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Opto-mechanical chaotic oscillation of an on-chip resonator is excited by the radiation-pressure
nonlinearity. Continuous optical input, with no external feedback or modulation, excites chaotic vibrations
in very different geometries of the cavity (both tori and spheres) and shows that opto-mechanical chaotic
oscillations are an intrinsic property of optical microcavities. Measured phenomena include period
doubling, a spectral continuum, aperiodic oscillations, and complex trajectories. The rate of exponential
divergence from a perturbed initial condition (Lyapunov exponent) is calculated. Continuous improve-
ments in cavities mean that such chaotic oscillations can be expected in the future with many other
platforms, geometries, and frequency spans.
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Radiation pressure (RP) can push the boundaries of an
optical cavity to change its optical path [1–4]. In the past,
the resulting coupling between optical and mechanical
motions was shown to induce a hysteretic response [1]
that characterizes a bistable regime. In this regime, the
system can settle in one of two stable equilibria wherein
mechanical inflation of the cavity is balanced by the re-
sulting attenuation of the intracavity circulating optical
power. Reducing the loss has been recently shown to
opto-excite periodic vibrations [5–7] in which mechanical
gain (via Doppler shift of the intracavity light) overcomes
the mechanical loss. It was shown [5] that at higher powers,
a transition to erratic behavior is observed. However, so far
there has not been an experimental (or theoretical) study of
this regime.

Here we complete the set of dynamic regimes (bistable,
periodic, and chaotic) by experimentally demonstrating
how a continuous wave (CW) optical input excites the
chaotic regime. The chaotic behavior is demonstrated by
the experimental observation of period doubling, a spec-
trum that turns from a set of discrete lines into a contin-
uum, and a complex phase-space trajectory. The sensitivity
of the system dynamics for infinitesimal changes in initial
conditions is also shown.

Unlike other systems possessing optical chaos by non-
linearities originating from interaction of light with matter
[8] (e.g., intensity dependant index of refraction or absorp-
tion), the interaction in here is between light and structure,
through boundary dynamics, resulting in inertia for the
optical pathlength via direct coupling to the inertia of the
mechanical mode. Another result is that the time constant
of chaos scales as the resonator acoustical time constant
[size/(velocity of sound)] and not with time constants at the
molecular level. Effects like the continuum spectra ob-
served here extend phenomena previously observed at the
molecular scale to ones originating in our work from
structural-level vibrations of the photonic device itself.
The fact that the sound wave extends out of the cavity

through its support (see rendering of the calculated mode in
Fig. 1(a)) suggests future possibilities for acoustical cou-
pling to nearby resonators through the wafer [9] or for
coupling such sound waves to a distant resonator via
electro-mechanical transduction. Another coupling option
is via the optical link through the fiber. Also different is that
while some chaotic optical systems necessitate periodic
perturbation [10,11] or an external delay line feedback [12]
in order for chaos to develop, chaos here evolves from a
continuous-in-time input, necessitating no periodic pertur-
bation, external feedback, modulation, or delay; and by
this, showing that chaotic vibration here is an intrinsic
cavity property. The opto-mechanical system described
here bridges between the (chaotic) mechanical- and
optical-resonator and is of interest for various communities
investigating micro-electro-mechanical systems (MEMS),
nonlinear optics, and micro-cavities.

The simple experimental setup (Fig. 1(a)) consists of a
CW optical-input (� � 1:5 �m) that is evanescently
coupled to and from a spherical cavity (made using a
technique similar to the one described in [13]) through a
tapered fiber [14,15]. The radiation pressure of the intra-
cavity light causes the cavity to inflate, forcing the optical
resonance wavelength to expand proportionally. This reso-
nance drift (from the pump wavelength) turns off the
circulating intracavity light. With no light inside to main-
tain the mechanical flex, the cavity deflates back towards
mechanical equilibrium and is charged again with light.
The cycle repeats itself then perpetually but not necessarily
periodically. This qualitative description will be cast into a
set of dynamical equations; however, it is important to
already note that the radiation-pressure induced chaotic
vibration is not limited to special geometry of the resona-
tor, as will be shown by repeating the experiments in very
different geometries.

At low input intensity, the optical power spectrum
(Fig. 1(b)) emitted from the spheroid resonator is periodi-
cally modulated at 0.538 GHz by the oscillation of a
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mechanical mode (the calculated mechanical mode is
shown in Fig. 1(a)); higher harmonics in this optical
spectra (Fig. 1(b)) indicate that the system is highly non-
linear. Highly nonlinear dynamical systems often become
chaotic and the route from regular to chaotic behavior is
generally characterized by period doubling [16,17]. Such
period doubling (frequency halving) is observed in

Fig. 1(c); it is important to note that this observed
frequency halving is not due to a lower order mechanical
mode as calculations show that no mechanical mode
with such a frequency exists. As for higher-order cascaded
period doubling, many such doublings are observed when
a high-resolution scan is performed as shown in the
supplementary movies [18]. At yet higher input-power
levels, the power spectrum turns from a discrete set of
equally-separated lines into a continuum (Fig. 1(d)). A
description of spectrum evolving to continuum (as de-
scribed in Fig. 1(b)–1(d)) is given as supplementary mov-
ies [18].

