Combining Combinatorial Alloying Improves Bismuth Vanadate Photoanodes via Reduced Monoclinic Distortion

Improving the efficiency of solar-power oxygen evolution is both critical for development of solar fuels technologies and challenging due to the broad set of properties required of a solar fuels photoanode. Bismuth vanadate, in particular the monoclinic clinobisvanite phase, has received substantial attention and has exhibited the highest radiative efficiency among metal oxides with a band gap in the visible range. Efforts to further improve its photoelectrochemical performance have included alloying one or more metals onto the Bi and/or V sites, with progress on this frontier stymied by the difficulty in computational modeling of substitutional alloys and the high dimensionality of co-alloying composition spaces. Since substitutional alloying simultaneously changes multiple materials properties, understanding the underlying cause for performance improvements is also challenging, motivating our application of combinatorial materials science techniques to map photoelectrochemical performance of 948 unique bismuth vanadate alloy compositions comprising 0 to 8% alloys of P, Ca, Mo, Eu, Gd, and W along with a variety of compositions from each pairwise combination of these elements. Upon identification of substantial improvements in the (Mo,Gd) co-alloying space, structural mapping was performed to reveal a remarkable correlation between performance and a lowered monoclinic distortion. First-principles density functional theory calculations indicate that the improvements are due to a lowered hole effective mass and hole polaron formation energy, and collectively, our results identify the monoclinic distortion as a critical parameter in the optimization and understanding of bismuth vanadate-based photoanodes.

Introduction

The production of fuels via photoelectrochemistry (PEC) has been recognized as a promising method for capturing and storing intermittent solar energy, in particular as renewable transportation fuels.1 Regardless of the fuel to be generated, the oxygen evolution reaction at the photoanode is critical; hence development of stable, efficient, n-type semiconductors composed of earth abundant elements and producible by scalable, cost-effective methods has received increasing research attention.2-4 Bismuth vanadate, BiVO₄, in particular has become the oxide semiconductor serving as the platform to develop and demonstrate a toolkit of techniques for improving and understanding the fundamental properties and photoelectrochemical performance of novel oxide-based semiconductors, despite its non-optimal bandgap.5-6 As recently reviewed, the methods of improving the properties include hetero/epitaxial formation, alloying or doping, hydrogen or nitrogen annealing, nanostructuring to enhance charge collection, microstructuring for photon management, and surface coating to passivate surface defects and enhance catalysis.3, 4, 6-9

The highest performing BVO-based photoanodes reported to date have all incorporated several of these strategies in order to produce photocurrent densities in the range of approximately 2-6.7 mA cm⁻² under AM 1.5 illumination, approaching the theoretical limit of 7.5 mA cm⁻² for a semiconductor with 2.4 eV band gap.2,3 Although to produce record, or near-record, performance it is necessary to simultaneously utilize multiple performance-enhancing methods, this approach inhibits an effort to understand the underlying principles governing the performance improvement from a particular modification. Indeed, application of multiple performance enhancing techniques while varying one parameter (e.g. alloying composition), can mask underlying performance trends if a non-varying technique (e.g. catalyst surface coating) is incompatible with the given alloy compositions. Therefore, in this study we focus on understanding the improvements in PEC performance produced by alloying multiple elements, both individually and in combination, with optimization of photoactivity compromising an important but secondary consideration. We begin by systematically synthesizing and evaluating a library of 948 BiVO₄ alloys containing various amounts of P, Ca, Mo, Eu, Gd, and W, as well as their pairwise combinations, and additionally perform high throughput optical and structural characterization to map their relationship with PEC performance. The important discoveries enabled by this multi-technique combinatorial study include: (i) a new high-performing combination of Mo and Gd incorporated as alloying metals, which would not have been found via a gradient search technique for improved performance; (ii) Mo and Gd alloying separately and together introduce variation in the monoclinic distortion with select stoichiometries producing a substantial deviation from Vegard-like linear trends; and (iii) the anomalously high PEC performance of select (Mo,Gd) co-
alloyed compositions is well described by improvements to carrier lifetime and/or transport that result from the higher crystal symmetry when the monoclinic distortion is lowered.10

While our study focuses on the monoclinic (distorted scheelite) BiVO\textsubscript{4} (m-BiVO\textsubscript{4}) and continuous deformations of this structure, we note that the related tetragonal scheelite (t-BiVO\textsubscript{4}) has also been studied. Despite the close structural relationship and band gap energies of m-BiVO\textsubscript{4} (2.41 eV) and t-BiVO\textsubscript{4} (2.34 eV), comparison of photocatalytic activity in the presence of a sacrificial electron acceptor (silver nitrate) indicated that the room-temperature stable m-BiVO\textsubscript{4} is more photoactive than the metastable t-BiVO\textsubscript{4}, although key properties such as grain size and crystallinity were quite different between the compared samples due to the synthesis of m-BiVO\textsubscript{4} through gradual dissolution and precipitation starting from a t-BiVO\textsubscript{4} powder.11

The tetragonal zircon phase (z-BiVO\textsubscript{4}) is undesirable due to poor performance and a substantially higher band gap of 2.9 eV.12

Doping, or low level alloying of three, four, or more additional metals into m-BiVO\textsubscript{4} is an active area of research, with particularly notable performance enhancements achieved by inclusion of Mo, W, and select rare earth elements, alone and in combination.13-19 The underlying origin of the observed performance improvement remains an active area of investigation, with spectroscopic studies indicating a decrease in electron trap state concentration producing an increase in electron and hole mobilities10 and/or increased charge carrier concentration induced by electron donating elements, in particular W and Mo.20 Changes in the band gap and movement of band edges have also been reported.21

Several combinatorial studies have contributed to this broad m-BiVO\textsubscript{4} alloying effort through systematic variation of alloy concentration using wet chemical synthesis or physical vapor deposition techniques. Park et al.22 fabricated a discrete composition array of W and/or Mo alloys of the form Bi\textsubscript{0.5}V\textsubscript{0.5}(W\textsubscript{0.5}Mo\textsubscript{0.5})\textsubscript{4} with both x and y ranging from 0 to 10% at 2% intervals. The photocurrent for sulfite oxidation in aqueous electrolyte was maximized at all applied potentials with the Bi\textsubscript{0.5}V\textsubscript{0.5}(W\textsubscript{0.5}Mo\textsubscript{0.5})\textsubscript{4} Composition, indicating a synergistic effect from co-alloying of W and Mo. Another 12 elements were alloyed with W but offered no improvement with respect to the best W-based alloy. Supported by computation, a primary conclusion drawn from this work is that Mo and W alloying, separately and together, serve as shallow electron donors. Later work by Jiang et al.14 used ink jet printing to produce discrete composition arrays to compare the effect of alloying each of W, Mo, Mn, Co, Cr, Mg, Fe, Cu. Measurements in 0.1 K\textsubscript{2}SO\textsubscript{4} revealed that the best PEC performance is obtained with W alloying.

