
Vo~UME 56, NUMszR 18 PHYSICAL REVIEW LKTTKRS 3 M@Y 1976

that the eigenfrequencies exhibit a tendency to-
ward "locked modes, "e.g. , an 8 spin coupled to
two I spins will exhibit a single eigenfrequency
equal to the root mean square of the individual
coupling strengths. For these reasons, and

others, ' we believe that the present approach has
greater promise for the determination of the lo-
cal geometrical structure of solids.

We are indebted to V. R. Cross for help in the
analysis of data.
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I prove that the ground-state energy of an arbitrary system of nonrelativistic spinless
Bose particles increases when any (arbitrarily strong or inhomogeneous) magnetic field
is turned on.

Let

H(a) =-g (2p,) '[V, -fe, a(x,.)]'

+ Q v,„(r,—r„.) +L v~ (r, ),

(q,H(0) q) ~ (y,H(a) y) (2)

for all g, for (2} is false) Equation (2) would

imply an inequality on all eigenvalues but it is
obvious that in the case n = I, and v spherically
symmetric, energies of l ~ 0 states decrease in
lowest-order perturbation theory for a suitable
choice of a. This remark shows that the theorem
fails for fermions for the v;,. can be chosen zero t

Note also that various analyses' of explicit ex-

where a, v,~, and v,. are arbitrary real-valued
functions. My goal in this note is to prove the
following elementary fact that appears to have
escaped previous notice:

Theorem. =As an operator on either all square-
integrable n-particle functions or on functions
with Bose statistics on all of the particles, H(0)
has a smaller ground-state energy than H(a).

I emphasize that this result is not coming from
a general inequality

amples of H(a) have noted the occurrence of an
inequality E(a) ~ E(0) in these explicit examples.

I will prove the inequality

(lyl, H(0)lyl) - {y,H(a) q). (3)

E(a) = inf ($,H(a)g) ) inf(lgI, H(0)ill)

inf (gH(0)(p) =E(0).

Notice that (3), unlike (2), does not imply any-
thing about excited states because f-gl destroys
orthogonality. In addition, ('3) tells us nothing
about the fermion case since g-Igl destroys
Fermi statistics.

The inequality (3) follows from a more general
inequality' of Kato proven for different purposes.
By borrowing only part of his proof one can show

(3) easily'. Since Igl'=g*P, then with 3n-dimen-
sional gradients,

lql Iv I qll = IRe(gravy)I=IRe[g*(v -fa) g]l

- lgll(v-ia)yl.

Thus Ivlgll'(&) l(v —&a)&I'(&)»tegrating over x

Equation (3) implies the theorem by the variation-
al principle,
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and adding (g, ng) =(igj,vip') to both sides yields
Eq. (3).
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T. Kato, Israel J. Math. 13, 135-148 (1973). Kato
proves that II(0) Igl - Re[(ega)II(a) g], whence (3) fol-
lows by multiplyirjg by l&l and integrating.

SSince !PI is not differentiable, one should really
prove (3) as Kato does, letting g, =(Igl +e')' ' and then
taking e to zero.
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The high-temperature, normal-state resistivity of strong-coupled superconducting tran-
sition-metal compounds saturates at a value corresponding to an electron mean free path
of the order of the interatomic spacing in the compound. This accounts for the nonlinear
temperature dependence of the resistivity observed in these compounds at high tempera-
ture.

The normal-state electrical resistivity (p) of
a large class of transition-metal superconduc-
tors, including the high-T, A-15 structure com-
pounds, is known to have a temperature depen-
dence very different from that predicted by the
Bloch-Gruneisen theory or Wilson's modification
thereof. ' ' Near T, the electrical resistance var-
ies approximately as T', consistent with Wilson's
theory'; this regime joins smoothly to one of
strong negative curvature (d p/dT' &0), the in-
inflection point, d'p/dT'= 0, being quite general-
ly of order 100'K; at high temperature the resis-
tivity rises less rapidly than a linear T depen-
dence. We ask how this curvature in the resis-
tivity is related to the occurrence of supercon-
ductivity.

One ingredient of the answer is that the elec-
tron-phonon coupling (A.) in such materials is
large. This follows from the magnitude of the
observed resistivities: The room-tempe rature
value is high, typically 50-70 p,A cm. In addi-
tion, the inflection point of the resistance curve
moves to lower temperature as T, increases in
closely related sequences of compounds, ' consis-
tent with an increased X. Anomalous curvature
occurs, then, when X is large.

Large ~ itself, however, does not account for
the curvature. Two plausible explanations have
been proposed for this curvature. One is the Co-
hen, Cody, and Halloran model'. A rapid tem-
perature dependence of the density of states at

the Fermi level resulting from a nearly empty
or full high-density-of-states d band overlying
a low-density-of-states s band leads to resis-
tance curves of the kind observed. This model
successfully correlates the resistance with a
number of other temperature-dependent proper-
ties of Nb, Sn, V,Si, and V,Ga. The other expla-
nation is that of Allen et al.': Hardening of lat-
tice vibrational modes as T increases results in
a resistivity which rises with less than a linear
T dependence. On the basis of neutron data for
V381, they can account for about half the curva-
ture observed in the resistivity of V,Si from T,
to room temperature.

We belive that, while the above treatments are
appropriate to these materials, at high tempera-
tures a different effect dominates. Figure 1
shows data on the electrical resistivity of A-15
structure NbsSn (T, =18'K) and single crystal
Nb, Sb (T, =0.2'K). Data for Nb, Sn were read
from a graph in Ref. 1. Knapp, Bader, and Fisk
have measured the heat capacity of both these
compounds between 2 and 400'K. ' The electronic
specific heat y for Nb, Sb is 1.1 mJ/'K' gram-
atom, more than a factor of 10 less than that of
the isostructural Nb, Sn. In addition, analysis of
the anharmonic contribution to the heat capacity
shows that the Nb, Sb lattice softens as Tincreas-
es, opposite to Nb, Sn. It is unlikely, therefore,
that the previous two explanations apply to Nb, Sb,
yet its resistivity is very similar to that of NbsSn
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