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Abstract

WIMP-nucleon scattering is analyzed at order 1/M in Heavy WIMP Effective Theory. The 1/M
power corrections, where M > myy is the WIMP mass, distinguish between different underlying UV
models with the same universal limit and their impact on direct detection rates can be enhanced relative
to naive expectations due to generic amplitude-level cancellations at leading order. The necessary
one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions
with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet
WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity
WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits
and projected future sensitivities. Our results provide the most robust prediction for electroweak
triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two
sources of power corrections yields a small total 1/M correction, and a total cross section close to the
universal limit for M 2 few x 100 GeV. For the SU(2) composite scalar, the 1/M corrections introduce
dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1/M
correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further
suppresses the total cross section. These examples provide definite targets for future direct detection
experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV
mass regime.



1 Introduction

The WIMP paradigm remains a leading explanation for astrophysical dark matter [1-7]. Null results
at the LHC [8-11] suggest that new physics is heavy compared to masses of weak scale particles, ~
100 GeV. This situation presents experimental challenges. For example, at high-energy colliders it is
difficult to produce and detect on-shell heavy states that are coupled weakly to the Standard Model.
Production cross sections are small and novel search strategies are required to distinguish signal from
background. For the SU(2)w x U(1)y charged WIMPs considered in this paper, with masses above the
electroweak scale, detection prospects remain challenging at foreseeable colliders [12-17]. Indirect searches
for WIMP annihilation signals present a complementary set of opportunities and experimental challenges,
and introduce dependence on astrophysical modeling [18-25]. Heavy particle techniques can be similarly
applied to this case [22, 26-28].

The heavy WIMP regime is also challenging for direct detection prospects. First, since the abundance
of astrophysical dark matter particles for a given local energy density scales inversely as the particle
mass, WIMPs are less abundant and detection rates for a given cross section are smaller. Second, as the
mass spectrum of new physics states becomes stretched above the weak scale, the absence of accessible
intermediate states forbids the simplest higgs-mediated interactions of WIMPs with nucleons, causing
cross sections to be smaller.

However, although the interaction rates between WIMPs and nucleons may become smaller, they
also become more certain. Heavy WIMP symmetry emerges in the limit that the WIMP mass, M, is
large compared to the electroweak scale, i.e., M > myy. Scattering cross sections become universal for
given WIMP gauge quantum numbers, independent of the detailed UV physics [29, 30]. For example,
the cross section in this limit is independent of whether the particle is scalar or fermion, composite or
fundamental. This universality provides robust sensitivity targets for ambitious next generation direct
detection experiments, and will be key to interpreting any confirmed signal.

In previous work, two of the authors (RJH and MPS) analyzed the universal heavy WIMP limit for
WIMP-nucleon scattering [29-32]. In this limit a generic amplitude-level cancellation [29, 30, 33] was
shown to suppress the low-velocity WIMP-nucleon cross section to the level of ~ 10747 cm? for wino-like
WIMPs (i.e., self-conjugate electroweak triplets), and higgsino-like cross sections to an even smaller value.
It is natural to ask whether in the presence of such cancellations, formally subleading effects can become
numerically relevant beyond naive dimensional estimates. For example, focusing on the electroweak triplet
case, the cancellation results in a total amplitude whose magnitude is ~ 20% the size of the component
subamplitudes [32], and a WIMP-nucleon cross section that is therefore suppressed by more than an order
of magnitude. For TeV scale WIMPs, corrections of order my, /M could potentially enter at a similar
numerical level. Here we analyze such 1/M power corrections, and quantify the corresponding violations
of heavy WIMP universality.

The remainder of the paper is structured as follows. Section 2 extends Heavy WIMP Effective Theory
(HWET) to incorporate 1/M power corrections, and Sec. 3 matches to the low energy effective theory
after integrating out weak-scale particles. Section 4 computes the low-velocity scattering cross section of
WIMPs on nucleons. Section 5 provides a summary and outlook.

2 Heavy WIMP Effective Theory at order 1/M

Heavy particle effective theory can be used to analyze Standard Model (SM) extensions consisting of
electroweak multiplets whose mass M is large compared to SM particle masses, M > my,. Additional
heavy multiplets, of mass M’, may be integrated out for generic mass splitting M’ — M = O(M). The
special case M’ — M = O(myy) requires that the additional multiplet appear explicitly in the HWET [30].!

