chosen independent of ζ .

Integrating by parts in (5.1), one obtains

I = f (0)+ e − nQ(0)/2 (ε1 + ε2) ,

where

ε1 =
∫

u · ∂̄χ · F

ω
e − n[A(ω,ω)−A(0,ω)], ε2 =

∫
u · χ · ∂̄F

ω
e − n[A(ω,ω)−A(0,ω)].

It follows that there is a constant C (independent of ζ , n, and δ) such that

| ε1 | ≤ C
1

ϑδ

∫

| u | ∣
∣ ∂̄χ

∣
∣ e −n[Q(ω)−Re A(0,ω)],

| ε2 | ≤ C
∫

χ | u | e −n[Q(ω)−Re A(0,ω)].
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By the remark after Lemma 3.4 and the assumption nδ 3n → 0, we have the estimate

e − n[Q(ω)/2−Re A(0,ω)] ≤ Ce nQ(0)/2−n�Q(0) |ω | 2/2, |ω | < 2δn .

Using this and the Cauchy–Schwarz inequality, we now find (since |ω | ≥ ϑδ when
∂̄χ(ω) �= 0)

| ε1 | e − nQ(0)/2 ≤ C
1

δ
e − n�Q(0) (ϑδ) 2/2 ‖ f ‖ ∥

∥ ∂̄χ
∥
∥ ≤ C

1

δ
e − n�Q(0) (ϑδ) 2/2 ‖ f ‖

and

| ε2 | e −nQ(0)/2 ≤ C ‖ f ‖
(∫

C

e − n�Q(0) | ζ | 2
)1/2

≤ C
1√

n�Q(0)
‖ f ‖ .

The proof of the lemma is complete. ��
Proof of Theorem 5.1 We have that

�#
n

[
χζKζ

]
(ζ ) =

〈
χζKζ , K#

ζ

〉
=

〈
χζK#

ζ , Kζ

〉
= �n

[
χζK#

ζ

]
(ζ ),

whence ∣
∣
∣Kζ (ζ )−�n

[
χζK#

ζ

]
(ζ )

∣
∣
∣ =

∣
∣
∣Kζ (ζ )−�#

n

[
χζKζ

]
(ζ )

∣
∣
∣ .

It now suffices to take f = Kζ in Lemma 5.2 since
∥
∥Kζ

∥
∥ 2 = Kn(ζ, ζ ) ≤ Cn (cf.

Lemma 3.3). ��

5.2 Bergman Projection Estimate

Recall that L2
φ denotes the space of functions f normed by ‖ f ‖ 2

φ = ∫ | f | 2 e−φ . We

shall let A2
φ denote the subspace of L2

φ consisting of entire functions. We write πφ for

the orthogonal (Bergman) projection L2
φ → A2

φ .
When π is the orthogonal projection of a Hilbert space onto a closed subspace, we

denote by π⊥ = I − π the complementary projection.
Our starting point is a simple “Hörmander estimate” (cf. [22, p. 250]): ifφ is smooth

and strictly subharmonic in C, and if u ∈ C∞
0 (C), then

∥
∥
∥π⊥

φ u
∥
∥
∥
2

φ
≤

∫

C

∣
∣ ∂̄u

∣
∣ 2 e −φ

�φ
. (5.2)

Lemma 5.3 Fix ζ ∈ Int S. Put δ = dist(ζ, ∂S), and assume that δ > 2γ /
√

n. Then
there is a constant C such that

∣
∣
∣K#

ζ (ζ )−�n

[
χζK#

ζ

]
(ζ )

∣
∣
∣ ≤ Cne − n�Q(ζ ) (ϑδ) 2/2. (5.3)
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Proof Let gζ (ω) = K#
ζ (ω)e

nQ(ω)/2. Observe that gζ is holomorphic near ζ . Put

u(ω) = χζ (ω)gζ (ω)− πn
[
χζ gζ

]
(ω),

and observe that u is a norm-minimal solution in L2
nQ to the problem ∂̄u = ∂̄ f , where

f = χζ · gζ . We shall prove that

‖ u ‖nQ ≤ Cn−1/2
∥
∥ ∂̄

(
χζ · gζ

) ∥
∥

nQ . (5.4)

To do this, we introduce the strictly subharmonic function

φ(ω) = Q̌(ω)+ n−1 log
(
1 + |ω | 2

)

and consider v0 = π⊥
nφ

(
χζ gζ

)
. Here Q̌ is the equilibrium potential, cf. Subsection 3.4.

By the estimate (5.2), we have

‖ v0 ‖ 2
nφ ≤

∫
∣
∣ ∂̄

(
χζ · gζ

) ∣
∣ 2 e − nφ

n�φ
d A.

Since χζ is supported in S and since �φ > �Q ≥ const. > 0 there, we obtain

‖ v0 ‖nφ ≤ Cn−1/2
∥
∥ ∂̄

(
χζ · gζ

) ∥
∥

nQ .

Next note the estimate nφ ≤ nQ +const. onC, which is obvious in view of the growth
assumption on Q near infinity. This gives ‖ v0 ‖nQ ≤ C ‖ v0 ‖nφ , and we have shown
(5.4) with u = v0.

Since nφ(ω) = (n +1) log |ω | 2 + O(1) as ω → ∞ (see Subsection 3.4), we have
the equality A2

nφ = Pn in the sense of sets. Hence u = v0 solves, in addition to (5.4),
the problem

∂̄u = ∂̄
(
χζ gζ

)
and u − χζ gζ ∈ Pn .

Since gζ (ω) = k#n(ω, ζ )e
− nQ(ζ )/2 is analytic, we have ∂̄u = ∂̄χζ · gζ . Recalling

that k#n = n(∂1∂̄2A)e n A, the remark after Lemma 3.4 gives

∣
∣ ∂̄u(ω)

∣
∣ 2 e − nQ(ω) ≤ Cn 2

∣
∣ ∂̄χζ (ω)

∣
∣ 2 e −n�Q(ζ )|ω−ζ | 2 .

Since |ω − ζ | ≥ ϑδ when ∂̄χζ (ω) �= 0, we find

∣
∣ ∂̄

(
χζ gζ

)
(ω)

∣
∣ 2 e −n Q(ω) ≤ Cn 2

∣
∣ ∂̄χζ (ω)

∣
∣ 2 e −n�Q(ζ ) (ϑδ) 2 .

We have shown that

∥
∥ ∂̄

(
χζ gζ

) ∥
∥

nQ ≤ Cne −n�Q(ζ ) (ϑδ) 2/2.
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Applying the estimate (5.4), one obtains

‖ u ‖nQ ≤ C
√

n e −n�Q(ζ ) (ϑδ) 2/2. (5.5)

We shall now finally use the assumption that δ ≥ γ /
√

n. This gives that the function
u is analytic in the disc D

(
ζ ; γ /√n

)
, so that Lemma 3.1 applies. We obtain that

| u(ζ ) | 2 e − nQ(ζ ) ≤ Cn ‖ u ‖ 2
nQ ,

where C depends on γ and �Q(ζ ). Combining with (5.5), we have shown (with a
new C)

∣
∣ gζ (ζ )− πn

[
χζ gζ

]
(ζ )

∣
∣ e − nQ(ζ )/2 ≤ Cne − n�Q(ζ ) (ϑδ) 2/2.

The proof of the lemma is complete. ��
The following result is just a restatement of part (ii) of Theorem 1.4.

