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The classification of states of matter and their corresponding phase transitions is a special kind of
machine-learning task, where physical data allow for the analysis of new algorithms, which have not been
considered in the general computer-science setting so far. Here we introduce an unsupervised machine-
learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs).
In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully
unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional
parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host
the two networks. The snake, with a DCN “brain,” moves and learns actively in the parameter space, and

locates phase boundaries automatically.
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The richness of states of matter, together with the power of
machine-learning techniques for recognizing and represent-
ing patterns, are revealing new methods for studying emer-
gent phenomena in condensed matter physics. Paradigms in
machine learning have been nicely mapped to those in
physics. For example, the classification techniques in
machine learning have been applied in detecting classical
and quantum phase transitions [1-14], the artificial-neural-
network architecture has inspired a high-quality ansatz for
many-body wave functions [15-22], the generative power of
energy-based statistical models is utilized to accelerate
Monte Carlo simulations [23-30], and regression has aided
material-property prediction [31-37]. Moreover, basic
notions from both physics and machine learning can mutu-
ally inspire new insights, e.g., a relation between deep
learning and the renormalization group [38—43].

In physics, the phase (e.g., magnetic vs nonmagnetic
phase) is most efficient in summarizing material properties.
When changing tuning parameters (e.g., temperature), the
material properties may change discontinuously, which is
called a phase transition. Machine-learning phase transi-
tions are possible from two angles. In the supervised
approach, physics knowledge is used to provide answers
in limiting cases and the machine learner is asked to
extrapolate to the transition point [1]. In the unsupervised
approach, no such knowledge is assumed and the transition
is sought by other means [2,7,11,12].

The confusion scheme proposed previously by us is a
hybrid method [5], where no knowledge of the limiting cases
is needed but the learning is still carried out in a supervised
manner. Specifically, one first guesses a transition point and
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then tries to train the machine with this guess. When the guess
is correct, the machine learner achieves the highest perfor-
mance. Here we gain the ability to find transitions at the cost
of having to repeat the training for many guesses, which is
computationally expensive.

In this work, we extend the confusion scheme by training
a “guesser” together with the “learner.” This leads to a fully
automated scheme—the discriminative cooperative net-
works (DCNs). In addition, phase transitions in two-
dimensional (2D) parameter spaces share many common
aspects with image-feature detection in computer vision.
However, in images the data are the colors, whereas in
physics they can be arbitrary results of measurements
whose features might not be apparent to the human eye.
This inspires us to use an active contour method [44],
combined with the DCN scheme, to perform automated
searching of phase boundaries in 2D phase diagrams.

We consider data that can be ordered along a tuning
parameter A. At various values of 1 the data are described by
d(4), and can be thought of as a vector of real numbers—
results of physical measurements at 1. We describe a neural
network on an abstract level as a map N that takes data
d(1) and infers the probability distribution N (d(4))=
(pa-Pg,---), where p; represents the probability of d(4)
belonging to phase i. Since the data are indexed by 4, this can
be simplified by considering the probability distribution
L(2) directly on 4. At each 4 only a single probability
(corresponding to the correct phase) should equal to unity,
and the rest zero. With phase transitions, the distribution
varies with 4 discontinuously, e.g., for a transition at A = 1,
between two phases A and B there are two components
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Ly(1) =0O(A. —4) and Lg(A) = O(1 — A..), where O is the
Heaviside step function.

For supervised learning, a large body of d(4) with the
corresponding correct answer L (1) has to be known before-
hand, and the neural network N is trained with the goal
N (d(4)) — L(4). To achieve this goal, parameters W - that
characterize the neural network are adjusted during training
to minimize a cost function C[N'(d(4)), L ()], quantifying
the mismatch between the network’s prediction and the
known answer. C depends implicitly on the parameters W
through N and can be minimized using gradient descent
methods.

