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Duality transformations, i.e., rotations of electric and magnetic fields into each other, are implementable by a
time-local generator for source-free Maxwell theory in an arbitrary spacetime metric. The Maxwell action

| (E?— B?) as well as the stress tensor components, e.g., E+ B?, are duality invariant and the generator is
conserved. In the formally analogous Yang-Mills case, duality transformations cannot even be consistently

implemented.

I. INTRODUCTION

The source-free Maxwell equations, expressed
in the symmetrical form
9,F"'=0, 8,*F"'=0; 1.1

1
*F“”:EGF“/ aBFaB ,

are manifestly invariant under an arbitrary local
linear transformation among the components of
F"’ and its dual *F*, or, equivalently, of E' and
B'. In particular, duality rotations,! whose in-
finitesimal expression is 6E(x) =BB(x),

6B(x) = -BE(x), also leave the stress tensor T"¥(F)
invariant since its components are rotationally
invariant binomials in E and B. Paradoxically,

the Maxwell action

S=-% fd"xFu,,F‘“’

=3 f d*x(E® - B?) (1.2)

would seem to be only invariant under hyperbolic
rotations. Nevertheless, S is easily seen to be
invariant under infinitesimal rotations, at least,
by recalling that in (1.2) F,, is only shorthand for
9,A,-9,A,, for then

GBS=-§fd4xF“"5FW
=—%de4xF“"*Fu,,

=-Bfd“xau(e“”‘BA,,aaAﬁ):O. (1.3)

For finite rotations, however, the action would
seem to change by a scale factor:

f (E'2 ~B’?) =(cos®8 - sinz,B)f (E? -B?),
which would paradoxically leadto arescaled stress

13

tensor, although the Euler-Lagrange equations
would of course be unchanged.

The seemingly contradictory situation discussed
above, that the field equations and stress tensor
share a symmetry different from that of the action,
is resolved by the remark that a formal trans-
formation is only meaningful for a dynamical sys-
tem if it can be implemented at the level of the
basic field variables ¢* by a consistent set of
variations 6¢*[¢]; in our case this would involve
either the A, or the A, and their conjugates, de-
pending on whether Lagrangian (second-order) or
Hamiltonian (first-order) form is used. Any as-
sociated invariance will be meaningful if the cor-
responding variation of the action consists of a
boundary term involving time derivatives of a
finite order. This time locality requirement en-
sures that the boundary terms can have zero vari-
ation without the requirement that the field vari-
ations vanish for all times. Space nonlocality is
permitted in the transformations provided only
that the variations have sufficiently rapid falloff
at spatial infinity.

We shall show that duality transformations in
Maxwell theory can be implemented in terms of
time-local variations in either Lagrangian® or
Hamiltonian formulation. The corresponding con-
served generator is a simple gauge-invariant

. time-local functional of E and B. Furthermore,

the hyperbolic rotation which would be expected
to keep the difference (E2? — B?) invariant cannot
even be implemented in Lagrangian form and does
not leave (E? - B?) invariant in Hamiltonian form.
Non-Abelian gauge fields would seem to be quite
analogous to the Maxwell case at first sight.
There is a symmetric set of field equations

D,F"" =0," D, *F"" =0;
*EIJ" :%@“’(XBE(XB (1.4)
in terms of the covariant derivative D, =8, +A , X
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in the SU(2) case we will discuss for simplicity.
(The underlines denote isovectors.) The stress
tensor is precisely a sum of Maxwell-type terms;
hence it is invariant under local (F uu’*F ) ro-
tations. The actionS=-3 fFu,, F" is again
seemingly invariant under infinitesimal linear
transformations, since the integrand of
0gS~ fFu,, *F‘“’ is again a total divergence when
the explicit from Fuy=0,4, -3,A, +A XA, is
inserted.®* However, we shall see that there ex-
ists no transformation of the basic fields which
reduces to a duality rotation when the equations
of motion hold and which leaves the action in-
variant. This conclusion will be reached in two
different ways: (a) indirectly, by showing that
there is no transformation of the A, which causes
F*? and *F*” to undergo a duality rotatlon while
leaving (1.4) invariant and (b) by direct work on
the action in the Hamiltonian formalism. In the
latter approach, we can in fact separate the con-
" clusion into two complementary statements: (i)
There is no consistent way of reproducing (F,*XF)
rotations through basic field variations. (ii) There
is no invariance of the action corresponding to
the “nearest possible analog” of the rotations. In
one view, the discrepancy between Abelian and
non-Abelian systems can be traced to the fact
that in the latter the longitudinal components of
electric and magnetic fields are nonzero but rather
complicated functions of the dynamical variables.
Formally the problem lies in the dependence of
D, onA, in the field equations (1.4), which must
be taken into account when varying them.