We emphasize that the continuum in Fig. 1(d) is not
generated from a spectrally-wide pulsed input; the fre-
quency continuum here is excited from a continuous-in-
time (CW) source which is very narrow in the frequency
domain (300 kHz optical bandwidth). Furthermore, in all
experiments here, chaotic oscillations lasted as long as we
kept our CW input source on (many hours).

In the next experiment, the spherical oscillator is re-
placed with a toroidal oscillator (Fig. 2) to illustrate the
operation in a different frequency regime as well as to
show that the phenomena are not limited to a specific
oscillator geometry. Toroids are more flexible than spheres
and oscillate mechanically at lower frequencies. The spec-
tral evolution for the toroid is the same as for the sphere
except for the appearance of a period-four cycle (i.e., two
period-doubling bifurcations). The unpredictable character
of the measured complex trajectory (Fig. 2(c)) is the result
of sensitivity for small changes in initial condition and
not from stochastic (‘‘coin flip’’) terms in the governing
equations. Another general characteristic of the period-
doubling route (shown experimentally in Fig. 2(c)) is
that while the period 2 and 4 cycles are broadened and
washed into a continuum [19,20], the fundamental-
frequency component, as well as its high harmonics, still
survive (Fig. 2(c)).

Sensitivity to initial conditions is a defining property of
chaos. To investigate this separation of trajectories for
identical systems with infinitesimally close initial condi-
tions, we calculate the Lyapunov exponent in a theoretical
model of the experimental system [21]. We first bring the
equations that govern [5] the cavity mechanical deforma-
tion, X�t�, and the slowly varying electric field of the
circulating optical mode, E�t� � Ere�t� � iEim�t� (see the
variables sketched in Fig. 1(a)) to an autonomous form
where no time appears (explicitly) on the right hand side
and no imaginary numbers are involved:
 

_X�t� � V�t�;

_V�t� � �aV�t� � bX�t� � c�Ere�t�
2 � Eim�t�

2�;

_Ere�t� � �e� fX�t��Eim�t� � dEre�t�;

_Eim�t� � gEp � �e� fX�t��Ere�t� � dEim�t�

(1)

The first two expressions in Eq. (1) characterize a mechani-
cal harmonic oscillator, and the last two expressions de-

 

FIG. 1. Experimental setup (a) and results (b)–(d):
(a) Continuous optical power is fiber coupled to an on-chip
microresonator in which the centrifugal radiation pressure ex-
cites mechanical vibration. The calculated vibrational mode for
the spherical cavity used here is presented in a rendering where
the deformation describes the cavity shape at maximum me-
chanical amplitude. The deformation is exaggerated in the
figure. The experiment is done at room temperature and pressure.
R signifies the cavity radius. (b) Oscillation in spherical cavity
starts periodic (c), doubles its period (d), and then turns aperiodic
(continuous spectra) as input power increases. Inset in (b) is a
micrograph of the spherical resonator used in this experiment.
Panels b, c, and d were taken at pump power (jEpj2) of 66, 79,
and 83 mW. The sphere radius is 12 �m, its optical Q is 7�
106, and its mechanical Q is 112.
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scribe the rate of change of the intracavity optical field
when pumped by a continuous power jEpj2 and deformed
to inflate by X�t� (see constants a-g in Ref. [22]). These
equations are coupled as the mechanical oscillator is driven
by the optical power via the c�Ere�t�

2 � Eim�t�
2� term, and

the intracavity field (last two equations) depends on the
mechanical deformation (X�t�) through cavity detuning. It
is convenient to use the MKS system of units with E taken
in

����������
Watt
p

. The evolution is completely specified by the
instantaneous values (of V�t�, X�t�, and E�t�), and there are
no stochastic terms in the equations. The equations are
nonlinear through the quadratic terms in the second equa-
tion and the mixed terms (E�t�X�t�) in the last two equations.
Lastly, dissipation, included via the "diagonal" terms (a for
mechanical dissipation and d for optical dissipation), im-
plies that the solution is bounded and that phase space will
converge to a point upon turning off the input power
(jEpj2). An analytical solution for Eq. (1) was recently
demonstrated in the subchaotic regime [23]. However,
the aperiodic behavior (Fig. 2(c)) implies that a numerical
solution is likely to be helpful here.