! For a related application of heavy particle effective theory to the case of an electroweak singlet bino that is nearly
degenerate with a stop, see Ref. [34].
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Figure 1: Matching condition for the coefficient ¢y for UV theory consisting of the Standard Model plus
SU (2)w-triplet Majorana fermion. Solid lines denote Majorana fermion, dashed lines denote SM Higgs
doublet, zigzag lines denote SU(2)y gauge fields. Matching is performed in the electroweak symmetric
theory. Double lines on the RHS denote heavy WIMPs and the encircled cross denotes insertion of a
1/M effective theory vertex. For UV theory consisting of a composite real scalar transforming as a triplet
under SU(2)y, the additional bracketed terms appear on the LHS, including the counterterm contribution
denoted by the solid square.

Here we focus on a single multiplet of self-conjugate heavy particle fields with arbitrary spin, transforming
under irreducible representations of electroweak SU(2)y x U(1l)y. Where a specific representation is
required, we illustrate with an electroweak triplet.

Working through order 1/M, the gauge- and Lorentz-invariant lagrangian in the one-heavy-particle
sector (i.e., bilinear in h,) is [29]

2M M M M

where the timelike unit vector v¥ defines the heavy WIMP velocity, D, = 0, — ig1Y By, — igaWjit® is
the covariant derivative, W, = i[Dy,, D,]/g2 = WS, t* is the field strength, and D' = D —vtv - D.
The heavy particle field h, satisfies projection relations as discussed in detail in Ref. [35]; for example,
a fermionic heavy particle field obeys ¢h, = h,. The self-conjugate condition is enforced in the effective
theory by requiring invariance of the lagrangian under

_ D2 HH ay 0% W
£:hv{w D — 6m———|—cH+chw+CW2“‘W’)+...}hv, (1)

vt — —vt hy — R, (2)

where h{ denotes charge conjugation. For an irreducible representation of a self-conjugate field, we
necessarily have zero hypercharge and integer isospin. The interactions labeled by cy1 and cpyo are
present for the fermionic case. They contribute only to spin-dependent interactions at low velocity and
will be ignored in the following.

The coefficient, —1/2, of the kinetic term D? /M in Eq. (1) is fixed by relativistic invariance [35, 36].
The residual mass, dm in Eq. (1), may be chosen for convenience. In a theory without electroweak
symmetry breaking, taking ém = 0 would enforce that M is the physical particle (pole) mass. For
matching calculations at the electroweak scale, it is convenient to choose §m = ¢y (| H|?)/M to cancel the
mass contribution from electroweak symmetry breaking.

The parameter cy encodes ultraviolet physics above the scale M, and can be determined by a matching
computation between a specified UV theory and HWET, described by Eq. (1). As an example, let



us consider the case where the UV theory is given by the SM and an electroweak triplet of Majorana
fermions. Matching onto HWET is illustrated in Fig. 1. The matching can be performed in the electroweak
symmetric theory. After expanding in the Higgs mass parameter, the EFT diagrams are scaleless but
dimensionful and thus vanish in dimensional regularization. Evaluation of the full theory diagrams yields
the matching condition,

cr(Majorana fermion) = —3a3 . (3)

As a simple renormalizable extension of this case, consider an additional electroweak multiplet transform-
ing with higgsino quantum numbers (SU(2)y doublet, hypercharge Y = 1/2) with mass Mp. For generic
doublet-triplet mass splitting, Mp — Mp = O(Mry), the matching coefficient becomes

9  Mrp

i (doublet — triplet) = —3a3 + dmagk’ T ——

(4)
where k is the renormalizable trilinear coupling between the triplet and doublet fermions and the SM
Higgs field [30, 31]. As expected, when Mp/Mp — oo, the result (4) reduces to the pure triplet result
(3).