Physical vapor deposition has been employed for optimization of Mo and/or W alloying into m-BiVO\textsubscript{4}.24, 25 and more recent work by Gutkowski et al.15 has explored a larger range of composition through synthesis of thin film metal oxides Bi(V-Mo-B)O\textsubscript{4} (B = Ta, W, Nb). XRD and Raman characterization of the phase behaviour revealed that the isovalent V substituent (Nb or Ta) can co-alloy into m-BiVO\textsubscript{4} along with the electron donor substituent (Mo). While excellent PEC performance was obtained with the (Mo,Ta) and (Mo,Nb) alloy systems in 0.1 M Na\textsubscript{2}BaO\textsubscript{2} electrolyte (pH 9), the (Mo,W) system provided the best overall performance. While these works collectively signify the opportunities for performance optimization via alloying, challenges remain to effectively identify co-alloying combinations that induce improvements beyond those resulting from (Mo,W)-based electron donation. We address these challenges using combinatorial and high throughput techniques, ultimately revealing that carrier transport can be improved by tuning the monoclinic distortion with co-alloying.

Experimental

Library design and synthesis

The design of a composition library to explore any type of alloying poses several challenges. Given prior knowledge about the type of alloying, i.e. interstitial or substitutional on 1 or both sites, a composition library can be designed accordingly. For example, (Bi\textsubscript{1-y}Na\textsubscript{y}V\textsubscript{1.5}Mo\textsubscript{0.5})\textsubscript{4} is a specific co-alloying design wherein substitutions of Na+ on the Bi4+ site and of Mo6+ on the V5+ site provide n-invariant charge balance assuming a constant O stoichiometry.26 To more generally explore alloying space, including the possible variation of O stoichiometry and any combination of interstitial and substitutional alloying, we designed a composition library that covers a range of alloy loading for each of 6 elements, and a range of both composition and loading for each pairwise combination (6-choose-2 = 15) of the alloying elements. The fabrication of this composition library on a single library plate facilitates establishment of composition-property trends with minimal convoluting factors.

The composition space for alloying cations A and B into BiVO\textsubscript{4} is the Bi-V-A-B composition space containing 3 compositional degrees of freedom, which we parameterize as Bi\textsubscript{x}V\textsubscript{y}A\textsubscript{z}B\textsubscript{1-x-y-z}, where x is V/(Bi+V) for the “base” material into which alloys are added; y is the loading of the alloying elements, (A+B)/(Bi+V); and z is the alloy composition B/(A+B) when 2 alloying elements are present. For a single alloying element, this reduces to Bi\textsubscript{x}V\textsubscript{y}A\textsubscript{z}. If, for example, the element A substitutes onto only the V site or only the Bi site, the stoichiometry of the 2 lattice sites is maintained if x = 0.5 - y/2 or x = 0.5 + y/2, respectively.

Our composition library was designed to combinatorially vary each of x, y and z while keeping the other 2 composition variables constant, for example by varying y from 0% to approximately 8% with select, constant values of x and z. To attain the site-balanced stoichiometry for single-site-alloying about half way along this composition gradient, Bi-V compositions of x < 0.48 and x > 0.52 were included in the library, in addition to x = 0.5. For each of these 3 values of x, the y = 0 “base” (no alloying elements) compositions were included along with 10 values of y for each alloying element A and 17 compositions (combinations of y > 0 and 0 < z < 1) in each of the
15 Bi-V-A-B composition spaces, making the total number of unique compositions

\[3 + (3 \times 10 \times 6) + (3 \times 17 \times 15) = 948, \quad (1)\]

where the three terms in the sum correspond to the alloy-free “base” compositions, single-alloy compositions, and co-alloy compositions, respectively. In addition, 16 duplicates of each base composition and 5 duplicates of each single-alloy composition bring the total number of photoanode samples to 1713. A portion of the layout showing 3 duplicates of the 3 base compositions and 1 duplicate of each Bi-V-A compositions is shown in Figure 1a. This “systematic” layout of the compositions enables rapid visual inspection of printing quality, and the additional duplicates of each of these compositions are intermixed with the Bi-V-A-B compositions with randomization of the compositions within the grid of sample locations, as further described in the SI.

All samples were prepared on a single library plate, 100 × 150 × 2.2 mm soda lime glass with TEC-15 SnO2:F coating, (Hartford Glass) by inkjet printing (Microfab Technologies JetLab4). The “inks” contained elemental precursors with each composition sample created through controlled mixing of up to 128 drops from 1 to 4 of the 8 inks, each containing 15 vol% diethylene glycol and 1 or 2 of the following metal precursors: Bi(NO3)3:5H2O, VO(SO4):2H2O, (NH4)2PO4, (NH4)2Os(H3W12O4O2)4H2O, Eu(NO3)3:5H2O, Gd(NO3)3:6H2O, (NH4)2MoO4:24H2O, and Ca(NO3)2:24H2O. One Bi-V ink was prepared containing 0.156 M Bi and 0.144 M V to create the x = 0.48 composition and a second ink with 0.11 M V was used to increase the value of x. The remaining 6 inks were prepared with 0.022 M of the respective alloying elements. Additional variations in sample printing were introduced to mitigate covariance among sample properties such as metal loading of the samples. Due to the granularity of the ink stoichiometry, many of the target compositions are printed “approximately” with less than 1 atom % deviations. For presenting results, all compositions are labelled according to their intended cation composition and approximate x, y, z values are used. For example, y ≈ 1.5% represents loadings of 1.5%, 1.4% and 1.5% for x = 0.48, 0.5 and 0.52, respectively. Similarly for y ≈ 2.9%, 4.4%, and 8.1%, the triplets of loadings for the 3 respective values of x are 2.9%, 2.8%, 3.0%; 4.4%, 4.2%, 4.5%; and 8.1%, 7.8%, 8.4%. Following inkjet deposition, the samples were dried in a 35°C oven and calcined at 565°C in pure O2 for 30 min.

Photoelectrochemistry

PEC characterization of each library sample was performed using a custom scanning drop electrochemical cell (SDC) with integrated front-side illumination, which is an automated system for performing serial PEC measurements.27 A Pt counter electrode and Ag/AgCl reference electrode were used for 3-electrode cell measurements where the electrochemical potential (E) of the working electrode (library sample) was controlled with a Gamry G 300 potentiostat. Custom software with translation stages sequentially addressed the library samples. Experiments were performed in aqueous electrolyte with potassium phosphate buffer (50 mM each of monobasic and dibasic phosphate) with 0.25 M sodium sulfate as a supporting electrolyte (pH 6.7).

A cyclic voltammogram (CV) was acquired for each sample, which started and ended at 1.26 V vs RHE and extended down to 0.51 V vs RHE at 0.02 V s\(^{-1}\) with toggling of illumination from a 455 nm light emitting diode (LED, Thorlabs M455F1) using repeated cycles of 1 s off and 1 s on. To avoid prevalence of the current transients upon illumination toggling in the PEC results, the illuminated and dark currents were calculated as the average current over the latter half of the light-on and light-off duration, respectively. The photocurrent was calculated as the difference between each averaged illuminated current and the linear interpolation of the neighboring averaged dark currents, providing a measurement of photocurrent at 0.04 V intervals as described in further detail in Ref. 28. Illumination was provided via fiber optic terminated approximately 1 mm above the library plate, resulting in a 0.86 mm-diameter illumination spot and providing PEC characterization of the corresponding area fraction of the printed samples. This illumination under-filling makes the PEC characterization insensitive to variations in the shape of the sample perimeter. LED power was measured using a Newport 1918-R power meter and Newport 818-UV photodetector, yielding an irradiance of approximately 400 mW cm\(^{-2}\), and the photocurrent values were scaled by the illumination area to obtain the photocurrent density, \(I_{\text{photo}}\).