Although we shall work mostly in a flat space-
time we will show explicitly that our conclusions
carry over unchanged to an arbitrarily curved
manifold.

II. MAXWELL THEORY
Hamiltonian form
The Maxwell action in first-order form can be
considered at several successive steps of res-
olution:

- f d*X[E-A+3(E*+2B- VXA - B%) +A,V: E|

(2.1a)
=—fd4x{—f3'2+§[E2+(V><K)2] +A,V-E}

(2.1b)
=-f BT AT +L[ET)? + (vxATY)} . (2.1¢)

In (2.1a) all ten E¢, B ,A, are mdependent, in
(2.1b) the algebralc constramt B= VXA has been
eliminated; the Gauss constraint V- E =0 has been
solved for in the final version (2.1¢), where only
the two pairs of gauge-invariant transverse vari-

ables (E7, A7) survive. For simplicity we work
in the reduced form (2.1¢), although we could have
kept the additional gauge content (A%, 4,) of (2.1b)
as well as the a priori independence of B and VXA
of (2.1a).

We then define the finite rotation

E’ =cos8E +sinB VXA,
VXA’ =cosB VXA —sing E

(2.2a)
(2.2b)

in the space of transverse (divergence-free) vec-
tor fields, so that the vanishing of the logitudinal
components of (_fl, B) is automatically incorporated
in (2.2). The variation of A7 is uniquely obtained
from that of VxAT by “inverting” with —V~2Vx;
infinitesimally we have

6E =8VXA, b6A=3V-2vxE. (2.3)

The effect of the transformation (2.3) is to alter
the Lagrangian by a total time derivative, i.e.,

—- U - |2

GBS=—%;3fd3x(A-V><A+E-V'2V><E) ,

t1

(2.4)

so that (2.3) is indeed a symmetry transformation
of the action (2.1¢). The corresponding conserved
generator is easily obtained: When the equations
of motion hold, the change in the action is given
by

t t
88 = fdax(_E-aA)’ ? =_de3xE-v-2vxE
3

t
(2.5)
Equating (2.4) and (2.5) we find that

=%f Ax(-A- VxA+E. V2UxE)

=§J’ BxB-vUxB+E- v2uxE)  (2.6)

is a constant of the motion.* This is obvious in the
second form since B=-VxE, E=+VxB. It is
also easy to check that G generates the rotation
(2.3), in the sense that the changes in E and A
are given by the Poisson brackets of those quan-
tities with 8G.

Consider now the effect of a finite hyperbolic
rotation in this formalism, namely

E’ =coshB E +sinhj VXK,

VXA’ =coshB VXA +sinh8 E.
It is easy to see that the [E” - AT part of the action
is invariant, but the Hamiltonian is manifestly
noninvariant, so the action when actually ex-

pressed as a functional of the basic variables is
not invariant under hyperbolic rotations (but only
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is under ordinary rotations), despite its (E? — B?)
form.

Finally we show that our procedure carries
over to the case when the spacetime is endowed
with an arbitrary nonflat metric. Using the three-
dlmensmnal notation N =(—-g®)~V2, 3g=detllgll,

t=3gtig ., where 3%g' is the inverse of g;;, to-
gether with the choice of Maxwell variables
8'=V_g F°, the generalization of (2.1c) reads®

-f d'x [8'4; +5N (%) %g:y(8'8’ + B'@)

—€;xN'8'® ], (2.8)

where ®’ =€*/%5 A, is the magnetic field (a three
density). The field &' is clearly divergenceless,
as is §* which obeys the Gauss constraint §* ; =0
(ordinary and covariant divergences coincide for
contravariant densities). Under the rotation

58 =p@’, 6@’ =-B8", the last two terms in the
integrand of (2.8) are manifestly invariant. To
check the invariance of the S‘A, part we need not
even explicitly obtain 647 (with A;=AT +9,¢, it
is clear that only A7 enters in either ® or the
kinetic term since 8‘,,=0). Using the general
form 8% =¢**3,Z, for a divergenceless vector
one obtains (dropping two-dimensional surface
integrals at infinity)

; t
8,8 = _ggj BreA,0,4, -20,20) |?
ty
(2.9)
so the action is indeed invariant. Expression
(2.9) reduces to the more explicit form (2.4) when
the space is flat.