Theorem 5.4 Fix a constant � < 1/2. There is then a constant C such that if ζ ∈ S
and δ = dist(ζ, ∂S), then

∣
∣
∣Kn(ζ, ζ )− K#

n(ζ, ζ )

∣
∣
∣ ≤ C

(
1 + ne − n�Q(ζ )� δ 2

)
. (5.6)

Proof By Lemma 3.3, we have
∥
∥Kζ

∥
∥ 2 ≤ Cn. This gives that (5.6) holds trivially

when δ < γ/
√

n (because Kn(ζ, ζ ) ≤ Cn and K#
n(ζ, ζ ) ≤ Cn for sufficiently large

C). We can thus assume that δ > γ/
√

n. To this end, we put � = ϑ 2/2. Then

∣
∣
∣Kζ (ζ )− K#

ζ (ζ )

∣
∣
∣ ≤

∣
∣
∣Kζ (ζ )−�n

[
χζK#

ζ

]
(ζ )

∣
∣
∣ +

∣
∣
∣�⊥

n

[
χζK#

ζ

]
(ζ )

∣
∣
∣

≤ C
(
1 + ne − n�Q(ζ )�δ 2

)
+ Cne −n�Q(ζ )�δ 2 ,

where we have used Theorem 5.1 to estimate the first term and (5.3) for the second
one. ��

5.3 An Exterior Estimate

Recall from Lemma 3.3 that there is a constant C such that

Rn(ζ ) ≤ Cne
− n

(
Q−Q̌

)
(ζ )
, ζ ∈ C.

Now fix a regular boundary point and rescale in the usual way:

z = e−iθ�n(ζ − p), Rn(z) = �−2
n Rn(ζ ), (�n = √

n�Q(p)).

Let N = eiθ be the outer normal direction at p.
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Lemma 5.5 Suppose that p is a regular boundary point at distance at least δ from all
singular boundary points, where δ > 0 is independent of n. There is then a constant
C = C(δ) such that whenever ζ ∈ Sc and |z| ≤ log n, we have

Rn(z) ≤ Ce−2x2 , z = x + iy.

Proof Let V be the harmonic continuation of Q̌|Sc to a neighborhood of p. (We can
choose the coordinate system so that θ = 0 and the exterior normal derivative “∂/∂n”
(having nothing to do with the integer n) is simply ∂/∂x .)

By Taylor’s formula, we have, for x > 0, with M = Q − V ,

M (p + x N/�n) = 1

2� 2
n

∂2M

∂x2
(p)x2 + 1

6� 3
n

∂3M

∂x3
(p + x∗N/�n) x3,

where x∗ = x∗(n, p, x) is between 0 and x . However, since p is a regular point
and Q = V on ∂S, we have ∂2M/∂s2(p) = 0, where ∂/∂s denotes differentiation
in the tangential direction. Adding this to the above Taylor expansion, using that
(∂2/∂s2 + ∂2/∂n2)M = 4�M = 4�Q, we obtain, when |z| ≤ C log n,

nM (p + zN/�n) = 2x2 + O
(
log3 n/

√
n

)
, 0 ≤ x ≤ C log n.

The proof of the lemma is complete. ��
It follows from the lemma that each limiting 1-point function R(z) = K (z, z) at a
regular boundary point must satisfy R(z) ≤ Ce−2x2 , where x = Re z. This proves
Theorem 1.4, part (i).

5.4 The 1/8-Formula

We now prove Theorem 1.5. Suppose that the droplet S is connected and that the
boundary ∂S is everywhere regular, so that the theory from [3] applies. Consider the
class C0 of test functions f ∈ C∞

0 (C) with f = 0 on ∂S. For f ∈ C0, we define
functionals

ρn( f ) =
∫

C

f ·
(

Rn −
(

n�Q + 1

2
� log�Q

)

· 1S

)

d A.

We shall use the main result of the paper [3], which implies that the limit ρ( f ) =
lim ρn( f ) exists and equals

ρ( f ) = 1

8π

∫

∂S

∂ f

∂n
ds, (5.7)

where ∂ f/∂n is the exterior normal derivative and ds is arclength measure on ∂S.
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Next fix a parameter M > 0, and consider the tubular M/
√

n�Q-neighborhood of
∂S, defined by

NM :=
{

p + η ; p ∈ ∂S, | η | < M/
√

n�Q(p)
}
.

To simplify, we assume that ∂S is connected; a simple modification will prove the
general case.

Now consider an arclength parametrization p = p(s) (0 ≤ s ≤ s0) of ∂S. Also
denote by Np the exterior unit normal at p ∈ ∂S.

Define a coordinate system (s, t) where s and t are real parameters, related to the
corresponding point ζ = ζn(s, t) ∈ NM by

ζ = p(s)+ t√
n�Q(p(s))

Np(s).

In the (s, t)-system, the set NM corresponds to a strip

{(s, t); 0 ≤ s ≤ s0, −M < t < M}.

A simple geometric consideration shows that the area element satisfies the relation

d A(ζ ) = (1 + o(1))
1

π

1√
n�Q(p(s))

dsdt, (ζ = ζn(s, t) ∈ NM ). (5.8)

Here o(1) → 0 as n → ∞, and the o(1)-constant depends on M .
The rescaled 1-point function about p(s) will be denoted by

Rn,p(s)(t) := 1

n�Q(p(s))
Rn

(

p(s)+ t√
n�Q(p(s))

Np(s)

)

, (t ∈ R).

We now define the functionals

ρ′
n( f ) =

∫

NM

f ·
(

Rn −
(

n�Q + 1

2
� log�Q

)

· 1S

)

d A,

ρ′′
n ( f ) =

∫

C\NM

f ·
(

Rn −
(

n�Q + 1

2
� log�Q

)

· 1S

)

d A.

Clearly, ρn( f ) = ρ′
n( f )+ ρ′′

n ( f ).
To study ρ′

n( f ), we use Taylor’s formula in the tubular neighborhood NM ,

f (ζn(s, t)) = ∂ f

∂n
(p(s)) · t√

n�Q(p(s))
+ O(1/n).
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This gives

ρ′
n( f )=(1+o(1))

1

π

∫

∂S

∂ f

∂n
(p(s)) ds

∫ M

−M
t · (Rn,p(s)(t)− 1(t)) dt, (χ=χ(−∞,0)).

We have here made a change of variables in the integral defining ρ′
n( f ) and used

relation (5.8).
Next, the a priori estimates in Theorem 1.4 imply that there are constants C , c > 0

such that

|Rn(ζ )− n�Q(ζ )1S(ζ ) | ≤ Cne− c n δ(ζ ) 2 , δ(ζ ) := dist (ζ, ∂S) . (5.9)

Now for f ∈ C0, let us write f̃ (ζ ) = f (ζ )/δ(ζ ), so f̃ ∈ C∞
0 (C).

The estimates in (5.9) give that there are constants C , C ′ such that

∣
∣ ρ′′

n ( f )
∣
∣ ≤ C

∥
∥
∥ f̃

∥
∥
∥∞

∫ ∞

M
te− c t 2 dt + C ′

∫

S
| f | d A.

By (5.7) we now get

(1 + o(1))
1

π

∣
∣
∣
∣

∫

∂S

∂ f

∂n
(p(s)) ds

[∫ M

−M
t · (

Rn,p(s)(t)− 1(t)
)

dt − 1

8

]∣
∣
∣
∣ = ∣

∣ ρ′′
n ( f )

∣
∣

≤ C
∥
∥
∥ f̃

∥
∥
∥∞ e− c M 2 + C ′ ‖ f ‖1 .

(5.10)
It is convenient to introduce a notation for the expression appearing in the inner
integral,

hn,M (s) :=
∫ M

−M
t · (

Rn,p(s)(t)− 1(t)
)

dt − 1

8
.

Lemma 5.6 For almost all s ∈ [0, s0], we have

lim
M→∞ lim

n→∞ hn,M (s) = 0.

Proof We define auxiliary functions

h∗(s) = lim sup
M→∞

lim sup
n→∞

hn,M (s), h∗(s) = lim inf
M→∞ lim inf

n→∞ hn,M (s).

We must prove that h∗(s) ≤ 0 and h∗(s) ≥ 0 for almost every s. The two cases are
similar, so we just prove the inequality for h∗.