As an example involving scalar versus fermionic WIMP, consider the pseudo-Goldstone bosons that
emerge from a QCD-like SM extension with vector-like SU(2)y couplings to underlying fermions [37,
38]. Recall that the lightest such states form an electroweak triplet, regardless of the fermionic SU(2)w
representation, and these “weakly interacting stable pions” are stabilized by a discrete symmetry (the
unbroken analog of Standard Model G parity) [38]. The matching is again illustrated in Fig. 1, where now
the full theory diagrams involve relativistic scalars, and also a counterterm four point function between
the WIMP and SM Higgs field. The one-loop diagrams are UV divergent as a function of the cutoff Ay
representing the new strong interaction scale. The divergence is cancelled by the counterterm contribution.
For the composite theory under consideration, the divergence corresponds to a logarithmically enhanced
term in the matching. Taking this “chiral” logarithm as an estimate, we have

2

A 1
: ». h o 2
cp (composite scalar) = a3 log —% + -+ ~ a3 log o +..., (5)

where the ellipsis denotes O(1) terms that are not logarithmically enhanced. The last equality corresponds
to a chiral symmetry breaking mass M induced by SU(2)w radiative corrections: M?/A? ~ as [38]. The
precise matching condition could in principle be computed using strong interaction methods in the chosen
UV theory.

The cases (3), (4), and (5) establish the range of ¢y encountered in a variety of weakly coupled UV
models, involving fermions and scalars, composite and elementary particles, and both pure-state and
multi-component models. Before investigating the impact of these differences on direct detection cross
sections, let us perform the remaining step of matching HWET onto effective QCD operators.

3 Effective Theory Below the Weak Scale

The scale separation my > Aqcp, is exploited by matching onto a heavy particle effective theory for the
relevant electrically neutral component of the WIMP, interacting with five flavor QCD:

L= hf)o)hgo){ Z [cgo)O((lO) + 6512)?./“11,,0(52)””] + céO)O!(JO) + C;Q)UHUVOE]Q)“V} +.... (6)

q=u,d,s,c,b

This matching step is common to different UV realizations of the electroweak triplet WIMP. In Eq. (6),
hz(,o) is the neutral WIMP, and the spin-0 and spin-2 QCD operators for quarks and gluons are given by

1 " .
01(10) = mqqq 0512”” = iq_ (’Y{MlD} - gdle_) q,

4
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Figure 2: Diagrams contributing to 1/M quark matching, with the same notation as in Fig. 1. Diagrams
with crossed W lines are not displayed.

|

Figure 3: Diagrams contributing to 1/M gluon matching, with the same notation as in Fig. 1. Curly lines
denote gluons. Diagrams with both gluons attached to the upper quark line or with one gluon attached
to each of the upper and lower quark lines are not shown.

17 v ]‘ v
O = (Gpu)* O = —GUAG + 9" (Gip)” (7)

where d = 4 — 2¢ is the spacetime dimension, D_ = B — ﬁ’ and curly braces denote symmetrization,
AleBYY = (AMBY + A¥BM)/2. The ellipsis in Eq. (6) denotes higher dimension operators suppressed by
Aqcp/myw, and spin-dependent operators.

By restricting to dimension seven operators in Eq. (6), we are neglecting contributions suppressed by
additional powers of A120w— energy /m3;, where Alow—energy denotes any scale below myy (e.g., my, or Aqep).
However, we will account for corrections of order myy /M in the coefficient functions appearing in Eq. (6)
in our analysis of HWET power corrections. This power counting is appropriate for dark matter masses in
the few hundred GeV to TeV range, a focus for current and next generation direct detection experiments.

We now proceed to match the theory (1) to the theory (6). By integrating out weak scale particles (the
Higgs boson, electroweak gauge bosons, and the top quark), we obtain a solution for the twelve effective
theory coefficients (cgo) and 0512) with ¢ = u,d, s, ¢, b, as well as céo) and c§2)) that specify the interactions
of DM with five flavor QCD. We neglect subleading corrections involving light quark masses, and use
CKM unitarity to simplify sums over quark flavors. Approximating |V;| =~ 1, these simplifications imply
that cq(jg) = CEZS) = C(SS) = CS;S) for S = 0,2, leaving six independent coefficients. In the following, we denote
generic up- and down-type quarks in five-flavor QCD by U and D, respectively, and an arbitrary quark



flavor by g¢.