Typical machine-learning data live in high-dimensional
feature spaces in an unordered fashion. The number of
ways to separate them into two classes is 2" where N is the
size of the data set. For phase transitions, however, all data
are ordered in the parameter space, and for a single
transition point, the number of ways is merely N + 1. In
physics, it is affordable to enumerate all these possibilities
to find the most reasonable separation point. This obser-
vation led to the confusion scheme [5], where one guesses
the transition point 4, — A. and then trains the learner
network A. By monitoring the number of “correctly”
classified samples according to this guess—the perfor-
mance, the true value for 1, can be deduced. It turns
out the true value is the guess for which the performance
is optimal, because here the assigned probabilities
in L(4) and the structures in d(1) are the most consistent,
such that the learner network is least confused by the
training.

In the previous proposal, we searched for the optimal 4,
by a brute-force scan of the parameter space. For phase
transitions in higher-dimensional parameter spaces, this
approach is inefficient. In this work we introduce the
guesser network G. It performs the map A — G(2), repre-
senting the probabilities of 1 belonging to each possible
phase. That is, now the guesser provides L (4). The guesser
is itself characterized by a set of parameters W on which
we wish to perform gradient descent. The overall cost
function of the learner N and guesser G is now
CIN(d(4)),G(2)], see Fig. 1(a). In this way, we have
promoted the human input L to an active agent G. During
training, the learner A/ tries to learn the data according to
the suggested labels G(4) obtained from the guesser, and
the guesser tries to provide a better set of labels—they
cooperatively optimize the cost C.

We first assume one-dimensional (1D) parameter space
with two phases, and propose a logistic-regression guesser
network with one(two) input(output) neuron(s): G, z(4) =
flsap(4—4,)/0], where f(x) = 1/(1 + ) is the logistic
(sigmoid) function, A(B) denotes the first(second) output
neuron, and s, g = —, +. The guesser is hence characterized
by two parameters 4, and o, setting, respectively, the
guessed transition point and the sharpness of the transition.
Gradient descent can be performed on both 4, and o.

o}
learner guesser & ®
N(d(4)) G(4) "

FIG. 1. Schematics for the proposed algorithms. (a) The DCN

scheme for learning phase transitions solely, from the data set
{(4,d(4))}, where 4 is the tuning parameter and d(4) is a vector
of measurements at 4. (b) The DCN snake. The blue circles are
the snake nodes, the green lines denote normal directions at the
nodes. Samples (stars) are generated in the normal direction at
each node and are assigned a label according to its distance to the
snake. Snakes could be open or closed, and can move to the
correct phase boundary (gray line) automatically. The open snake
in this figure has 9 nodes and during motion generates mini-
batches of training data with minibatch size N, = 36 (N, is much
larger in real simulations).

We use the cross entropy cost function C(N,G) =
—log N - G—log(1=N) - (1—=G), which is suitable for
classification problems. The gradient of C on the guesser
network is obtained by the following equations:

ocC
G —log N +log(1 = N),
0GB _ SA.B
D4, 4o cosh? [(A—A,)/20]’
%9 1A% 0
do o 04,

These equations fully determine the dynamics of the guesser:
Al = —a; OC/01, and Ao = —a,0C/Jo, where a; and
a,, are the learning rates for the two parameters, respectively.
The dynamics of the learner follows AW, =
—ay0C/OW,, with another independent learning rate
ay, here the gradient is obtained by the back-propagation
algorithm [45].

At this point, one could conceptually regard the guesser
and learner together as one compound agent, capable of
self-learning. We call this scheme discriminative co-
operative networks (DCNs), with the name inspired by
the powerful generative adversarial networks (GANs) [46]
for generating samples resembling the training data.

The DCN scheme is efficient because there is no need for
repetitive training at each guess. This allows us to move to
higher-dimensional parameter spaces. Here we focus on 2D
since physics studies usually report phase diagrams in 2D
parameter spaces. Inspired by the computer vision tech-
niques for finding image features, we use an active contour
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model—the snake [44]—for the parametrization of the
guesser.