Suppose that the set Eα := {h∗ > α} has positive measure for some α > 0. Take
ε ∈ (0, 1) to be fixed later.
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Since the set Eα has positive measure, it contains a point of density (see, e.g., [35]);
i.e., there is x ∈ Eα and δ > 0 such that

| Eα ∩ (x − u, x + u) | ≥ (1 − ε) · 2u, (0 < u < δ). (5.11)

(Here | E | denotes Lebesgue measure of a set E ⊂ R.)
Put ω = (x − δ, x + δ) and ω̃ = (x − δ/2, x + δ/2). Also pick a large number

P > 0.
Now fix a test function f ∈ C0 such that 0 ≤ ∂ f/∂n ≤ P on ∂S, ∂ f/∂n = 0 outside

ω, ∂ f/∂n = P on ω̃, and ‖ f ‖1 ≤ 1.
Taking lim supn→∞ and then lim supM→∞ in (5.10), we find that

∫

ω∩Eα

∂ f

∂n
(p(s)) h∗(s) ds +

∫

ω\Eα

∂ f

∂n
(p(s)) h∗(s) ds ≤ C ′′.

It is easy to see that h∗ is bounded from below, say h∗ ≥ −m, so by (5.11),

−
∫

ω\Eα

∂ f

∂n
(p(s)) h∗(s) ds ≤ m Pε · 2δ,

and hence

∫

ω∩Eα

∂ f

∂n
(p(s)) h∗(s) ds ≤ 2mεδP + C ′′.

Since ∂ f/∂n = P on ω̃ while h∗ ≥ α on Eα , the integral in the left-hand side is at
least | Eα ∩ ω̃ | · Pα ≥ (1 − ε)δPα. We have shown that

(1 − ε)δαP ≤ P · mε · 2δ + C ′′.

Choosing ε > 0 small enough and P large enough, we can get a contradiction regard-
less of the values of α > 0, m, and C ′′. The contradiction shows that | Eα | = 0.

��

The conclusion of Lemma 5.6 means that there exists a set N ⊂ ∂S of arclength
zero such that if p ∈ (∂S) \ N , then

lim
n→∞

∫ +∞

−∞
t · (

Rn,p(t)− 1(t)
)

dt = 1

8
.

Now fix any p ∈ (∂S) \ N . Use compactness to choose a subsequence nk such that
Rnk ,p converges locally uniformly to some limit Rp. We then have
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lim
n→∞

∫ +∞

−∞
t · (

Rn,p(t)− 1(t)
)

dt = lim
k→∞

∫ +∞

−∞
t · (

Rnk ,p(t)− 1(t)
)

dt

=
∫ +∞

−∞
t · lim

k→∞
(
Rnk ,p(t)− 1(t)

)
dt =

∫ +∞

−∞
t · (

Rp(t)− 1(t)
)

dt.

We have by this completely proved Theorem 1.5.

6 Translation Invariant Solutions

In this section, we study t.i. (translation invariant) limiting kernels and prove Theo-
rems 1.6–1.9. The point of the translation invariance hypothesis is that we can interpret
Ward’s equation as a convolution equation, which can be solved using Fourier anal-
ysis. If we rescale at a regular boundary point, the solution is fixed uniquely by this
and our previously obtained a priori conditions.

6.1 The Convolution Representation of a Translation Invariant Limiting Kernel

Let γ (z) = 1√
2π

e− z 2/2. In this section, we prove the following result:

Lemma 6.1 Let K (z, w) = G(z, w)�(z + w̄) be an arbitrary translation invariant
limiting kernel. Then there exists a Borel function f with 0 ≤ f ≤ 1 such that
� = γ ∗ f .

Recall that a limiting kernel K = G� is called translation invariant (or t.i. ) if

�(z + i t, w + i t) = �(z, w), t ∈ R.

Let us start the discussion of this important case by proving a simple lemma.

Lemma 6.2 � is translation invariant if and only if �(z, w) = �(z + w̄) for some
entire function �.

Proof If � is t.i. , we define �(z) = �(z, 0). We must prove that

�(z, w) = �(z + w̄, 0).

However, for fixed z, both functions are analytic in w̄, and they coincide on the imag-
inary axis. ��

In the following, we fix any limiting holomorphic kernel L(z, w) = ezw̄�(z, w).
We shall apply Theorem 1.2 part (iii), which states that both L and L̃(z, w) = ezw̄(1−
�(z, w)) are positive kernels.

In the following, we will use the convolution operation

γ ∗ μ(z) =
∫

R

γ (z − t) dμ(t),
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where μ is a positive measure on R. If dμ(t) = f (t) dt is absolutely continuous, we
write, as before, γ ∗ μ = γ ∗ f .

We now use the positivity of L only on the imaginary axis, to conclude that for all
finite subsets {xi }N

1 ⊂ R and all complex scalars αi , we have

∑
α j ᾱkex j xk�(i x j − i xk) ≥ 0.

Make the substitution �(i z) = V (z)ez2/2. The positivity condition above then
becomes

∑
α j ᾱkex2j /2+x2k /2V (x j − xk) ≥ 0, (x j )

N
1 ⊂ R.

This can be written

∑
β j β̄k V (x j − xk) ≥ 0, (β j = α j e

x2j /2).

The function V (x) is hence positive definite, and by Bochner’s theorem (e.g., [24]),
it is the inverse Fourier transform of a positive measure μ. We have shown that

�(i x)e(i x)2/2 =
∫

R

eitx dμ(t), x ∈ R.

Since the entire function � is determined by its values on the imaginary axis, this
gives

�(z) =
∫

R

etz−z2/2 dμ(t) =
∫

R

e−(t−z)2/2 et2/2dμ(t), z ∈ C.

Writing dν(t) = √
2πet2/2dμ(t), we now have the representation

� = γ ∗ ν,

where ν is some positive measure.
Similarly, since the kernel L̃(z, w) = ezw̄(1 −�(z + w̄)) is a positive kernel (see

Theorem 1.3, cf. Subsection 3.7), there is a positive measure ν1 so that

1 −� = γ ∗ ν1.

The positive measures ν and ν1 have the property that

γ ∗ (ν + ν1) = �+ (1 −�) = 1 = γ ∗ 1R.

The map ρ �→ γ ∗ρ is 1-1 (as can be seen by taking Fourier transforms), so we obtain

ν + ν1 = 1R.
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As both ν and ν1 are positive, this forces both measures to be absolutely continuous,
dν(x) = f (x) dx and dν1(x) = f1(x) dx , where f and f1 are some non-negative
Borel functions with f (x) + f1(x) = 1. In particular, 0 ≤ f ≤ 1. By this, the proof
of Lemma 6.1 is complete. ��

6.2 Translation Invariant Solutions to Ward’s Equation

We shall now prove Theorem 1.6. Thus we shall find all solutions to Ward’s equation
of the special form K (z, w) = G(z, w)�(z +w̄), where� = γ ∗ f for some bounded
Borel function f .

Thus assume that � = γ ∗ f is an entire function. It will be convenient to denote
the restriction to R by J := �|R; i.e.,

J (x) = R(x/2), x ∈ R.

Observe that a functionV (z), which is translation invariant in the sense thatV (z+i t) =
V (z) for all z ∈ C and t ∈ R, satisfies ∂V = 1

2∂x V . It is convenient to formulate the
following reformulation of Ward’s equation in terms of J :

Lemma 6.3 A translation invariant kernel �(z, w) = �(z + w̄) satisfies Ward’s
equation if and only if there exists a smooth function G on R, such that

G ′ = J − 1 (6.1)

and
L = G J − J ′,

where

L(x) =
∫

C

e − |w | 2

w
|�(x − w) | 2 d A(w), x ∈ R. (6.2)

Proof Set G(x) = P(x/2) and L(x) = D(x/2) in Lemma 4.9, where we recall that
D(z) is defined by the integral (4.6). ��

We will need two elementary lemmas.