Feynman diagrams contributing to the matching at O(1/M) for the quark and gluon coefficients are
shown in Figs. 2 and 3, respectively. Diagrams for gluon operators contain an additional loop compared
to diagrams for quark operators. However, owing to the large gluon matrix elements of the nucleons, these
operators are numerically of similar size, or dominant. We compute each of the operator coefficients in
Eq. (6) to leading order in electroweak couplings, and hence we neglect one-loop diagrams involving cg
for quark matching and two-loop diagrams involving cg for gluon matching. The impact of higher order
contributions is estimated in the numerical analysis by varying the factorization scale. The techniques for
electroweak scale matching detailed in Ref. [31] can be applied to the present calculation. We describe some
pertinent details here. Compared to the leading power analysis considered in Ref. [31], computation of the
1/M corrections requires an extended master integral basis, and different components of the electroweak
polarization tensor for the background field gluon matching.

In performing the gluon matching, it is convenient to distinguish between amplitudes with one or two
bosons exchanged in the ¢t-channel. One-boson exchange amplitudes are shown in the top row of Fig. 3,
while two-boson exchange amplitudes are shown in the bottom row. The one-boson exchange amplitudes
factorize into the one-boson exchange amplitudes for quark matching (top row of Fig. 2) times the quark
loop, and contribute only to the scalar coefficient. For the two-boson exchange amplitudes, we employ
electroweak polarization tensors, I, induced by a loop of quarks in a background field of external
gluons [31, 39, 40]. The temporal components, v,v,II*”, are sufficient for the leading power analysis,
while for the 1/M corrections we require also the spatial components; these may be extracted from
Ref. [31]. The renormalization of Wilson coefficients for the quark and gluon operators is discussed in
Ref. [32].

From the sum of one and two loop diagrams in Figs. 2 and 3, we obtain the final results for coefficients
renormalized in the MS scheme:

(0, L mw cmg
v “—**M*
ROV s T _mw CH
A 1 mw CH
C [ (xt +1)2 " M 3a2xh]
(2 2 mw
%J)(M) 3 aM’
2
A(2) 2 5 3xr + 2 4 2 mw ([ 145 —x7 + xt 4wt log
¢p (u) =3 +0py [Wtﬂ)g AR +dpb R :
@ = @ (10, B o) H2H3z), 1
¢ () 47r{ ¢ ( 9 8 myw 9(1 + x4)3 °8 mw (1 + x¢)

B 4(12z9 — 362} + 3627 — 1227 + 32 — 2) log 8x4(—3 + Ta?)
9(z; — 1) 14w 9@?—1)
4829 + 2479 — 1042} — 3523 + 2027 + 13z + 18
a 9(x? — 1)2(1 + xy)

8 1 162} 4(3z7 — 1 1627
+ mw Ny | = log AT + 27% log x4 log A (3z; ) log a + e log?
3 3(xf — myy

log 2

M mw 3 1)3 32?2 —1)2 " my 3
—4““?_H?§+&ﬁ+q)bgm4-&fwg_%#*”h%_lhjx1—xb4_“ﬁﬁ
3(x —1)3 3(x? —1)3 9
8xf — Ta? + 1
_éijgﬁﬁf . (8)
3(zi — 1)

Here Lis(2) = Y 32, 2¥/k? is the polylogarithm of order 2. We also introduce the shorthand notation



¢ = (71'0[% /m%v)éz for the effective operator coefficients, x; = m;/my for masses expressed in units of
myy, subscripts U and D denote arbitrary up-type (u, ¢ or t) or down-type (d, s or b) quarks, respectively
(so that the Kronecker delta, dpy, is equal to unity for D = b and vanishes for D = d, s), and Ny = 2 is
the number of massless Standard Model generations. The leading power results, represented by M — oo
in Eq. (8), were obtained in Ref. [29].? Let us remark that our results (8) obey the correct formal limit
at small z;: [29]

Qs
A sim0 = D (ny = 6) — Ecﬁ}” (ny=6)+0(a2),
AP0 = e (ng = 6) = 32 log ~ L ny = 6) + Oa) (9)

where c¢(ny = 6) denotes the coefficient in six-flavor QCD computed with three massless generations
(i.e., my < mw).> At large x;, m; > myy, the top quark contributions to the coefficients are of order

(0)

~ m3,/m?. For the special case of a Majorana fermion (cy = —3a3), the 1/M corrections for ¢4y and

6512) are reproduced by an expansion of expressions in Ref. [42]. However, already at leading power the

expression in Ref. [42] for cgz) disagrees with the corresponding results in Ref. [29] and Eq. (8). We note

that the expression for c(g2) in Ref. [42] does not have the correct m; — 0 limit.