Lagrangian form

We now consider how duality is expressed at
the Lagrangian level. The action is

S =§f d“x[(i& —VA,)? - (VxA)?]

-1 f a7 = (vx AT+ (AL — va,)?], (2.10)

where we have separated transverse and longi-
tudinal parts in the second form. It is clear from
(2.10) that the transverse variables are decoupled
from the longitudinal and gauge contributions.
(Extrem1zatlon of the action with respect to 4,
gives merely A* =VA,, which identifies AX as a
gauge variable.) We can then drop the third term
in (2.10) and work merely with

=%fd“x[(f\T)2 - (VxAT)]. (2.11)

The electric and magnetic fields are then given

by E=AT, B=VxA’?. The infinitesimal duality
rotation is written as

0AT = gV "2y x AT (2.12)

and, of course, S5A” =(56A7)". It should be noted
that (2.12) reproduces a duality rotation only on
the mass shell; in fact we have oB =B:f} all right,
but the change in E is given by 6E = 6A7
= -8V 2VxA7, which is equal to —3B only if
AT=v7AT,

The change (2.12) alters the action by a boundary
term,

84S =—ZBJ’d3 (KT ux KT +AT- v ’ZVxAT) ,
t

(2.13)

and is therefore a symmetry transformation. The
same conserved quantity (2.6) is associated with
this invariance: First we note that on the mass
shell the generic change in the action is given by

- t
GS=J ax 2L . sRT |
6A" t
S |t
=—Bf AT V2V XA’ l 2 (2.14)

t

Next we equate (2, 13) and (2.14) to establish that
3 fdax(AT v-2yx AT - AT. vxAT) is conserved,
but this is precisely the generator (2.6).

Finally we note once, again that hyperbolic
rotations do not work. Indeed, once we start with
(2.12), as we must in order to get 6B =BE, the
transformation is completely determined and it
leads to 0K = —,B-f}, i.e., a circular rotation.

III. YANG-MILLS FIELD

The nonlinearity of non-Abelian theories greatly
complicates the investigation of how duality might
be implemented in that context. Fortunately we
shall be able to show by general arguments that
no trvansformation of the variables exists which
(a) leaves the action invariant and (b) reduces to
a duality rotation “on shell.” We will then see
concretely in Hamiltonian form why duality (let
alone invariance) has no analog here.

The general proof is based on the elementary
observation that invariance of the action implies
invariance of the field equations, irrespective of
formalism (Lagrangian or Hamiltonian), solution
of constraints, or choice of gauge. Therefore, we
consider the transformation of the Yang-Mills
equations

8, F'"+A XF" =0 (3.1a)

and of the identities
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au*E“”h_qux*E"" =0 (3.1p)

satisfied by *F"” =3€*”P°F ,;, when F, has the
form

Fuy=9,A, -9,4, +A, XA, . (3.2)

We demand that there exists a set of variations
0A ,, which will give on the mass shell

OFHV=g*FHY, SKFMV=_BF*Y . (3.3)
We then find

(3, +A, X)OF"” +8A , XF""=0, (3.4a)

(8, +A, X)SFH +84 , X*F*” =0, (3.4b)
which implies by (3.3) and (3.1) that

6A, XF"" =0, (3.5a)

64u><*£‘“" =0. (3.5b)

Relations (3.5) constitute a local system of homo-
geneous linear algebraic equations. To prove
that it admits no nontrivial solutions for 84, in
the generic case it suffices to consider (3.5a),
which reads

M(ay)(bu)ﬁA(bu) =0, M(au)(bu) =€achg” . (3.6)

The indices in the symmetic matrix M run over
4x3 =12 values in the SU(2) case, and nontrivial
solutions of (3.6) will exist if and only if M has
no inverse, i.e., if detM =0. Now the block form
of M is

0 F, -F,
M=|-F, 0 F, |, (3.7
F, -F, 0

where each block has an SU(2) label and elements
within each block are labeled by (1.v). The non-
vanishing of detM in four dimensions (it does
vanish in two) can be checked explicitly using
standard theorems on determinants® or by the
following argument. The inverse of M is given by

D,”! D,"'F,F,™" D,"'F,F,™!
M™=|D,”'F,F,™" D,”! D,"'F,F,” |,

DF\F,™' D 'F,F,t D!
(3.8)
with
D,=€,,.F,F,”'F, (no sum on q), (3.9)
where F,”! is the inverse of F!Y for fixed a which

exists in general since detF, = (E,- B,)?#0. Now
the D’s obey the identities

F,”'D,F,”'=F,”'D,F, " (no sum over a or b)
(3.10)

which imply that the existence of M ™! is equivalent
to that of any D,~!, say D,”'. This is indeed the
generic case and many solutions with nonsingular
D, can be given. Incidentally, in two spacetime
dimensions the D, are identically zero and con-
sequently M ! does not exist in that case.