The anodic sweep of the CV was analyzed to determine the photoelectrochemical power generation by fitting the illumination data to a 4-parameter sigmoid function, which was heuristically determined to provide sufficient modelling of the \(I_{\text{photo}}\)-E signal for each sample. The photoelectrochemical power density of O2 evolution is taken as the product of \(I_{\text{photo}}\) and the respective electrochemical potential below the OER Nernstian potential (1.23 V), which is readily calculated from the sigmoid function to determine the maximum photoelectrochemical power generation (\(P_{\text{max}}\)) for each sample. This calculation assumes that the measured photocurrent is due to the OER, but as long as the OER Faradaic efficiency does not vary with composition, the observed trends in \(P_{\text{max}}\) and identification of optimal alloys are unaffected by this assumption. The photocurrent density at the Nernstian potential, \(I_{\text{O2\text{ab}}}\), was calculated by evaluating the fit function at 1.23 V vs RHE.

For the base Bi-V compositions and Bi-V-A compositions, the \(P_{\text{max}}\) value is taken as the median value of the sample replicates, and further statistical evaluation of the measurements on replicate samples indicates that when \(P_{\text{max}} > 0.5\) mW cm\(^{-2}\) the relative error of each \(P_{\text{max}}\) value is 13%, which has contributions from variation in the high throughput PEC cell and in printed sample morphology. A benefit of the combinatorial PEC measurements is the ability to draw conclusions from compositions trends assembled from numerous PEC measurements with low effective uncertainty.
Materials characterization

Validation of the inkjet printing was performed by measuring the molar loading of both V and Bi using x-ray fluorescence (XRF). The 6 alloying elements did not provide large enough XRF signal to enable meaningful confirmation of alloy loadings. Three replicate samples for each of value of x were measured and averaged to provide molar loadings of both V and Bi from which the composition and thickness were calculated assuming the bulk m-BiVO₄ density of 6.94 g cm⁻³. The molar loadings were determined using elemental thin film standards to calibrate the intensity of the Bi L and V K XRF peaks. The thin film standards contained 84.2 and 340 nmol cm⁻² of Bi and V, respectively, which are similar to the approximate elemental loadings of 120 nmol cm⁻² in the library samples. While XRF provides excellent sensitivity to composition changes and confirms the intended variation of Bi-V composition, due to possible matrix and thickness effects in the XRF measurements, we estimate the relative uncertainty of the XRF measurements to be 10%.

Optical characterization was performed using a custom built ultraviolet-visible (UV-vis) spectrometer that collects transmittance and total reflectance spectra using a dual integrating sphere assembly fiber-coupled to UV-vis spectrometers (SM303, Spectral Products Inc.), as described previously. Automated data processing to calculate the direct-allowed Tauc signal was recently described in detail.

Structural characterization of select compositions was performed via Raman spectroscopy (Renishaw inVia Reflex) and X-ray diffraction (XRD, Bruker DISCOVER D8). The Raman measurements employed a 20x objective to obtain strong optical coupling to the thin films, resulting in an effective measurement area of approximately 75 µm × 75 µm and motivating the use of the Renishaw Streamline™ imaging capability to acquire about 250 Raman measurements for each composition sample, which were averaged to obtain the representative pattern for the sample. The XRD measurements used a 0.5 mm collimator on Bruker 18kS source (Cu Kα) to acquire diffraction signal on about 0.5 mm × 1 mm sample region with the VÂNTEC-500 detector followed by integration into one-dimensional patterns using DIFFRAC.SUITE™ EVA software.

First-principles calculations

To understand the effect of the monoclinic distortion in the electronic and transport properties of BiVO₄, we performed first principles density functional theory (DFT) calculations using VASP. We use the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, where a fraction α of the generalized gradient approximation (GGA) exchange is replaced with exact Hartree-Fock exchange at short range, and the long-range interaction is screened with a range separation parameter of 0.2 Å⁻¹. Recent DFT calculations have obtained the experimental monoclinic structure of BiVO₄ as the ground state structure only for larger-than-typical values of α; following this work, we use α = 0.5 in our structural relaxations, which are performed using the conventional unit cell (4 formula units) until Hellmann-Feynman forces are smaller than 1 meV Å⁻¹. Our DFT-HSE calculations use a plane-wave energy cut-off of 450 eV, a 4x4x2 Monkhorst-Pack k-point grid, and projected augmented pseudopotentials with 5, 5 and 6 valence electrons for Bi, V and O, respectively, from the VASP library. Band structure calculations are performed using the primitive unit cell (2 formula units) of the relaxed structures and the GGA functional.

Electron and hole polaron formation energies are calculated using spin-polarized DFT calculations and the HSE functional, again with α = 0.5. Our polaron calculations use a 2x2x1 supercell (36 formula units), an energy cut-off of 400 eV and a 1x1x1 Γ-centered k-point grid. We model a localized electron (hole) polaron by adding (removing) one electron in the supercell, locally expanding (contracting) the V-O (Bi-O) bonds at the polaron site, and fully relaxing the structure. To compute the polaron formation energy, we also perform a reference calculation in which we add (remove) a fraction of charge, 1/36 of the electronic charge, in the primitive unit cell containing one formula unit, followed by full relaxation of the unperturbed structure. In both the polaron and reference calculations, we ensure charge neutrality by adding a compensating uniform positive (negative) charge background. Supercell structures are fully relaxed until Hellmann-Feynman forces are smaller than 0.035 eV Å⁻¹.

Results and discussion

Photoelectrochemical mapping of combinatorial alloy library

An image of part of the BiₓₐVₓ₋ₐ(0.5ₓ₋ₓ)ₗ alloy composition library is shown in Figure 1a. For x = 0.48, 0.5, and 0.52 samples, the corresponding values measured by XRF were 0.47, 0.49 and 0.51, respectively. Since these are well within the XRF uncertainty, we continue to label materials according to their intended printed composition. The XRF results also indicate that the equivalent dense-thin-film thickness of the samples is approximately 105 nm, in agreement with cross-section SEM imaging (Figure S1). As we previously discussed, the printed materials typically are not compact thin films and exhibit significant roughness, indicating that within a given sample the thickness may fluctuate well above and below the nominal 105 nm value.

The PEC experiments were performed using the 2.75 eV illumination (0.15 eV full-width-half-max) source to provide above-gap excitation of the m-BiVO₄ materials. With this illumination, trends in PEC performance are most due to charge separation and transport effects, particularly in the absence of any blue-shifting of the band edge. The optical measurements made on each sample were used to evaluate changes in band gap energy with alloying composition, and as discussed below no such band edge shifts were observed. The anodic sweep of the CV is shown in Figure 1b for representative Bi-V, Bi-V-A and...
Bi-V-A-B compositions. The observed current transients upon illumination toggling are indicative of substantial surface recombination. Since passivation of surface defects and incorporation of co-catalysts mitigate this surface recombination, we focus in the present work on the quasi-steady state photocurrent observed after the sharp transients, which is more indicative of the bulk material properties that are amenable to optimization via alloying. While the illuminated open circuit voltage can be estimated from the CV data, the corresponding uncertainty in the composition trends would be high because the alloying-dependent photocurrent alters the detectability of photocurrent at lower potentials, and we do not attempt to disambiguate improvement in photocurrent above the detectability limit with possible shifts in the flat band potential. Instead, we use a primary figure of merit that combines the photocurrent and photovoltage performance, namely the maximum photoelectrochemical power generation for the OER \(P_{\text{max}} \). The \(P_{\text{max}} \) values for the portion of the library shown in Figure 1a are shown in Figure 1c, and exhibit smooth variation in \(P_{\text{max}} \) with respect to alloy loading for all 3 base compositions and 6 alloying elements.