Lemma 6.4 For all s, t ∈ C, we have

∫

C

e − |w | 2e iwt e iw̄s d A(w) = e − st .

Proof A Taylor expansion of r �→ e ir(te iθ+se −iθ ) around r = 0 gives

∫ ∞

0
e − r 2

e i r
(
te iθ+se − iθ

)

r dr = 1

2

∞∑

n=0

i n! (1 + n/2)

n!
(

te iθ + se − iθ
) n

.
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If n is odd, the zeroth Fourier coefficient of (teiθ + se−iθ )n vanishes, while if n is
even, then

1

2π

∫ 2π

0

(
te iθ + se −iθ

) n
dθ = (st) n/2

(
n

n/2

)

.

We have shown that

1

π

∫ 2π

0
dθ

∫ ∞

0
e − r 2

e ir
(
te iθ+se − iθ

)

r dr =
∞∑

k=0

(−st) k

k! = e − st ,

finishing the proof of the lemma. ��
Lemma 6.5 For all s, t ∈ C, we have

∫

C

e − |w | 2

w
e itwe isw̄ d A(w) = i

1 − e − st

s
. (6.3)

Proof Fix s, and write I (t) for the left-hand side in (6.3). Then I (0) = 0, and Lemma
6.4 shows that I ′(t) = ie−st . It follows that

I (t) = i
∫ t

0
e − sτ dτ = i

1 − e − st

s
.

The proof of the lemma is complete. ��
Since we are assuming that� = γ ∗ f for some suitable function f , the restriction

J of � to R has the structure of the usual convolution

J = γ ∗ f.

We will use the Fourier transform of the function J in a suitable generalized sense:

Ĵ := γ̂ · f̂ ,

where f is regarded as a tempered distribution. This is well defined, since γ̂ = √
2π γ

is a Schwartz test function.
We will frequently use the following consequence of Fourier’s inversion theorem:

�(z) = 1

2π

∫ +∞

−∞
eizt Ĵ (t) dt. (6.4)

Here the integral is interpreted as the value of the distribution f̂ applied to the Schwartz
test function t �→ γ̂ (t)eizt .
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With these conventions, we conclude that

�(x − w) = 1

2π

∫

R

e i(x−w)t Ĵ (t) dt, �(x − w̄) = 1

2π

∫

R

e i(x−w̄)s Ĵ (s) ds.

Multiplying these identities together, we find that

|�(x − w) | 2 = 1

(2π)2

∫∫

R2
e ix(t+s)e − iwt e − iw̄s Ĵ (t) Ĵ (s) dsdt. (6.5)

Now recall the expression for the function L(x) in (6.2). Using (6.5) and Lemma
6.5, we have

L(x) = 1

(2π)2

∫∫

R2
e ix(s+t) Ĵ (t) Ĵ (s) dsdt

∫

C

e − |w | 2

w
e −iwt−iw̄s d A(w)

= i

(2π)2

∫∫

R2

e − st − 1

s
e ix(s+t) Ĵ (t) Ĵ (s) dsdt.

Next note that the relation J = G ′ + 1 (see (6.1)) means that

Ĵ (s) = isĜ(s)+ 2π δ(s),

where δ is the Dirac measure at 0. Inserting this in the last expression for L(x), we get

L(x) = 1

(2π)2

∫∫

R2

(
1 − e − st ) e ix(t+s) Ĵ (t)Ĝ(s) dsdt

+ i

2π

∫

R

lim
s→0

e −st − 1

s
· e ixt Ĵ (t) dt

= G(x)J (x)− 1

(2π)2

∫∫

R2
e − st e i x(s+t) Ĵ (t)Ĝ(s) dsdt − J ′(x),

where we have used that

1

(2π)2

∫∫

R2
e ix(s+t) Ĵ (t)Ĝ(s) dsdt = J (x)G(x)

and also that

− i

2π

∫

R

te i xt Ĵ (t) dt = − d

dx

1

2π

∫

R

e ixt Ĵ (t) dt = −J ′(x).

In view of Lemma 6.3, Ward’s equation is equivalent to that L = G J − J ′. Com-
paring with the last expression for L(x), we have arrived at the following result:
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Lemma 6.6 Under the conditions above, Ward’s equation is satisfied if and only if
we have J = G ′ + 1 with a function G such that

∫∫

R2
e − st e i x(s+t) Ĵ (t)Ĝ(s) dsdt = 0. (6.6)

We now prove Theorem 1.6.
Recall that J = �

∣
∣
R
and � = γ ∗ f . Let g be a continuous function on R such

that g′ = f − 1; this determines g up to a constant. Let us define G = g ∗ γ . Then

G ′ = g′ ∗ γ = ( f − 1) ∗ γ = J − 1.

By Lemma 6.6, Ward’s equation is equivalent to the identity (6.6) for a suitable choice
of integration constant for g. We can rewrite (6.6) in the form

0 =
∫∫

R2
e − (s+t) 2/2e ix(s+t) f̂ (t)ĝ(s) dsdt

=
∫

R

dξ e − ξ 2/2e ixξ
∫

R

ĝ (ξ − t) f̂ (t) dt =
∫

R

e ixξ e − ξ 2/2
(

ĝ ∗ f̂
)
(ξ) dξ

= F −1
[
γ̂ ·

(
ĝ ∗ f̂

) ]
(x) = 2π (g f ) ∗ γ (x).

Thismeans that g f = 0 in the sense of distributions andhence asmeasurable functions.
Let

E = { x ∈ R; g(x) = 0 } .

Then E is a closed set, and the complement Ec = R \ E can be written as a countable
union of disjoint open intervals I j . On each I j , we have f = 0 and g′ = −1 almost
everywhere. Since g = 0 at the endpoints, none of the intervals can be finite. Hence
E is connected. Differentiating the relation f g = 0 and using g′ = f − 1, we obtain
that f = f 2 when f �= 0. Hence f = 1E almost everywhere. We have shown that�
is representable in the form

�(z) = γ ∗ 1E (z) = 1√
2π

∫

E
e − (z−t) 2/2 dt.

The proof of Theorem 1.6 is finished.

6.3 Translation Invariant Limiting Kernels at Regular Boundary Points

In this subsection, we prove Theorem 1.7.

Theorem 6.7 If the limiting kernel K at a regular boundary point is translation invari-
ant, then K (z, w) = G(z, w)�(z+w̄), and there is some a such that� = γ ∗1(−∞,a).

Furthermore, if R(z) = �(z + z̄) satisfies
∫
R

t · (R(t) − 1(t)) dt = 1
8 , then � = F

is the plasma function.
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Proof By Lemmata 6.1 and 6.2, �(z, w) = �(z + w̄), where � = γ ∗ f for some
bounded function f with 0 ≤ f ≤ 1. By Theorem 1.4, we know that R(x) → 1 as
x → −∞ and R(x) → 0 as x → +∞. Moreover, by Theorem 1.6, we can write
� = γ ∗ 1(−∞,a) for some a ∈ R. For the last statement, we must prove that a = 0.

Let us first prove that

∫ ∞

−∞
t (F(2t)− χ(−∞,0)(t)) dt = 1

8
, (6.7)

where F = γ ∗1 is the usual plasma function. To this end, recall that F(t) = P(X ≥ t),
where X is a standard normal random variable. Hence the integral in the right-hand
side can be written

∫ 0

−∞
t (P(X ≥ 2t)− 1) dt +

∫ ∞

0
tP(X ≥ 2t) dt = 2

∫ ∞

0
tP(X ≥ 2t) dt

= 1

8
EX2 = 1

8
.

We now return to the t.i. limiting kernel R. We know that
∫
R

t (R(t)−1(t)) dt = 1
8 .