4 Cross sections

Let us consider the standard benchmark process for direct detection: the zero velocity limit of (spin-
independent) WIMP-nucleon scattering. The cross section is determined by the spin-0 and spin-2 matrix

elements, ME\(,]) and MS\Q,), of the operators in Eq. (7),

MG =37 (o) (V108 (1) V) . (10)

1=q,9

In order to evaluate the hadronic matrix elements using available low energy inputs, the five flavor
QCD theory must be matched to the appropriate three or four flavor theory, accounting for heavy quark
threshold matching corrections and renormalization group evolution from electroweak to hadronic scales.
Details of this matching can be found in Ref. [32]. For the spin-0 matrix elements, we match to the
three flavor theory with NNNLO QCD corrections,* and following Ref. [32] make the default scale choices
pe = (me + mw)/2 = 126 GeV, up = 4.75GeV, p. = 1.4GeV, and py = 1.2GeV. For the spin-2
matrix elements, we use NLO running and matching, and check that our evaluation is consistent with
an evaluation at the weak scale, in the five flavor theory. The impact of higher order perturbative
QCD corrections is estimated by varying factorization scales m%,V /2 < pu? < 2m?, mg /2 < ug < 2m§,
mz /2 < ug < 2mg, and 1.0 GeV < pg < 1.4 GeV. There are additional uncertainties associated with the
hadronic form factors that characterize the overlap between the nucleon states and the quark and gluon
operators. We employ the form factor central values and uncertainties from Ref. [32], which were adapted
from Refs. [43-46] (see also Ref. [47]). Errors from all sources are added in quadrature to obtain the total
cross section error.

Neglecting numerically small CKM factors and isospin violation in nucleon matrix elements [32], the

2 Tn obtaining the results (8), it is important to evaluate all integrals and bare coefficients in d = 4 —2¢ dimensions [29, 31].
For a related discussion see Ref. [41].
3 In particular, the quark matching coefficients are ééo)(nf =6) = —%2 — ¥ 51> and é,(f)(nf =6) =2 - "W for
“h 2%h

q = u,d,c,s,t,b. The gluon matching coefficients are obtained by omitting the top quark loop contributions in Eq. (8) and
setting N, = 3: é(go)(nf =6) = g2 and 6(92)(7’lf =6)=9= [—%log# -6+ 2K (BIOgﬁ — 1)]

T 4w

4 For the leading power analysis, this corresponds to amplitude “5” discussed in Figure 2 and Section 6.2.3 of Ref. [32].
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Figure 4: The WIMP-proton scattering cross section as a function of WIMP mass M for a Majorana
WIMP (left panel) and a scalar WIMP (right panel), which correspond to the ¢y values in Egs. (3) and (5),
respectively. The inner band is the cross section obtained from the scalar and tensor amplitudes computed
through O(1/M). The outer band includes an estimate for the O(1/M?) contributions. The neutrino
floor for both Argon and Xenon direct detection experiments are from Ref. [48], and are shown by black
solid lines; our extrapolation to larger masses is denoted with black dashed lines. Also shown with solid
lines are the current bounds from LUX [49], XENONIT [50], and PandaX-II [51]. Projected sensitivities
of future experiments are shown with dotted lines: DEAP-3600 [52], XENONI1T and XENONnT [53],
LZ [54], and DARWIN [55].

cross sections for scattering on protons or neutrons are identical:’

0 2
O 4 pm@

2, (1)
where m, = m,M/(my, + M) = m,, is the reduced mass of the WIMP-nucleon system. In Fig. 4 we show
the cross section including first order power corrections as a function of M for a fundamental fermion,
Eq. (3), and for a composite scalar, Eq. (5). The central value amplitudes, in units with M;@\M%oo =1,
are

) mywy 0 CH My
MP =1-052—5, M =081 - 0505 837 - (12)
The numerical evaluation (12) exhibits the partial cancellation of the universal M — oo result. For the
Majorana fermion case, where cyy = —3a3, the myy /M power correction also exhibits a surprising cancel-
lation. The impact of neglected higher-order power corrections is estimated by including an uncertainty
in the tensor amplitude as Mg) x M;,2)|M_>oo [1+ (mw/M)?|. At large mass, the power corrections
vanish, and the universal result with central value and uncertainty from Ref. [32] is reproduced. At finite