The span of 15 pseudo-ternary compositions spaces in the 948 unique compositions poses substantial challenges for visualization of PEC and other results, prompting our development of several custom visualizations starting with Figure 2. Figure 2a shows the composition maps of \(P_{\text{max}} \) for all Bi-V and Bi-V-A compositions and 6 of the 15 Bi-V-A-B composition spaces. The analogous mapping of \(J_{\text{O2/2H2O}} \), the photocurrent density at 1.23 V vs RHE, is shown in Figure 2b. While there are notable differences in the composition trends of \(P_{\text{max}} \) and \(J_{\text{O2/2H2O}} \), which indicates that alloying alters the shape of the \(J_{\text{photo}}-E \) curve, these figures clearly identify Bi-V-Mo and Bi-V-W with \(x = 0.48 \) and Bi-V-Eu with \(x \approx 0.52 \) as the top performing alloys in the Bi-V-A composition spaces. The Bi-V-A-B compositions that provide the highest \(P_{\text{max}} \) values are noted in Figure 2a and reside in the Bi-V-Mo-Gd space with \(x \approx 0.5 \). An alternate visualization of \(P_{\text{max}} \) trends in this composition space (including Bi-V-Mo and Bi-V-Gd) is provided in Figure 2d, which nicely illustrates that the best performance is observed with Bi-V-Mo-Gd compositions.

The identification of maximum performance in the 4-cation space motivates further inspection of “synergy” of different alloying elements. If A and B contribute to PEC performance through different mechanisms, alloying with both elements may yield superposition of the improvements to attain higher \(P_{\text{max}} \) values. The element B may also indirectly improve \(P_{\text{max}} \) by altering materials properties from film morphology to increased solubility of A via size compensation, as has been previously observed in functional metal oxides. To further inspect composition trends and identify any such benefits of co-alloying Mo with B = Eu, W, Ca, P, or Gd, Figure 3 provides an additional visualization of the \(P_{\text{max}} \) data with all Bi-V-A compositions shown in Figure 3a and all Bi-V-Mo-B compositions shown in Figure 3b. At \(x = 0.48 \), \(P_{\text{max}} \) remains in the 0.9-1 mW cm\(^{-2}\) range for Mo loading of 0.7% \(\leq y \leq 4.4\% \). In Bi-V-A spaces, this performance is only rivaled by V-rich films with \(y \approx 7\% \) loading of Eu. In the Bi-V-Mo-B spaces, each signal connects a Bi-V-Mo (\(z = 0 \)) to a Bi-V-B (\(z = 1 \)) composition, creating a large cluster of lines where addition of B to Bi-V-Mo is typically deleterious to PEC performance. At \(x = 0.48 \), the Bi-V-Mo-W data indicates that high \(P_{\text{max}} \) values are maintained across the Mo\(_{1.6}\)W, composition line at all alloy loadings (values of y), but no substantial synergy between these alloying elements is observed. The B = Gd and Eu signals rise above those of the other co-alloys with the most compelling composition trends arising from the Bi-V-Mo-Gd system with \(x \approx 0.5 \), which correspond to the compositions noted in Figure 2 as having the highest \(P_{\text{max}} \) values, in particular higher \(P_{\text{max}} \) than of the three-cation compositions. The primary phenomenon observed in the PEC characterization is that alloying of either Mo or Gd improves the PEC performance and specific combinations of Mo and Gd co-alloying offer further improvements.

Optical and structural trends

Since the Bi-V-Mo-Gd alloys provide both the most important composition trends and best PEC performance, more detailed characterization of these alloy compositions was performed via high throughput UV-vis, Raman and XRD experiments, with each of these techniques producing 1-D patterns for each library sample. The \(J_{\text{photo}}-E \) curve from PEC experiments is another 1-D dataset that we combine with optical and structural characterization data in Figure 4. In this data representation we have identified the 2 portions of both Raman and XRD patterns that provide the most important structural characterization and combined them with the UV-vis and \(J_{\text{photo}}-E \) signals to generate 6-panel figures where each signal is mapped as a function of Mo-loading, Gd-loading, Gd vs. Mo alloying with \(y = 4.4\% \), and Gd vs. Mo alloying with \(y \approx 8.1\% \) in Figures 4b-4e, respectively. The false-color plots enable facile comparison of signals across these composition spaces, and the data from Figure 4d is also plotted as a stack plot in Figure 4e, which provides better visualization of peak shifts. The stack plots from the other 3 composition lines are shown in Figure S2. Pertinent literature values for each type of signal are also shown in each figure and labelled in Figure 4c to assist in visualization of trends within and among the composition spaces.

This visualization of the \(J_{\text{photo}}-E \) curves provide particularly striking evidence of the composition-dependent PEC improvements. As shown in Figures 1b and right-most panel of Figure 4f, many samples exhibit \(J_{\text{photo}} \) signals with positive curvature over the entire potential window, which implies a low fill factor (less than 0.25). On the other hand, the top performer Bi\(_{0.46}\)V\(_{0.46}\)Mo\(_{0.04}\)Gd\(_{0.02}\) (\(x \approx 0.5 \), \(y \approx 8.1\% \), \(z = 0.4 \)) sample shown in Figure 1b exhibits negative curvature over a majority of the potential window, which contributes to the high \(P_{\text{max}} \) value and indicates substantial improvement in the semiconductor quality of this photoanode. In the false color maps in Bi-V-Mo-Gd space (Figures 4d and 4e), this type of improvement to the \(J_{\text{photo}}-E \) curve is evident in the presence of
substantial photocurrent (purple to yellow colors) over the majority of the potential window for select Bi-V-Mo-Gd compositions.

To compare optical properties with that of stoichiometric m-BiVO_{4}, literature values for the 2.52 eV indirect allowed (IA) and 2.68 eV direct allowed (DA) band gaps are overlaid on the DA Tauc signals in Figure 4. The Tauc UV-vis data also shows substantial sub-gap absorption that decreases monotonically with decreasing photon energy through the visible spectrum, and while a number of the alloy samples exhibit absorption spectra in excellent agreement with this work, others exhibit an additional optical feature that, to the best of our knowledge, is not reported in the literature but may be related to increased sub-gap absorption observed with Mo-alloying. The DA Tauc patterns of the x = 0.48 samples (Figure S4) appear similar to that of Ref. with a slightly lower apparent DA gap of 2.45-2.5 eV, which is similar to that observed by UV-vis in other works. The patterns for more V-rich samples, for example x ≈ 0.5 shown as the bottom composition in Figures 4b and 4c, contain a strong sub-gap absorption peak near 2 eV, leading to our conjecture that this sub-gap absorption is related to excess V, and to the extent that the sub-gap absorption from Mo alloying is a consequence of its donated electrons, these observations indicate that the V-rich library samples contain a high free electron concentration. This absorption feature varies with alloy composition and concentration, as shown in Figure 4, where addition of y ≈ 8.1% Mo into x = 0.5 red-shifts the peak to 1.6 eV whereas the addition of only y ≈ 0.8% Gd appears to blue shift the peak by more than 0.5 eV such that it merges with the band gap absorption edge and no longer appears as a resolved peak. Commensurate shifting of the absorption peak is observed along the Mo-Gd composition lines at both y ≈ 4.4% and 8.1%, and with x = 0.48 samples (Figure S3). On average, the photon energy of the subgap absorption peak shifts by about -0.05 eV per atom % of Mo.