As we observed above, we can also write R(x) = γ ∗ 1(−∞,a)(2x) = F(2x − a) for
some a ∈ R, and we must prove that a = 0. However, by (6.7),

0 =
∫

R

t · (R(t)− 1(t)) dt − 1

8
=

∫

R

t · (F(2t − a)− F(2t)) dt.

It is easy to see that the right-hand side only vanishes when a = 0, so we must have
� = F . ��

6.4 Radially Symmetric Potentials

We now prove Theorem 1.8. We start with a simple lemma.

Lemma 6.8 Assume that Q is radially symmetric. Fix a point p ∈ ∂S, and rescale in
the outwards normal direction (see (1.4)). Then every limiting kernel in Theorem 1.1
takes the form K = G�, where �(z, w) = �(z + w̄) is translation invariant.

Proof We can suppose that p = 1 ∈ ∂S, and we rescale about p = 1. Set δ = �Q(1).
By assumption, we have

Kn (ζ, η) = Kn (κζ, κη) , where κ = e it/
√

nδ.

Now write z = √
nδ(ζ − 1), w = √

nδ(η − 1). Then

κζ =
(

1 + i
t√
nδ

+ O

(
1

n

)) (

1 + z√
nδ

)

= 1 + 1√
nδ

(z + i t)

+O

(
1

n

)

, (n → ∞).
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This means that �n(z, w) = �n (z + i t + o(1), w + i t + o(1)), where o(1) → 0 as
n → ∞. ��

Now assume that Q is radially symmetric and that the droplet S is connected; thus it
is either a disc or an annulus. If p ∈ ∂S is a boundary point, then the outer normal Np

is simply a multiple of p, Np = ±p/|p|. We can assume that |p| = 1 and Np = p.
Let us write

Rn,p(t) = 1

n�Q(p)
Rn

(

p

(

1 + t√
n�Q(p)

))

for the 1-point function rescaled about p. The radial symmetry of Q implies that
Rn,p = Rn,peiθ for all real θ . From this we conclude that the almost-everywhere
convergence in Theorem 1.5must hold pointwise; i.e., if R = lim Rnk ,p is any limiting
1-point function, then

∫

R

t · (R(t)− 1(t)) dt = 1

8
.

In view of Lemma 6.8, we know that R corresponds to a t.i. limiting kernel K (z, w) =
G(z, w)�(z+w̄). An application of Theorem 6.7 now shows that� = F is the plasma
function. The proof of Theorem 1.8 is finished.

6.5 Translation Invariant Solutions to the Mass-One Equation.

We now prove Theorem 1.9.
Let � be an entire function of the form � = γ ∗ f , where f is some bounded

function.
Using Lemma 6.4 and the assumption that�(z, w) = �(z +w̄), we can rewrite the

mass-one equation (equality in (1.6)) in terms of the function J = �|R, as follows:

J (x) =
∫

e − |w | 2 |� (x/2, x/2 + w) | 2 d A(w) =
∫

e − |w | 2 |�(x + w) | 2 d A(w)

= 1

(2π)2

∫

C

e − |w | 2 d A(w)
∫∫

R2
e i(x+w)t e i(x+w̄)s Ĵ (t) Ĵ (s) dsdt

= 1

(2π)2

∫∫

R2
e ix(s+t)e − st Ĵ (t) Ĵ (s) dsdt.

(i) If J = γ ∗ 1E , where E ⊂ R is a Borel set of positive measure, then Ĵ (ξ) =
e − ξ 2/2 · 1̂E (ξ) in the sense of distributions. Passing to Fourier transforms, we find
that the mass-one equation is equivalent to that (with δ the Dirac delta function)

e − ξ 2/2 1̂E (ξ) = 1

2π

∫∫

R2
e − stδ (s + t − ξ) e − s 2/2 1̂E (s) e − t 2/2 1̂E (t) dsdt

= 1

2π

∫

e − ξ 2/2 1̂E (s) 1̂E (ξ − s) ds = e − ξ 2/2 1

2π

[
1̂E ∗ 1̂E

]
(ξ).
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By Fourier inversion, this is equivalent to 1E = 1 2
E , which is true. We have shown

that the function J = γ ∗ 1E satisfies the mass-one equation.
(ii) If �(z, w) = �(z + w̄) satisfies the mass-one equation and � = γ ∗ f , then

the same calculations as above with “1E” replaced by “ f ” lead to the equation

e − ξ 2/2 f̂ (ξ) = e − ξ 2/2 1

2π

[
f̂ ∗ f̂

]
(ξ).

Taking inverse Fourier transforms, we see that this is equivalent to that f (x) = f (x) 2

almost everywhere. Hence f = 1E almost everywhere, where E is some measurable
set of positive measure, and � = 1E ∗ γ . The proof of Theorem 1.9 is finished.

7 Ward’s Equations in Some Other Settings

In this section, we will rescale Ward identities and derive the corresponding equations
in several different settings.

7.1 Ward’s Equation at the Hard Edge of the Spectrum

For simplicity, we shall restrict our discussion to the hard edge Ginibre ensemble; we
refer to [5] for a discussion of more general hard edge ensembles.

Let {ζ j }n
1 be the hard-edge Ginibre process, and rescale about the boundary point

p = 1 to obtain the boundary process n = {z j }n
1, where z j = √

n
(
ζ j − 1

)
.

As before, we let Rn(z) = Kn(z, z) denote the 1-point function of the rescaled
process. The hard edge Berezin kernel and Cauchy transform are defined, respectively,
by

Bn(z, w) = | Kn(z, w) | 2
Kn(z, z)

, Cn(z) =
∫

C

Bn(z, w)

z − w
d A(w),

with the understanding that Bn(z, w) = 0 when the point ζ = 1 + z/
√

n satisfies
|ζ | > 1.

We recall that the hard edge kernel is defined by (0.4). In terms of this kernel, we
put

R(z) := K (z, z), B(z, w) := | K (z, w) | 2
K (z, z)

, C(z) :=
∫

L

B(z, w)

z − w
d A(w).

Observe that R(z) = B(z, z) = 0 when Re z > 0.

Theorem 7.1 The hard edge kernel (0.4) satisfies Ward’s equation

∂̄C(z) = R(z)− 1 −� log R(z), z ∈ L := {z; Re z < 0}.
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Proof We claim first that we have the asymptotic relation

∂̄Cn(z) = Rn(z)− 1 −� log Rn(z)+ o(1), z ∈ L, (7.1)

where the error term o(1) converges to zero uniformly on compact subsets of L.
In order to prove this, it is convenient to consider the Ginibre potential Q(ζ ) =

| ζ + 1 | 2 which has the droplet S = { | ζ + 1 | ≤ 1 }. We rescale about the boundary
point p = 0 via z = √

n ζ.
Fix a number ε > 0. Write U := S ∩ D(0; ε), and consider test functions ψ

supported in the dilated set
√

n · U . As in the free case, we define ψn (ζ ) := ψ (z).
Since QS = Q in the set U where ψn is supported, the same arguments used in the
free boundary case remain valid (cf. Subsection 4.2). The only difference is that the
dilated domains

√
n · U will, in our present case, increase to the open left half-plane

L. Hence we deduce Ward’s equation (7.1) for z ∈ L precisely as before.
By Theorem 2.3, we have convergence Rn → R and Cn → C locally uniformly

in L and boundedly almost everywhere in C. It follows that we can pass to the limit
in (7.1). ��
Corollary 7.2 The hard edge kernel (0.4) satisfies the mass-one equation

∫

L

B(z, w) d A(w) = 1, (z ∈ L). (7.2)

Proof The approximate Berezin kernels Bn satisfy
∫

Bn(z, w) d A(w) = 1 for z ∈ L.
The identity (7.2) now follows from the convergence Bn → B in Theorem 2.3 and
the argument used in the foregoing proof. ��
Remark A different hard-edge solution to Ward’s equation in a strip is given in the
last section of [6]. Cf. the forthcoming paper [5] for details.