In computer vision, the snake is a discretized curve of
linked nodes, r(s) = (x(s), y(s)), parametrized by s € [0, 1)
(for closed snakes) or s € [0,1] (for open snakes), see
Fig. 1(b). The nodes can move actively under “image
forces,” which are the minus gradients of an “external
energy,” with respect to the snake nodes. Specifically, the
external energy is the total potential energy FE.yema =
Jo ds¢p(r(s)), with the potential ¢(r) proportional to the
local color intensity (gradient of color intensity) for line
(edge) detection. To keep the snake smooth, internal forces
are also introduced, which are derived from the internal
energy Eimemal = f()1 ds(a|(8r/8s)\2 + ﬁ|(82r/as2)|2)'
Increasing @ makes for a more “elastic” snake by preventing
stretching and # a more “solid” snake by preventing bending.
The snake evolves in time to lower its total energy
E o1 = Eexiemal + Eintemal» @and the equation of motion v «
—8E o1/ Or is implemented numerically [44].

In this work, we combine the DCN scheme in artificial
intelligence with the snake in computer vision, and the
result is an intelligent snake. To do this, we replace
the conventional image force in computer vision with
the machine-learning gradient SEcyiemq/0r — 0C/0A,.
The 1D DCN scheme requires training data from both
sides of the guessed transition point. This implies, for the
2D case, a width of the snake. The width, denoted again by
o, is generically different at each node, and enables the
snake to sense its surroundings by selecting training
samples in its vicinity within this length scale, as shown
in Fig. 1(b). Specifically the sample points are drawn at
each node perpendicularly to the snake, with distances
uniformly picked in [-26, 26]. The 2D guesser function is
then locally the same as in the 1D case, evaluated by each
node in its perpendicular direction. For implementation
details, see Ref. [47]. We note the probing of data within a
window (in searching for distinct phases) is a powerful
concept that is also successfully used in Ref. [10].

Ising model—We test our scheme on 1D parameter
space by studying the classical Ising model on the square
lattice:

H= —JZS,-S/-, Z= Ze‘H/T, (2)
(i.j) {s}

where s; = {—1,1} are the Ising spins, (i, j) denotes
nearest neighbors with coupling J, and the tuning param-
eter is the temperature 7. This model has a thermal phase
transition from the ferromagnetic phase (with aligned
spins) to the paramagnetic phase (with random spins)
when the temperature is increased across 7.~ 2.27J.
The training data d(1) = {s}, are spin configurations
drawn from a Monte Carlo simulation on an L by L square
lattice. We select 100 temperatures uniformly from 0.1/ to
5J and prepare 100 samples at each temperature. Every
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FIG.2. DCN scheme for the Ising transition. (a) Starting from a
higher guess of the transition point, the gradient on the guesser
pushes it to move down. The red line marks the exact transition
point and the gray lines the temperatures (in the range of the
figure) for generating Monte Carlo samples. (b) During training
the width ¢ decreases, meaning the combined self-learner is able
to distinguish the two phases sharper. Training on samples from
larger lattices is faster and more accurate. (c) Finite-size effect on
the converged guess 1, where the length of error bars denotes the
converged . Network architecture: fully connected with L? input
neurons, L hidden neurons, and 2 output neurons. Hyper-
parameters for training: minibatch size N, = 100; initial learning
rates ay = 0.1, o, = 0.025, a, = 0.001, decay rate 0.995;
dropout keep probability 0.8, £, regularization 0.0001. We have
set a lower bound for the width 7 > 0.01 and used the minibatch
stochastic gradient descent optimizer [49] with batch normali-
zation [50].

minibatch consists of N, = 100 random samples, one from
each temperature [48]. Time is measured by the number of
learned minibatches. During training, the guesser moves
toward the exact transition point 7', ~ 2.27J and decreases
the width ¢ because the discrimination is sharper and
sharper (Fig. 2). 4, does not converge to the exact value
when increasing L, because the networks most likely learn
the order parameter, which is the simplest, but not the
sharpest signal for detecting phase transition. In a future
study we investigate the possibility for the networks to
learn also the fluctuations of order parameters.