Given the dramatic improvement in photocactivity upon addition of Mo, there is no indication that this subgap absorption is deleterious to the photoanode performance, but it may obscure any small shifts in the DA band edge. So even though band gap tuning is a common objective of alloying studies, we do not map compositional trends of band gap energy in the present work. The Tauc signals for the Bi-V-Mo-Gd samples with highest P_{max} values are shown in Figure S4, revealing that the direct band gap shifts by no more than 0.1 eV from that of the base BiVO_{4} sample and that the small differences in absorption onset and apparent band edge are commensurate with the alloy-dependent sub-gap absorption.

To develop a data-driven hypothesis regarding the origin of the (Mo,Gd) co-alloying synergy, we continue examination of Figure 4. The systematic variation in Raman signal, and in particular peak positions, across each composition line merits particular attention. Similar Raman peak shifts have been noted in Mo- and W-alloying in sputter-deposited alloy libraries. To enable quantitative interpretation of the shifts we turn to inspection of alloy and temperature-dependent studies by Zhou et al. of alloys (Bi_{1-0.5}A_{0.5})(V_{1-0.5}Mo_{0.5})O_{4} where A = Li or Na. The temperature of m-BiVO_{4} to t-BiVO_{4} phase transition in this system was found to drop precipitously with addition of Mo (increase in n) by approximately 21 K and 25 K for every 1% of Mo on the V site for A = Li and Na respectively. These works show very nicely that starting from m-BiVO_{4}, either increasing temperature or increasing alloying lowers the monoclinic distortion continuously and smoothly until the higher-symmetry t-BiVO_{4} phase is obtained. In Raman characterization, the primary indicator of this monoclinic distortion is the split between the symmetric (s.) and antisymmetric (as.) bending modes of the VO_{4} structural units, for which we adopt the nomenclature δ_{s}(VO_{4}) and δ_{as}(VO_{4}), respectively. For brevity, we use δ_{s} and δ_{as} to refer to both the respective modes and their respective peak position in Raman patterns. These bending modes are also referred to as deformation or v_{2} modes, and in the t-BiVO_{4} phase there is a single mode (single Raman peak). To quantify how the δ_{s} - δ_{as} Raman peak splitting relates to the monoclinic distortion, which we quantify using the ratio of monoclinic lattice constants (a/b), we use the XRD and Raman data by Zhou et al., which indicates that the relationship is well-described by

\[a/b = 1 + (\delta_{s} - \delta_{as}) * 4.82e-3 \text{ cm}, \]

where the proportionality constant is calculated from the a/b value of 1.020 and (δ_{s} - δ_{as}) value of 41.5 cm^{-1} for ambient-temperature, stoichiometric m-BiVO_{4}. From this relationship, the Raman measurement of δ_{s} and δ_{as} enables distinction between t-BiVO_{4} and the family of m-BiVO_{4} with continuously-variable lattice parameters. The alloy-dependent monoclinic distortion in m-BiVO_{4} is also an important consideration for technology deployment as the elevated, varying operating temperature will result in a variable monoclinic distortion.

Starting with the Mo-alloying in Figure 4b, the trends in XRD and Raman signals are similar to those of Ref. with the non-alloy (y = 0) patterns matching those of stoichiometric m-BiVO_{4}. With increased Mo content, both the splitting between the (200) and (020) XRD peaks and the splitting between δ_{s} and δ_{as} Raman peaks smoothly decrease as expected for a slightly reduced monoclinic distortion. More substantial convergence of these split peaks is observed with Gd alloying in Figure 4c. With the broad peaks from this thin-film XRD data, the peak splitting quickly becomes difficult to resolve, which could lead to the interpretation that the monoclinic distortion has vanished, i.e. that the t-BiVO_{4} phase was formed. However, the splitting of δ_{s} and δ_{as} remains, demonstrating that for our material and characterization techniques, the Raman experiment is more sensitive to the monoclinic distortion, prompting our analysis of each Raman pattern (see Figure S6) to extract the peak splitting and calculate the monoclinic distortion using Eq. 2, resulting in Figure 5a.

Before continuing with interpretation of Figure 5, we note that the Raman data also shows a systematic shift in the strongest
m-BiVO₄ Raman peak, the symmetric V-O stretch (ν₁). The peak shifts to lower wavenumber and broadens with either Mo or Gd alloying, as has been observed previously. The peak shift is even more pronounced with Mo and Gd co-alloying. This shift may be indicative of a lowered V-O bond length, which is the interpretation used for Mo¹⁶ and W¹⁶ substitution onto the V¹⁵ site, but our observed shifting of this peak does not directly correlate with Mo concentration, for example along the Mo-Gd co-alloying lines the peak continues to shift downward as the concentration of Mo decreases, indicating a different cause for the alteration of this vibrational mode. Hardcastle et al. studied a variety of bismuth vanadate phases and noted that increased symmetry within the VO₄ tetrahedron also shifts the symmetric V-O stretching mode (ν₁) to lower wavenumber, which is also noted by Gotič et al. and observed by Zhou et al. The trends in Figure 4 are commensurate with this phenomenon, with decreases in both (δx - δy) peak splitting and ν₁ peak position resulting from lowered distortion of the VO₄ tetrahedron, which is concomitant with lowered monoclinic distortion in the parent crystal structure.

The composition map of the monoclinic distortion in Figure 5a, which includes the x ≈ 0.5 compositions of Figure 4 as well as the analogous x = 0.48 and x ≈ 0.52 compositions, is remarkably similar to the Pmax map of Figure 2d. The simplistic interpretation of this similarity is that lowered monoclinic distortion leads to higher Pmax, but quantification of this relationship is obfuscated by the co-variant compositional variables. To quantify the level of improvement of the co-alloying over that projected by the Mo- and Gd-alloying data, we invoke a Vegard’s law-type analysis and employ linear interpolation in composition space. Considering Biₓ₋ₓVₓ⁻ₓMoₓ and Biₓ₋ₓVₓ₋ₓGdₓ as endpoints of a composition line, interpolation between these endpoints provides a simple model for the expected composition-property relationship. In particular, for structural parameters such as the monoclinic distortion, Vegard’s Law suggests that the co-alloy data should follow this linear interpolation. We denote the deviations of co-alloy measurements from this linear interpolation as ΔPmax and Δ(a/b) for Pmax and monoclinic distortion, respectively. A positive ΔPmax indicates co-alloy synergy as discussed with regards to Figure 3b, and using this model ΔPmax was calculated for all 180 co-alloying composition lines (3 values of x and 4 values of y in 15 co-alloying composition spaces). The lines with the highest ΔPmax values (which happen to be the 3 lines with highest Pmax values) are all Mo-Gd co-alloying composition lines, specifically x ≈ 0.5, y ≈ 8.1%; x ≈ 0.5, y ≈ 4.4%; and x = 0.48, y ≈ 8.1%. The ΔPmax and Δ(a/b) signals for these 3 composition lines are shown in Figure 5b, revealing that any composition exhibiting an anomalously high Pmax value also exhibits an anomalously low monoclinic distortion. This anti-correlation is explicitly shown with the condensed data representation of Figure 5c and corresponding Pearson correlation coefficient of -0.83.