7.2 Ward’s Equation at Bulk Singularities and Mittag–Leffler Fields

Let us weaken our standing assumptions on the potential Q. We still require real-
analyticity in a neighborhood of S, but now allow that �Q = 0 at isolated points in
the bulk of S. A point p ∈ Int S such that�Q(p) = 0 will be called a bulk singularity.

Assume that p = 0 is a bulk singularity, and let {ζ j }n
1 be the point process corre-

sponding to Q. The effect of the bulk singularity is to repel the particles away from
it.

There are various types of bulk singularities depending on the local behavior of
�Q near p. For instance, if �Q(ζ ) = ax2 + by2 + O(|ζ |3) as ζ = x + iy → 0,
where a and b are positive constants, then the local behavior of the system {ζ j } near
0 will depend on a as well as b. Let us consider the symmetric case when a = b = 1,
or more generally, that there is a number λ ≥ 1 such that

�Q(ζ ) = | ζ | 2(λ−1) + . . . , (ζ → 0),
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where the dots represent negligible terms. If we wish Q to be real-analytic, we should
of course assume that λ be an integer. However, the condition of real-analyticity is
important only in a neighborhood of the boundary, e.g., in connection with Sakai’s
theory. In the bulk, it suffices to assume C2-smoothness. Thus we can in fact choose
λ as an arbitrary real constant ≥ 1. Note that λ = 1 is the well-known case of an
ordinary “regular” bulk point, in which case we know that the usual Ginibre point
field arises. We may thus assume that λ > 1.

It turns out that the proper scaling in the case at hand is

z j = n 1/(2λ) ζ j . (7.3)

We writen = {z j }n
1 for the rescaled system, equipped with the law that is the image

of the Boltzmann–Gibbs measure Pn under the map (7.3).

Example Consider the “power potential” Qλ(ζ ) = | ζ | 2λ, where λ > 1. IfKn denotes
a correlation kernel of the process {ζ j }n

1, then n has the correlation kernel

Kn(z, w) = n −1/λKn (ζ, η) , where z = n 1/(2λ) ζ, w = n 1/(2λ) η. (7.4)

A straightforward calculation shows that the polynomial ζ j has norm

∥
∥
∥ ζ j

∥
∥
∥
2

nQ
=

∫

C

| ζ | 2 j e − n | ζ | 2λ d A(ζ ) = 1

λ
n − j+1

λ !

(
j + 1

λ

)

.

Inserting the result in formula (1.3) for a correlation kernel, we get

Kn(ζ, η) = λn 1/λ
n−1∑

j=0

(
n1/λζ η̄

) j

!
(

j+1
λ

) e −n
( | ζ | 2λ+| η | 2λ )

/2.

Rescaling according to z = n1/(2λ)ζ , w = n1/(2λ)η, we obtain

Kn(z, w) = n −1/λKn(ζ, η) = λ

n−1∑

j=0

(zw̄) j

!
(

j+1
λ

)e −( | z | 2λ+|w | 2λ )
/2.

It is now evident that

Kn(z, w) → Mλ (zw̄) e−( | z | 2λ+|w | 2λ )
/2, (n → ∞),

locally uniformly in C2, where Mλ is the function

Mλ(z) = λ

∞∑

j=0

z j

!
(

j+1
λ

) .
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We recognize Mλ as the generalized Mittag–Leffler function λE1/λ,1/λ. See [20]. (A
similar computation was carried out in [40].)

In the next theorem,weconsiderWard’s equation at p = 0 for the potential Qλ(ζ ) =
| ζ | 2λ. To this end, we introduce the Berezin kernel rescaled about 0 on the scale (7.3),
i.e., Bn(z, w) := | Kn(z, w) | 2/Kn(z, z).

Theorem 7.3 The point process n converges as n → ∞ to the unique point-field
M Lλ in C with kernel

K (z, w) = Mλ (zw̄) e − 1
2

( | z | 2λ+|w | 2λ )

.

The convergence holds in the sense of locally uniform convergence of intensity func-
tions. Furthermore, Bn → B uniformly on compact subsets ofC2 where B is a solution
to the Ward’s equation

∂̄z

∫
B(z, w)

z − w
d A(w) = B(z, z)− λ2 |z| 2(λ−1) −�z log B(z, z).

Proof It is easy to see that Mλ is of exponential type λ. This implies that the kernel K
is uniformly bounded. Existence and uniqueness of a point field M Lλ with the given
properties now follows, via Lenard’s theory, from the convergence of intensities in the
preceding example.

We shall establish the asymptotic relation

∂̄z

∫
Bn(z, w)

z − w
d A(w) = Bn(z, z)− λ2 | z | 2(λ−1) −�z log Bn(z, z)+ o(1), (7.5)

where o(1) → 0 as n → ∞, uniformly on compact subsets of C.
To this end, fix a test function ψ , and let ψn (ζ ) = ψ (z), where z = n 1/(2λ) ζ .
We shall use Ward’s identity; we therefore recalculate the expectations of the terms

In[ψn], IIn[ψn], and IIIn[ψn] used in the free boundary case, in Subsection 4.2. As
customary, we use the symbolRn,k to denote the k-point function of the system {ζ j }n

1.
The rescaling z j = n1/(2λ)ζ j then implies that the k-point function of the rescaled
system {z j }n

1 is

Rn,k (z1, . . . , zk) = n −k/λ Rn,k (ζ1, . . . , ζk) .

For In[ψn], the change of variables in (7.4) gives that

EnIn [ψn] = n 1/(2λ) 1

2

∫∫
ψ(z)− ψ(w)

z − w
Rn,2(z, w)

= n 1/(2λ)
∫

ψ(z) d A(z)
∫

Rn,2(z, w)

z − w
d A(w).
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Turning to IIn[ψn], we first observe that ∂Qλ (ζ ) = λζ̄ · | ζ | 2(λ−1) . Using this, we
see that

n∂Qλ

( z

n 1/(2λ)

)
= n 1/(2λ)∂Qλ(z),

which gives

EnIIn [ψn] = n 1/(2λ)
∫

λz̄ | z | 2(λ−1) · ψ · Rn,1.

We also compute

EnIIIn [ψn] = n 1/(2λ)
∫

∂ψ · Rn,1 = −n 1/(2λ)
∫

ψ · ∂Rn,1.

In view of Ward’s identity (Subsection 4.1), we now infer that, in the sense of
distributions,

∫
Rn,2(z, w)

z − w
d A(w) = λz̄ | z | 2(λ−1) · Rn,1(z)+ ∂Rn,1(z).

Dividing by Rn,1 and applying ∂̄ , we conclude the proof of the formula (7.5). To pass to
the limit as n → ∞, we now use the convergence in the example preceding Theorem
7.3 and the argument in Subsection 4.3. ��

More generally, it is natural to consider any bulk singularity where the equilibrium
density vanishes as �Q(ζ ) ∼ |ζ |2k−2 as ζ → 0, where k is a positive integer.
Rescaling by a suitable factor proportional to n−1/2k , one deduces the asymptotic
relation

∂̄z

∫
Bn(z, w)

z − w
d A(w) = Bn(z, z)−�Q(z)−�z log Bn(z, z)+ o(1).

This equation is studied and applied in the paper [8].
An equally interesting generalization is obtained by allowing the potential to have

a weak logarithmic singularity at the origin. This corresponds to the microscopic
study of a particle system on a Riemann surface, close to a conical singularity, or
alternatively, to the study of the microscopic effect of insertion of a point charge.
This possibility is considered in the papers [4,8] and will also be the subject of a
forthcoming investigation.