5 The Wilson coefficients ¢ and c&s) in Eq. (8) are identical. The light quark operators in Eq. (6) thus appear in the

combinations Oﬁs) + O((is), whose proton and neutron matrix elements are identical up to isospin violating corrections. These

percent level corrections, proportional to a &~ 1/137 or (m. — ma)/Aqcp, are subdominant in the error budget for Mg\}g).
See Ref. [32] for details.



WIMP mass, the dependence of the cross section on the Higgs coupling ¢y differentiates the fermion and
scalar cases.

Figure 4 compares to existing limits from LUX [49], XENONI1T [50], and PandaX-II [51],° and to
projected sensitivities for the Xenon based experiments XENONnT [53], LZ [54], and DARWIN [55], and
the Argon based experiment DEAP-3600 [52]. Also shown is the “discovery limit” for both Xenon and
Argon due to neutrino backgrounds, taken from Ref. [48].

5 Summary

The scattering of atomic nuclei from approximately static sources of electroweak SU(2) is a well posed
but intricate field theory problem that finds application in the search for WIMP dark matter in our local
halo. LHC bounds have pushed the scale of new physics into a regime of large mass where direct detection
is more challenging; however at the same time, universal predictions emerge in this regime and provide
well-defined targets for next generation searches.

Generic amplitude level cancellations imply a potentially enhanced sensitivity of direct detection rate
predictions to naively power suppressed interactions. In this paper we considered the general framework
to analyze these power corrections, and analyzed the canonical case of a self-conjugate electroweak-triplet
WIMP through order 1/M. Owing to heavy particle universality, the leading cross section prediction is
identical whether such a WIMP is fermion or scalar, elementary or composite, and whether the WIMP is
accompanied by other, heavier, particles in the Standard Model extension. Power corrections differentiate
these scenarios, as illustrated in Fig. 4 for the benchmark low-velocity WIMP-nucleon cross section. For
the elementary fermion case, two contributions to the power correction largely cancel, resulting in a small
deviation from the universal M — oo limit. Our result represents the most complete calculation of the
cross section for wino-like dark matter in the TeV regime. A standard thermal cosmology, consistent with
the observed dark matter abundance, predicts M ~ 2 — 3 TeV for such electroweak charged WIMPs [56—
60]. The elementary Majorana fermion case involves no free parameters, and a prediction M =~ 2.9 TeV is
obtained after careful accounting for nonperturbative enhancements [61]. For the scalar case, the precise
annihilation cross section, and hence cosmological mass constraint, depends on internal structure. At
the TeV mass scales indicated by cosmological arguments, the predicted WIMP-nucleus scattering rate is
comparable to the rate for neutrino-induced backgrounds. This cross section benchmark motivates very
large scale detectors, and techniques to understand and probe into the so-called neutrino floor [62].

A number of investigations are suggested by our results. Besides its computational power, the heavy
WIMP expansion provides an excellent classification scheme for WIMP direct detection in the increasingly
important heavy WIMP regime. The SU(2) triplet (i.e., wino-like) case represents a canonical benchmark.
Other quantum numbers such as the higgsino-like case may be similarly investigated. The proximity of
the triplet cross section in Fig. 4 to the neutrino floor makes the precise WIMP mass of particular interest.
For the composite scalar case, new nonperturbative physics enters in two key places: the Higgs coupling
parameter cy that determines the size of the direct detection cross section; and the annihilation process
that determines the cosmological mass constraint within a specified cosmological model. This physics
could be accessed by lattice field theory [63] and/or chiral lagrangian analysis for the new strongly
coupled sector. Nuclear effects such as two-body correlations could potentially have differing impacts on
the spin-0 and spin-2 operators in Eq. (6). Like the 1/M corrections, the existence of a severe cancellation
in the leading cross section can potentially enhance the impact of such naively subleading effects. Existing
estimates for such nuclear effects, focused on the spin-0 sector, indicate a small impact relative to other
uncertainties [64-66], however a more systematic analysis is warranted.
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