The XRD data is not sufficient to provide the analogous quantitative interpretation of other structural parameters such as cell volume, but the centroids of the (101) and (200) peaks in the XRD signals of Figure 4 vary monotonically across the Mo-Gd alloying space, indicating that Mo and to a lesser extent Gd alloying expand the m-BiVO₄ lattice according to the expectation of Vegard’s law. More generally, no other observed parameter from structural or optical characterization correlates with ΔPmax, the way Δ(a/b) does, demonstrating that the monoclinic distortion is a key parameter for PEC performance. To explore the underpinnings of the improvement to PEC performance with lowered monoclinic distortion, we consider bulk properties such as charge separation and carrier transport that may benefit from this structural alteration.

There is an emerging literature consensus that electron conduction remains a limitation in Mo or W-alloyed m-BiVO₄ due to the persistence of small electron polarons;

While alloying elements such as Mo and W primarily improve performance by providing charge carriers, transport remains critical for PEC performance. Patterson et al. recently revealed through transient absorption spectroscopy that W alloying alters hole traps and thereby improves carrier lifetimes with lowered recombination rates. The authors additionally assert that the lowered monoclinic distortion of these materials may contribute to the mitigation of hole trapping due to the increased symmetry in the local structure of Bi sites. To the extent that the removal of hole trap states is continuously improved with lower monoclinic distortion, this phenomenon may contribute to our observed trends in the Mo-Gd alloying space, in particular Figure 5b. While the study of the W-alloys of Ref. and the (Mo,Gd) alloys of the present work involve lowered but not eliminated monoclinic distortion, the finding that lowered monoclinic distortion improves PEC performance is contrary to the report t-BiVO₄ is relatively inactive. While an optimal monoclinic distortion between m-BiVO₄ and t-BiVO₄ may exist, the photocatalytic activity of t-BiVO₄ was only assessed using a coarse powder sample, motivating more detailed investigation of BiVO₄ thin films with small to zero monoclinic distortion.

Understanding distortion-dependent transport
To explore other possible improvements that may arise from a lowered monoclinic distortion, we turn to first principles calculations of stoichiometric m-BiVO₄ where the monoclinic distortion can be systematically and independently varied. We start by performing a full structural relaxation of both m-BiVO₄ and t-BiVO₄ using HSE with α = 0.5, yielding lattice parameters (Table S1) in excellent agreement with experimental values, including a monoclinic ratio of a/b = 1.02 in the fully relaxed m-BiVO₄ structure. The t-BiVO₄ phase lies 4 meV per formula unit above m-BiVO₄, and to interpolate between these structures and extrapolate to higher monoclinic distortion, we use a linear variation of the lattice parameters and atomic positions, as detailed in the SI.
Electronic structure calculations employing the GGA functional and the primitive unit cell were performed for the tetragonal structure and 6 additional structures with increasing amplitude of monoclinic distortion. The resulting band structures shown in Figure 6 are in good qualitative agreement with previous DFT results. The conduction band displays several nearly degenerate local minima and is dominated by localized V 3d states, whereas the valence band is dominated by hybridized Bi 6s and O 2p states. Along the symmetry path, the band gap is sustained between points along the Γ-V segment and Z. The direct band gap of t-BiVO₄ is approximately 0.1 eV lower than that of m-BiVO₄, and since the Mo-Gd alloys of Figure 4 lie between these structures, the small direct band gap shift may not be detectable by UV-vis experiments. Aligning the deep oxygen 1s core states of these two structures reveals that the VBM of t-BiVO₄ is approximately 0.03 eV higher (closer to vacuum) than that of m-BiVO₄, demonstrating that the monoclinic distortion does not lead to substantial variation in the alignment of VBM with the OER Nernstian potential.

With no substantial variation in band energetics with monoclinic distortion we turn to an examination of transport properties, in particular calculations of the hole effective mass and polaron formation energy. Figure 6b shows the calculated DFT-HSE hole effective mass as a function of monoclinic distortion, revealing an 18% increase from t-BiVO₄ to m-BiVO₄. From the perspective of monoclinic distortion, the lower distortion afforded by (Mo,Gd) co-alloying lowers hole mass by about 10%, a significant improvement consistent with the trend in improved efficiency observed with co-alloying.

Our calculations of hole polarons, which are quasiparticles formed by a hole and an accompanying lattice distortion, indicate that polaron formation includes a local deformation of the BiO₆ cage and a 6% average contraction of the Bi-O bonds for m-BiVO₄ in agreement with previous DFT results. The hole polaron formation energy, computed as described earlier in the manuscript, is 3% larger for m-BiVO₄ compared to t-BiVO₄ (see Table S3), indicating increased hole polaron stabilization and thus less band-like transport in m-BiVO₄. This modest difference in hole polaron energy would not be sufficient to constitute a change from polaron-like to band-like hole transport as the monoclinic distortion changes, which is contrary to previous assertion that hole conduction is polaron-like and band-like in t-BiVO₄ and m-BiVO₄, respectively. As noted above regarding experimental comparison of these phases and reiterated here in terms of the first principles calculation of their transport properties, the published literature does not sufficiently distinguish m-BiVO₄ as a better photoanode material than t-BiVO₄, and our experimental and computational results indicate that opposite may be true.

Our first principles calculations indicate that the improvement in hole effective mass with lowered monoclinic distortion provides the clearest explanation for the measured distortion-performance trend of Figure 5. Given that these hole transport improvements are distinct from the effects of electron donation noted in many studies BiVO₄ alloying studies, we conclude that there are two primary mechanisms of alloying-based PEC improvement, namely that (i) Mo and/or W alloying increases the electronic conductivity and (ii) alloys that reduce the monoclinic distortion, such as (Mo,Gd), enhance hole transport.

Conclusions

Through combinatorial alloying of P, Ca, Mo, Eu, Gd, W and their pairwise combinations into m-BiVO₄, several co-alloying systems were identified to be synergistic, and the photoanode performance of the best co-alloys exceeded that obtained with either alloying element individually. The best PEC performance was observed in the (Mo,Gd) system, where isovalent Gd substitution onto the Bi site and electron-donating substitution of Mo onto the V site yields a greatly improved J-E curve. By using XRD to ensure m-BiVO₄ phase purity and Raman spectroscopy to characterize the monoclinic distortion, we identified a relationship between lowered monoclinic distortion and improved photoactivity, culminating with a Vegard-style analysis revealing that the synergy between the co-alloying elements is well explained by the anomalous lowering of the monoclinic distortion when they are combined in m-BiVO₄. First principles DFT calculations revealed that the experimental trends are well explained by a reduced hole effective mass when the monoclinic distortion is lowered. This effect is complementary to the well-established electronic conductivity increase provided by Mo and/or W alloying, providing a new mechanism by which BiVO₄-based photoanodes can be understood and optimized. The collective results motivate critical evaluation of the community’s assumed superiority of m-BiVO₄ over t-BiVO₄ and provide a key example of the need for compositional tuning in high-dimension composition space to optimize multifunctional materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Computational work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE under Contract DE-AC02–05CH11231.