7.3 Ward’s Equation and the Mass-One Equation for β-Ensembles

Consider a potential Q satisfying the standing assumptions in Subsection 1.1, and fix
a number β > 0. Let us consider the probability measure on Cn defined by
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dPβ
n (ζ ) := 1

Z β
n

e −β Hn(ζ ), Z β
n :=

∫

Cn
e −β Hn(ζ ) dVn(ζ ),

where Hn is the usual Hamiltonian, see (1.2).
Let R β

n,k denote the corresponding k-point function. The following version of
Ward’s identity is proved exactly as in the case β = 1.

Theorem 7.4 Put, for a test function ψ ∈ C∞
0 (C),

Wn[ψ] = β (In[ψ] − IIn[ψ])+ IIIn[ψ],

where In, IIn, IIIn are as in Subsection 4.1. If Q is C2-smooth near suppψ , then
E
β
n W +

n [ψ] = 0.

Now fix a point p ∈ S, and rescale about p: z j = e −iθ√n�Q(p)
(
ζ j − p

)
.

We denote by 
β
n := {z j }n

1 the rescaled process and write R β
n,k(z1, . . . , zk) :=

R β
n,k(ζ1, . . . , ζk) for the joint intensities. We also define the Berezin kernel of the

process β
n by

B β
n (z, w) := R β

n,1(z)R
β
n,1(w)− R β

n,2(z, w)

R β
n,1(z)

.

Notice that B β
n (z, z) = R β

n,1(z) and
∫
C

B β
n (z, w) d A(w) = 1.

Rescaling the Ward identity as in Subsection 4.2, we obtain the following result.

Theorem 7.5 If p belongs to some neighborhood of S in which Q is strictly subhar-
monic and C2-smooth, then

∂̄C β
n (z) = R β

n (z)− 1 − 1

β
�z log R β

n (z)+ o(1), (7.6)

where

C β
n (z) :=

∫

C

B β
n (z, w)

z − w
d A(w), R β

n := R β
n,1.

We do not know whether it is possible to pass to the limit as n → ∞ in (7.6),
but for the sake of argument, let us temporarily assume that we can define a limiting
Berezin kernel B β . Letting n → ∞ in (7.6), one then formally obtains the following
generalization of Ward’s equation:

∂̄z

∫

C

B β(z, w)

z − w
d A(w) = B β(z, z)− 1 − 1

β
�z log B β(z, z), z ∈ C. (7.7)

This more general equation can easily be transformed to the case β = 1 by the linear
scaling

B(u, v) = B β(z, w), u = √
β z, v = √

β w. (7.8)

123



120 Constr Approx (2019) 50:63–127

Proposition 7.6 Suppose that B β solves (7.7). Then the kernel B in (7.8) solves
Ward’s equation (with β = 1).

We do not know whether the (presumptive) kernels B β would be non-negative,
so speaking about “mass-one” could possibly be misleading. However, if we assume
that

∫
C

B β(z, w) d A(w) = 1, then the corresponding kernel B in (7.8) satisfies the
“mass-β equation”:

∫
C

B(u, v) d A(v) = β.
As wementioned before, in the case β = 1,Ward’s equation is “closed” by analytic

continuation. We don’t know if we can consider equation (7.8) closed if β �= 1.
The study of boundary profiles Rβ(x) for a given β > 1 is of physical relevance,

in connection to the Hall effect; see the paper [13].

8 Concluding Remarks

In Subsection 8.1, we explain how the boundary kernel K = G F in the Ginibre case
can be related to asymptotics of section of the exponential function. In Subsection 8.2,
we will mention some connections to the theory of Hilbert spaces of entire functions
and to the theories of certain special functions. In Subsection 8.3, we comment on the
nature of the mass-one equation and Ward’s equation in the general (non-translation-
invariant) case, relating those equations to harmonic analysis on the Heisenberg group.

8.1 Sections of Power Series

It seems that the type of asymptotics one encounters for the free boundary was first
observed in connection with sections of power series of the exponential function. By a
section of an entire function f (ζ ) = ∑∞

j=0 a jζ
j , we here simply mean a partial sum

sn(ζ ) =
n−1∑

j=0

a jζ
j .

Szegő’s original study in [36] concerns the distribution of zeros of the blow-up sections
s$n(w) := sn(nw) pertaining to the exponential function f (ζ ) = e ζ . In the course of
the investigation, Szegő proves asymptotic results for the function s$n(w) valid for
all w except for w in a fixed neighborhood of 1. This gap was later closed, and the
following result ensued. Consider the rescaled section

s̃n(z) := sn (n ζ ) , z = √
n (ζ − 1) .

One then has the following (locally uniform) convergence

s̃n(z)e
−n−√

nz → F(z) (n → ∞), (8.1)

where F is the plasma function (0.3).We are unsure concerning whom should be cred-
ited for the convergence in (8.1) when f (ζ ) = eζ . However, the book [15, Theorem 1]
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contains a statement valid for more general f , and the appendix in [10] contains a
detailed convergence result for the case at hand.

To see the connection with the scaling limits of the present paper, we remind the
reader of the expression for the correlation kernel for the Ginibre ensemble from
Section 2,

Kn(ζ, η) = nsn(nζ η̄)e
−n | ζ | 2+| η | 2

2 .

Rescaling via z = √
n(ζ − 1), w = √

n(η − 1), Kn(z, w) = n−1Kn(ζ, η), we now
recognize that

Kn(z, 0) = s̃n(z) e −n e −√
n Re z · e − | z | 2/2.

Letting cn be the cocycle cn(z) = e−i
√

n Im z , we now form the functions

K̃n(z, 0) = cn(z)Kn(z, 0) = s̃n(z)e
−n−√

nz · e − | z | 2/2,

which now closely resembles the left-hand side in (8.1). By Theorem 2.1 or Theorem
1.8, we have

K̃n(z, w) → G(z, w)F(z + w̄).

Letting w = 0 (and thus η = 1), one can now recover the limit in (8.1).
The convergence in (8.1) has been proved for the sections corresponding to more

general entire functions. In the monograph [15], the authors consider the Mittag–
Leffler function E1/λ as well as a class denoted “L-functions.” More recently, this
kind of convergence has been used in the papers [29,39] (it is called “Newman–Rivlin
asymptotics” in [39]).

To interpret the above results in terms of our Theorem 1.8, one chooses a suitable
radially symmetric potential Q. For example, one chooses Q(ζ ) = E1/λ(| ζ | 2) in case
of the Mittag–Leffler function alluded to above. Expressing the kernel Kn in terms
of the orthogonal polynomials (as in (1.3)) and rescaling about a boundary point of
the droplet, one can apply Theorem 1.8 and recover the asymptotic behavior of the
sections.

8.2 The Mass-One Equation and Hilbert Spaces of Entire Functions

It has been observed (e.g., [11,26,27,37,38] and the references there) that universality
laws in the theory of random Hermitian matrices are related to certain specific de
Branges spaces B(E) of entire functions. See [14] for the definition of these spaces.
In particular, the sine-kernel describing the spacing of eigenvalues in the bulk is the
restriction to R

2 ⊂ C
2 of the reproducing kernel of the Paley–Wiener space, i.e., the

space B(E) where E(z) = e−iπ z . Moreover, the Airy kernel
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K (x, y) = Ai(x)Ai′(y)− Ai′(x)Ai(y)
x − y

,

which describes the spacing at the edge of the spectrum, is the restriction to R2 of the
reproducing kernel of B(E) where E = Ai′ −i Ai, and the Bessel kernel (hard edge)
is the restriction to (−∞, 0) × (−∞, 0) of the reproducing kernel of the de Branges
space corresponding to the function E(z) = √

z J ′
0(

√
z)− i J0(

√
z).

The appearance of de Branges spaces in the context of Hermitian random matrices
is quite natural given the fact that orthogonal polynomials on the real line can be
related to a second order one-dimensional self-adjoint spectral problem.