The evolution of a perturbation ~" � ��X; �V;
�Ere; �Eim� is derived by linearizing Eq. (1) to become

 

� _X�t� � �V�t�;

� _V�t� � �a�V�t� � b�X�t� � 2c�Ere�t��Ere�t�

� Eim�t��Eim�t��;

� _Ere�t� � �e� fX�t���Eim�t� � f�X�t�Eim�t� � d�Ere�t�;

� _Eim�t� � ��e� fX�t���Ere�t� � f�X�t�Ere�t� � d�Eim�t�:

(2)

Solving the above 8 differential equations numerically
by using the predictor-corrector Adams’s method reveals a
low input-power subchaotic regime in which the dynamics
is periodic (calculated in Fig. 3(a) RHS and observed
experimentally in Fig. 1(b) and 2(a)). The flat evolution
of log�� output power� in Fig. 3(a) indicates that in this
subchaotic regime, the trajectories of two systems with
infinitesimally different initial condition will not diverge.
This dynamic is referred to as a limit-cycle, to describe an
attracting set to which trajectories converge and upon
which trajectories are periodic.

At higher optical-input power, a transition to an aperi-
odic oscillation appears, and the calculated system behav-
ior (Fig. 3(b) RHS) is as measured in Fig. 1(d) and 2(c). In
this input power, the calculated exponential divergence of
� output power (Fig. 3(b) LHS) indicates a different re-
gime in which initially nearby points in phase space evolve
into completely different states separating as shown in
Fig. 3(b) (LHS). The logarithmic slope defines the
Lyapunov exponent and quantifies the chaotic degree of
the system and its sensitivity to slight changes in the initial
conditions. The behavior in the chaotic regime is charac-
terized (among other things) by the structure of the phase-
space trajectory. In this regard, the calculated phase-space
trajectory in Fig. 3(b) exhibits structure similar to the one
measured in Fig. 2(c) as evident by the empty regions at the
center and on the right, and by the stick out on its left. Also
in the subchaotic regime, the calculated phase space
(Fig. 3(a)) is similar to the measured one (Fig. 2(a)). In
this Letter, we have made the first experimental study of
opto-excited chaotic oscillations induced by radiation pres-
sure. Using a continuous optical input as well as repeating

 

FIG. 2. Experimental results: As the input power increases, the periodic oscillation (a) of a toroidal microcavity doubles its period
twice (b) and then turns aperiodic (c). Oscillation of the output power is measured in the frequency domain as well as in the temporal
domain. Phase-space plots of the first derivative of the measured output power in time versus the measured output power are also
shown. The inset in (a) shows a toroid like the one investigated here. Panels a, b, and c were taken at pump power (jEpj2) of 11, 21, and
28.7 mW. The mechanical Q is 250, and the optical Q is 107. Major and minor toroid radii are 14.5 and 3 �m.
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the experiments in different geometries (tori and spheres)
shows that this chaotic vibration is an intrinsic cavity
property requiring no external feedback or external modu-
lation and is not limited to a specific geometry. Along this
line, it seems likely that the regime of chaos is also
obtainable in cantilever [23] and other opto-mechanical
cavities. Different from optical chaos in which laser action
is necessary [24], the platform here is laser independent.
Yet, integration of a laser in a device as in Fig. 1 is possible
[25], allowing further degrees of freedom for future re-
search. Our platform allows freedom in choosing different
optical wavelengths (260–2000 nm), changing the cou-
pling constant, selecting the geometry and selecting high-
order mechanical modes to allow vibrational frequencies
from MHz to above GHz. We can also change the detuning
between the optical wavelength of the source and the
optical resonance wavelength of the cavity at mechanical
equilibrium. Another possibility is cascading many such
opto-mechanical resonators either optically via the fiber or
acoustically via the silicon wafer [9]. Additionally, by
changing cavity size and shape, chaotic oscillation can be
engineered to span from MHz to GHz vibration rates and
above [26]. To conclude, there is growing interest in the
manifestation of radiation pressure as an opto-mechanical
nonlinearity for various applications as suggested theoreti-
cally in Refs. [27–29]. Taking into account the continued
trend of miniaturization and loss reduction in optical mi-

crocavities of all forms, we believe that opto-excited cha-
otic vibration will soon be relevant to more and more
devices over many platforms operating at yet higher
frequencies.
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FIG. 3. Theoretical calculation. (a): log�� output power� vs
time for low input power exhibits a flat evolution. Parameters
are the same as those of the experiment in Fig. 2 and were
measured to be a � 1:4� 106, b � 1:2� 1017, c � 9779, d �
1:2� 108, e � 1:3� 108, f � 1:1� 1020, g � 2:2� 1010 all in
MKS. Mechanical- and optical-damping is weak (b), increasing
the input power (to be the same as in experiment with details in
Fig. 2(c)) causes exponential divergence of � output power .
Insets are the calculated evolution in phase space and time
exhibiting similar behavior to the one measured in Fig. 2.
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