We have used the term “generic case” in the
above as meaning arbitrary F*’ rather than A".
This practice is justified by the purely local
nature of the argument, which depends only on
the value of F*” at a fixed point, x, say, rather
than on the differential restrictions implied by
its form [(3.2)] or the equation it obeys [(3.1a)]
[in fact, given F,(x,) there is always a potential
A ,(x) which solves (3.1a) and (3.2) at x,, namely
A, (%) =3F, , (%) (x = x0)” +O((x —x,)*)]. Note,
finally, that we have established the nonexistence
of any duality rotations, including time-nonlocal
ones, leaving the field equations invariant.

An explicit calculation

A concrete way of exhibiting the inconsistency
of the duality concept in the non-Abelian case is
to show that when the variations of the uncon-
strained variables in Hamiltonian form represent
a rotation of the corresponding (E, B) components,
the variations of the remaining (dependent) com-
ponents are not rotations and furthermore the
action is not invariant. We proceed for explicit-
ness in the axial gauge. There is no loss
of generality in working in a specific gauge, since
all field strengths transform in the same way
under gauge changes.

The Yang-Mills action corresponding to the
form (2.1¢) is

- [ aE- Rb@ B, (3.11)
where the covariantly divergenceless magnetic
strength is given by B’ =(VxA)’ +3¢" A ; X A,.

In the axial gauge one sets A3 ;=0 and solves
the Gauss constraint V- E +A><E 0 as

§3=—fqdz(§,‘,+é, xg,), r=12. (3.12)

The action (3.11) depends then only on the uncon-
strained variables (A, E,) according to

-S=-8,-8, :J- d*+[E, A, +3(E,*+B,?)]

+4 [ (g2 4B, (3.13)

where E;, is given by (3.12) and
B;==093A, B;=9;A;, B3=09;4,-0,A,+A,XA,.
(3.14)
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Clearly the » =1, 2 sector of (3.13) is of the
Abelian Maxwell form and we must take

Ggr =B Er:_lsers 3As, (3.153.)

5§,=—Bl_i‘,4=»6_é,=—3€,sf dZE; . (3.15b)

The induced transformations of the independent
variables E,, B, are then

O, =8 [1_93 _(fzdz§,> ><<fdz§2ﬂ, (3.162)

z z
6§3=3<-§3+f dig,xé,té,xj dzg,),
(3.16b)

which means that E,, B; do not rotate into each
other if the » components do. Nor is the action
left invariant, since the last part of (3.13) ac-

quires a volume term:

s fal( s ) 5
_<é,szd2§,—1Zdiérxgr){?a}-

(3.17)

Note that once the necessary choice (3.15) was
made there was no freedom left to save that part
of the transformation involving the constrained
sector.

IV. SUMMARY

We have seen that the concept of a duality ro-
tation can be implemented in a satisfactory way

in the source-free” Maxwell theory in an arbi-
trary metric, and that the duality operation is a
symmetry of the action with a corresponding
generator. This justifies a recent application®
of the invariance to restrict possible counterterms
in the quantized Einstein-Maxwell® system to in-
volve only the duality-invariant local functions of
F,, in the relevant order, namely T, and (F*",,)%.

In the Yang-Mills case we saw that no trans-
formation 84, exists which both induces the de-
sired rotations and leaves the action invariant.
This is in spite of the formal analogy to the Max-
well case and the explicit duality invariance'® of
Y.

The methods and conclusions presented here
for vector fields (spin one) can be carried over to
general relativity, where the basic variables are
tensor fields (spin two). There we find that the
linearized theory is invariant under rotations of
the unconstrained, transverse-traceless vari-
ables b};, 7" (here b}, is an appropriate func-
tional of the canonical coordinate 4}, conjugate
to m*T"), but the invariance is no longer main-
tained in the full, self-interacting theory. Those
results will be reported elsewhere.

Supplementary note. We understand that some
of the duality problems of the Yang-Mills theory
have been recently discussed by Gu Chao-hao and
C. N. Yang.!!
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