Notes and references

† Lowering the monoclinic distortion to a finite value does not constitute a phase change, which has been a point of confusion in the literature with descriptions such as “mixture of monoclinic and tetragonal structure” possibly being interpreted as a 2-phase material when the material is in fact a single monoclinic phase with a distortion between that of room temperature,
stoichiometry m-BiVO₄ and the null distortion of t-BiVO₄. This distinction is critical, especially when monoclinic-split peaks in XRD or Raman begin to merge and can be (erroneously) modelled as a combination of m-BiVO₄ and t-BiVO₄ reference patterns.⁵⁷

International Center for Diffraction Data (ICDD) entries 01-083-1699 (m-BiVO₄), 01-075-2481 (t-BiVO₄), 00-014-0133 (t-BiVO₄)

Figure 1. (a.) Image of substrate region containing 189 of the 1713 samples in the photoanode library, including 3 different Bi-V stoichiometries (x) for 10 different alloying concentrations (y) and for each of 6 alloying elements (A). The non-pictured portion of the library contains four duplicates of each of these composition samples, which are intermixed with dual alloying compositions for the 15 pairwise combinations of the 6 alloying elements. (b.) The anodic sweep of a chopped-illumination CV is shown for 4 samples with each composition labeled first as a normalized composition (excluding oxygen) and then as x, y, z coordinates in the parameterization of the alloying space. (c.) Automated processing of each anodic sweep produces the maximum photoelectrochemical power generation (P_{max}), which is mapped for the samples shown in a.

Figure 2. (a.) P_{max} values for 489 of the 948 unique compositions in the photoanode library. In this series of radial plots for each x value, the Bi$_x$V$_{1-x}$ composition is at the center with the 6 radial lines corresponding to Bi-V-A alloys and the 6 sectors containing Bi-V-A-B alloys. The 9 Bi-V-A-B composition spaces not represented in the 6-sector plots comprise the remainder of the library compositions. (b.) The analogous map of $J_{\text{O2/H2O}}$ values from the same anodic sweep dataset, which upon comparison with the P_{max} map reveals somewhat different compositional trends and indicates the importance of specifying a figure of merit to identify an optimal alloy. (c.) Legend for the radial plots in a.-b. showing that radial alloy loading (y) and azimuthal alloy-composition (z) variables. (d.) The Mo-Gd sectors from a. are plotted in Cartesian space where the 3 x values correspond to the 3 highlighted planes. The P_{max} color scale is the same for a. and d. and is also the same as Figure 1c.
Figure 3. (a.) The P_{max} variation with alloy loading for each Bi-V-A system reveals Mo and W as the best elements with $x = 0.48$ (Bi-rich) and Gd and Eu with $x = 0.52$ (V-rich) compositions. (b.) The co-alloying in Bi-V-Mo-B spaces for 5 values of B, each of which includes 4 different total alloy loadings (y) shown as different symbols. Each segmented line spans Bi-V-Mo (z=0) to Bi-V-B (z=1) at the specified loading, with a linear or convex trends expected for Mo-B combinations that do not improve performance beyond the respective alloying sub-spaces. For Mo-Gd with $x = 0.5$, the trends for all 4 loadings are concave with the 2 labelled curves containing the highest P_{max} values.

Figure 4. (a.) Combinatorial characterization of Bi-V-Mo-Gd alloys where a. provides the color scale for the normalized XRD, Raman, and UV-vis (Tauc) signals as well as the PEC (J_{photo}) signal; (b.-e.) contain false color plots for 4 different composition lines; (f.) is the stack-plot representations of the data from d. and also provides the labels for the horizontal axes, where the portions of each signal are chosen to highlight pertinent features; c. provides the labels for select literature values shown as dashed lines in each respective plot; and g. provides the visualization of the 4 composition lines, which are all in the $x = 0.5$ plane of Figure 2d. False color plots shown for all 4 composition lines aid visual recognition of trends among the 4 composition lines. The descriptions of the dashed lines are as follows: z-101 is the [101] XRD peak for the zircon polytype and is a distinguishing peak to confirm that
this polytype is not observed in any substantial phase fraction. The tetragonal scheelite ("t") (101) and (200) XRD peaks split to (101) and (011) and to (200) and (020) peaks for the monoclinic (distorted scheelite) phase ("m"). Similarly the VO4 bending mode (δs) in t-BiVO₄ splits into asymmetric (δas) and symmetric (δs) modes in m-BiVO₄. The alloying-driven lessening of the monoclinic distortion results in merging of each of the monoclinic doublet peaks, and the δas and δs peaks provide the best resolution of the monoclinic distortion and reveal that none of these materials have tetragonal symmetry. The symmetric V-O bending mode (νs) is also shown at the value for m-BiVO₄. The literature positions of the indirect (IA) and direct (DA) allowed band gaps of m-BiVO₄ are shown with each composition showing a strong increase in DA Tauc signal in this energy range and many compositions exhibiting substantial sub-gap absorption that is modulated in both intensity and characteristic photon energy through alloying. Each Jphoto signal is the fitted curve to the chopped-illumination anodic voltage sweep and as the only non-normalized type of signal in the figure, a 0.2 mA cm⁻² scale bar is shown in f.

Figure 5. (a.) Map of the level of splitting of the asymmetric (δas) and symmetric (δs) VO₄ bending modes from Raman characterization of Bi–V–Mo–Gd alloys. The false color scale is also annotated with the monoclinic distortion inferred from the Raman peak splitting using Eq. 2. (b.) For the 3 composition lines marked by stars in a., both Pmax and monoclinic distortion are plotted as deviations (Δ) from the linear interpolation between the respective endpoint Bi–V–Mo and Bi–V–Gd compositions. (c.) The left-y and right-y axis data from b. are plotted to highlight the strong correlation between the decrease in monoclinic distortion below the Vegard law expectation and the co-alloying enhancement of Pmax. The Pearson correlation coefficient of these data is -0.83.
Figure 6. (a.) Computed GGA band structure for a series of crystal structures including the high-symmetry, fully-relaxed tetragonal (0, t-BiVO₄), the low-symmetry fully-relaxed monoclinic (1, m-BiVO₄) to 5 additional structures with the noted magnitude of monoclinic distortion. (b.) Hole effective mass at the Γ-V VBM for the 7 structures. The upper axis shows the monoclinic ratio (a/b) for comparison with experimental values in Figure 5, and the monoclinic ratio of the Bi-V-Mo-Gd alloy with highest P_max is shown with a dotted line.
Supporting Information

Figure S1. Cross sectional SEM image of an ink jet sample exhibiting thickness of approximately 105 nm. The FTO layer can be seen below the BiVO$_4$ film.