TheHilbert spacesH of entire functions arising in the random normalmatrix theory
are not of de Branges type, and we are not sure about their spectral interpretation.
Nevertheless, we will use the term “spectral measure”: μ is a spectral measure forH
ifH sits isometrically in L2(μ).

Lemma 8.1 Let � be a Hermitian entire function and G = G(z, w) the Ginibre
kernel. The following conditions are equivalent:

(i) The kernel K = G� satisfies the mass-one equation; i.e.,

∫

e − |w | 2 |�(z, z + w) | 2 d A(w) = �(z, z), z ∈ C. (8.2)

(ii) The holomorphic kernel L(z, w) = e zw̄�(z, w) is the reproducing kernel of some
Hilbert space H with spectral measure dμ(z) := e − | z | 2 d A(z).

If this is the case, then there is a unique point field with correlation kernel K .

Proof Write Lw(z) = L(z, w) = e zw̄�(z, w) (cf. Subsection 4.3). Then L is the
reproducing kernel for a Hilbert space with spectral measure dμ(z) = e − | z | 2 d A(z)
if and only if

〈 Lw , Lz 〉L2(μ) = L(z, w), z, w ∈ C. (8.3)

For z = w, the identity (8.3) means that

∫

C

| Lz(ζ ) | 2 e − | ζ | 2 d A(ζ ) = e | z | 2�(z, z);

i.e.,
∫

C

|�(ζ, z) | 2 e ζ z̄ + ζ̄ z − | ζ | 2 − | z | 2 d A(ζ ) = �(z, z),

which is precisely the mass-one equation (8.2). On the other hand, if the last equa-
tion holds, then (8.3) follows for z �= w by analytic continuation. This proves the
equivalence of (i) and (ii).

Next note that the kernel K = G� can be written

K (z, w) = e − | z | 2/2− |w | 2/2L(z, w).
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From this we conclude that if L gives rise to a reproducing kernel as in (ii), then K is

the reproducing kernel of the subspaceW =
{

f ; f (z) = g(z)e − | z | 2/2, g ∈ H
}
of

L2.
Consider the linear operator T on L2 with kernel K . Then T is an orthogonal

projection, and it is locally trace class. (That an operator T on L2 is “locally trace
class” means that the operator TB on L2 defined by TB( f ) = T (1B f ) is trace class
for every compact set B ⊂ C.) By a theorem of Soshnikov ( [34, Theorem 3]), the
conditions above guarantee that K is the correlation kernel of a unique random point
field in C. ��

In the following, wewrite A2(μ) for the space of all entire functions of class L2(μ).
It follows from general facts for reproducing kernels that the Hilbert space H in (ii)
is the closed linear span

H = spanL2(μ) { Lw; w ∈ C } , (dμ(z) = e − | z | 2 d A(z)).

Let us look at some examples.
For the bulk Ginibre process, we have L(z, w) = e zw̄, and henceH = L2

a(μ) is the
Fock space. The free boundary Ginibre process corresponds to the kernel L(z, w) =
e zw̄F(z + w̄), and hence

H = spanL2(μ)

{
e w̄z F(z + w̄) ; w ∈ C

}
,

where F is the plasma function (0.3).
One can similarly interpret the hard edge mass-one equation (7.2) as a reproducing

property in a suitable space of entire functions. In fact, this space is

H = spanL2(μh)

{
e w̄z H(z + w̄) ; w ∈ L

}
, (dμh(z) = e − | z | 2 · 1L(z) d A(z)),

where H is the hard edge function (0.5). The fact that the last span consists of entire
functions requires a compactness property in the hard edge situation, which will be
established in the paper [5].

It would be interesting to describe the above spaces in more constructive terms
(e.g., similar to de Branges theory). It would also be interesting to know the meaning
of Ward’s equation for the spaces H. (By Lemma 8.1, the mass-one equation is a
statement about spectral measures.)

We finally describe the Hilbert spaces corresponding to the Mittag–Leffler pro-
cesses. To this end, recall that the mass-one equation for the function Mλ says that

∫

C

| Mλ(zw̄) | 2 e − |w | 2λ d A(w) = Mλ

(
| z | 2

)
.

This gives, by polarization

∫

C

Mλ (z1w̄) Mλ (z̄2w) e − |w | 2λ d A(w) = Mλ (z1 z̄2) .
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(This formula has an alternative, elementary proof: insert Mλ(ζ ) = λ
∑

ζ j/!
(

j+1
λ

)

in the left-hand side and integrate termwise.)
Let dμλ(z) = e − | z | 2λ d A(z). The Hilbert space pertaining to the process M Lλ is

thus

H := spanL2(μλ)
{ z �→ Mλ(zw̄) ; w ∈ C } .

It is not hard to show that polynomials are dense inH, and consequentlyH = A2(μλ).
In general, we expect that a kernel L arising from rescaling in a (free-boundary)

ensemble should be the Bergman kernel of a subspace of a “generalized Fock–Sobolev
space”; see [7,8] for results in this direction.

8.3 Twisted Convolutions

Wefinally show that, without the hypothesis of translation invariance,Ward’s equation
takes the form of a so-called twisted convolution equation, known from Weyl’s cal-
culus for pseudodifferential operators. A solution of this equation, coupled with the a
priori estimates above, could plausibly lead to a proof of the hypothesis of translation
invariance (say, at a regular boundary point). This thread will be taken up elsewhere.

For two functions f, g defined on C, we define the twisted convolution f % g by

( f % g) (z) :=
∫

C

f (z − w)g(w)e i Im(z̄w) d A(w).

See the book [16]. We will show that Ward’s equation and the mass-one equation can
be interpreted as twisted convolution equations. In the translation invariant case, the
equations reduce to usual convolution equations, which is how we were able to solve
them. However, the general twisted case is certainly more interesting.

Consider the following transform:

f̂ (t) :=
∫

C

e −i(z,t) f (z) d A(z), t ∈ C, (z, t) := 2Re
(
zt̄

)
.

Letting F be the two-dimensional Fourier transform with normalization

F[ f ](u + iv) = 1

2π

∫

C

e −i(xu+yv) f (x + iy) dxdy,

we then have f̂ (t) = 2F[ f ](2t), and the inverse Fourier transform takes the form

f (z) =
∫

C

e i(z,t) f̂ (t) d A(t).

Let K = G� denote a limiting kernel in Theorem 1.1, and write R(z) = �(z, z). We
expect that, with a suitable interpretation of the transform, there is a function f such
that
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R̂ = f̂ · !, where !(z) := e − | z | 2/2/
√
2π. (8.4)

Here f̂ is understood in the sense of tempered distributions.
By polarizing in the Fourier inversion formula, we obtain an analogue of the identity

(6.4):

Lemma 8.2 For all z, w ∈ C, we have

�(z, w) =
∫

C

e i(zt̄+w̄t) R̂(t) d A(t).

Now define R0 = 1 − R, and assume that we can represent R0 in a similar way to
(8.4) R̂0 = ĝ · !, where g is a suitable function. Lemma 8.2 then allows us to rewrite
the mass-one equation and Ward’s equation as follows.
Mass-one equation.

∫∫

C2
e −s̄t e i(z,s+t) R̂(s)R̂0(t) d A(s)d A(t) = 0, (z ∈ C).

Compare with Subsection 6.5 for the translation invariant analogue.
Ward’s equation. There exists a smooth function P0 such that ∂̄P0 = R0 and

∫∫

C2
e −s̄t e i(z,s+t) R̂(s)P̂0(t) d A(s)d A(t) = 0, (z ∈ C).

Compare with Lemma 6.6.
Note that both equations take the form

∫∫

C2
e −s̄t e i(z,s+t) F̂(s)Ĝ(t) d A(s)d A(t) = 0. (8.5)

If we here represent F̂ = f̂ · !, Ĝ = ĝ · !, then (8.5) has the form of the twisted
convolution equation f̂ % ĝ = 0.
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