Figure S2. (a) Stack plot representations of the data from Figure 4(c), comprising Bi-V-Gd compositions of Bi$_{0.5}$V$_{0.5}$:Gd$_y$, 0 ≤ y ≤ 7.8%. (b.) Stack plot representations of the data from Figure 4(b), comprising Bi-V-Mo compositions of Bi$_{0.5}$V$_{0.5}$:Mo$_y$, 0 ≤ y ≤ 7.8%. In both figures, the black, lowermost traces correspond to $y = 0$.

Notes on Sample Randomization

Duplicate sample sets of the Bi-V-A compositions [which are not shown in Figure 1(a)] and each of the 15 unique Bi-V-A-B sample sets are printed as single or double rows, respectfully, whereby the 30 (Bi-V-A) or 60 (Bi-V-A-B) individual compositions are spatially randomized so that any spatial or temporal artifacts with the PEC measurements are not convolved with composition.

Figure S3. Normalized Direct-Allowed Tauc spectra for a Bi$_{0.52}$V$_{0.48}$:Mo$_y$, 0 ≤ y ≤ 8.1% sample set.
Figure S4. Normalized Direct-Allowed Tauc spectra of the two highest P_{max} compositions in the library together with a non-alloy Bi$_{0.52}$V$_{0.48}$ control sample. The champion composition (red trace) contains a fractionally large portion of Mo and exhibits sub-gap absorption, consistent with Figure S3.

Notes on DFT Calculations

We start by performing full structural relaxation of the t-BiVO$_4$ and m-BiVO$_4$ structures. Table S1 shows that computed lattice parameters are in good agreement with experimental values.

Table S1. Computed energy difference and lattice parameters for tetragonal and monoclinic BiVO$_4$ using the HSE functional and $\alpha = 50\%$.

<table>
<thead>
<tr>
<th>HSE-relaxed structure</th>
<th>Energy wrt hull (meV/f.u.)</th>
<th>Lattice param.</th>
<th>This work</th>
<th>Prev work21</th>
<th>Experiment (295K) 49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetragonal</td>
<td>4</td>
<td>a (Å)</td>
<td>5.064</td>
<td>5.076</td>
<td>5.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b (Å)</td>
<td>11.474</td>
<td>11.521</td>
<td>11.722</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>0</td>
<td>a (Å)</td>
<td>5.113</td>
<td>5.197</td>
<td>5.194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b (Å)</td>
<td>5.025</td>
<td>5.006</td>
<td>5.090</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c (Å)</td>
<td>11.518</td>
<td>11.722</td>
<td>11.697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ (°)</td>
<td>90.30</td>
<td>90.81</td>
<td>90.39</td>
</tr>
</tbody>
</table>

The m-BiVO$_4$ structure corresponds to the ground state of the system, in agreement with experiments.2 The t-BiVO$_4$ phase is 4 meV per formula unit above m-BiVO$_4$. We note that a large value of α is required to properly describe the energetic ordering of the structures and the monoclinic lattice of m-BiVO$_4$.1

The higher symmetry t-BiVO$_4$ structure is related to the lower symmetry m-BiVO$_4$ structure through the combined effect of two zone-center ($q = 0$) optical modes with Γ_1 and Γ_2 symmetry. Γ_2 corresponds to the primary order parameter of the ferroelastic transition and originates the monoclinic lattice distortion. Γ_1 corresponds to a small uniform expansion of the unit cell, and is not discussed further. As shown in Fig. 1, the Γ_2 mode can be further decomposed into two optical modes with Γ_2 symmetry,5 here denoted as $\Gamma_{2,xy}$ and $\Gamma_{2,z}$. $\Gamma_{2,xy}$ denotes the stretching and contraction of the VO$_4$ tetrahedron edges within the (001) planes, and $\Gamma_{2,z}$ denotes the anti-polar displacements of the (001) layers along the [001] direction.

Table S2 shows the real space pattern displacement and mode amplitudes for $\Gamma_{2,xy}$.2 Mode amplitudes are computed with respect to eigenvectors normalized to 1Å. DFT results underestimate experimental mode amplitudes due to limitations of the theory.1 The t-BiVO$_4$
and m-BiVO₄ structures can be interpolated by linearly varying the amplitude of the Γ⁺₂ mode from 0 (t-BiVO₄) to its value in the relaxed m-BiVO₄ structures (denoted as “1 (m)” in Fig. 6). In addition, we extrapolate the monoclinic distortion beyond the m-BiVO₄ structure by considering larger mode amplitudes.

Table S2: Atom displacements for the displacement eigenvectors that describe the monoclinic distortion with respect to the higher-symmetry tetragonal scheelite structure in BiVO₄. Q is the eigenvector amplitude (or norm of the mode), which is computed directly from atomic positions.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Γ⁺₂,xy</th>
<th>Γ⁺₂,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O₁</td>
<td>u₀ₓ</td>
<td>-u₀,y</td>
</tr>
<tr>
<td>O₂</td>
<td>u₀ₓ</td>
<td>u₀,y</td>
</tr>
<tr>
<td>Q_{exp}</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>Q_{theo}</td>
<td>0.10</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Figure S5 Conventional unit cell for scheelite BiVO₄. Bi, V, and O atoms are shown with orange, blue and white spheres (a). Real space pattern displacement for Γ⁺₂,xy and Γ⁺₂,z lattice modes relating t-BiVO₄ and m-BiVO₄ structures (b). For simplicity, we display the displacement of oxygen atoms only.
Table S3. Electron and hole polaron formation energies for t-BiVO₄ and m-BiVO₄. Formation energies are computed as the difference between the relaxed polaron and reference states, both calculated using the HSE(α=50%) functional and a 2x2x1 supercell (16 formula unit). While the large value of α may overestimate the absolute formation energies, the accurate description of the ground state properties using this functional indicates that the relative difference between polaron formation energies in t-BiVO₄ and m-BiVO₄ structures is accurate, in particular that the monoclinic distortion slightly destabilizes electron polarons and slightly stabilizes hole polarons.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Electron Polaron Formation Energy (eV)</th>
<th>Hole Polaron Formation Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-BiVO₄</td>
<td>-3.07</td>
<td>-1.18</td>
</tr>
<tr>
<td>m-BiVO₄</td>
<td>-3.05</td>
<td>-1.22</td>
</tr>
<tr>
<td>Polaron formation energy of m-BiVO₄ compared to t-BiVO₄</td>
<td>+1%</td>
<td>-3%</td>
</tr>
</tbody>
</table>

Notes on Lorentzian Peak fitting

We subtracted the background signal assumed as a linear function from averaged Raman spectra in the wavenumber range of 300 - 400 cm⁻¹ as shown in Figure 4 and fitted the spectra with two Lorentz function by least square method;

\[
f(x) = p_1 \frac{1}{(x - p_2)^2 + p_3^2} + p_4 \frac{1}{(x - p_5)^2 + p_6^2}
\]

where \(x \) is wavenumber and \(p_i \) (\(i = 1,2,3,4,5,6 \)) are fitting coefficients. The peak position of the double-peak is represented by \(p_2 \) and \(p_5 \).

A typical fitted plot is shown below.

Figure S6. Lorentz function fitting of a typical library sample. (a) original spectrum, (b) background signal, (c) background-subtracted spectrum, and (d) fitted spectrum with two Lorentz functions. While the tails of the Raman signal are not perfectly modelled by the Lorentzian line shape, this simple fitting model nicely captures the peak splitting and its compositional trend.

References