Bose-Hubbard model—As a first example for applying
the DCN scheme in 2D parameter spaces, we choose the
Bose-Hubbard model:

Un;(n; — 1)
_ T i i\
H == (60, 00 + 3 (P ),
(i.J) i
(3)
where b7/b is the bosonic creation or annihilation

operator. Regarding the Hubbard interaction U as the
energy unit, for each chemical potential y, the model
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FIG.3. DCN snake for 2D parameter spaces. (left panels) The Mott insulator to superfluid transition in the Bose Hubbard model. (right
panels) The topological transition in the spin-1 antiferromagnetic Heisenberg chain. Color plots (purple to yellow goes from zero to
nonzero values) show the average hopping for the Bose Hubbard model, and the difference between the largest two eigenvalues of the
reduced density matrix for half of the Heisenberg chain. For the Bose Hubbard model we create a large open snake with the head and tail
fixed at integer chemical potentials p/U = 2, 3. In this case the snake shrinks and stops at the correct phase boundary. For the
Heisenberg model, we create a large and offset closed snake, which then moves, rotates, shrinks, and finally stays at the Haldane pocket.
Parameters for snakes: number of nodes 50; dynamic width at each node is initialized to 7' = 0.06 (normalized by the ranges of
parameters) and clipped to 0.03 < 7 < 0.08; regularizations a = 0.002, f# = 0.4, y = 0.25 (see Ref. [44] for details). Network
architecture: fully connected with 80 input neurons, 80 hidden neurons, and 2 output neurons. Hyperparameters for training: minibatch
size N, = 1500; initial learning rates a, = 0.01, a, = 0.0008, a, = 0.0002, decay rate 0.9999; dropout keep probability 0.8, ¢,

regularization 0.0001. We used the ADAM optimizer [54] because the inputs are sparse for these models [49].

has a quantum phase transition (at zero temperature) from
the Mott insulating state to the superfluid state, when the
hopping J is increased [51]. A useful indicator of this phase
transition is the average hopping (K) where K =
Z<i'j>(bj'bj + bj-bl-). Note the notion of K is unknown to
the initial untrained snake, otherwise the problem reduces
to computer vision where machine learning is not needed.
The critical point J,. reaches local maxima when the system
is at commensurate fillings, corresponding to half-integers
u/U. A phase diagram of this system results in the series of
well-known Mott lobes. We use the mean-field theory
developed in Ref. [52] to generate vector data d(4,,4,) =
F(J,u), where F,, with n =0, 1, ..., oo denotes the ampli-
tude for having n bosons per site, and a cutoff of n,,, =79
is chosen for numerics. We target the third Mott lobe with
2 <u/U <3, and the snake successfully captures the
phase boundary as shown in Fig. 3. In this case the phase
boundary touches the boundary of the parameter space, so
we use an open snake with a fixed head and tail at known
transition points. The snake’s motion is then restricted to
shrinking or expanding. It is important to emphasize here
that we have used knowledge of only two points along the
J = 0 axis in the whole phase diagram, and that the training
data seen by the snake is not the average hopping as shown
in the background, but the vector data F(J, u) mentioned
above [53].

Spin-1 Heisenberg chain.—We now move to a quantum
phase transition beyond mean-field theory. We choose the
spin-1 antiferromagnetic Heisenberg chain with anisotropy
and transverse magnetic field:

H=J7)8;-Si+) [D(S5)P-BSi.  (4)

where S¢ are 3 by 3 matrices satisfying [SY, Sj’] =
ihd;;y €4S In the 2D parameter space of magnetic
field B/J vs anisotropy D/J, this model has a pocket
named the Haldane phase—a topologically nontrivial phase
—around zero magnetic field and anisotropy [55]. The
transition across the boundary of this pocket can be
detected by a change in the degeneracy structure of the
entanglement spectrum (eigenvalues of the reduced density
matrix for part of the spin chain in the ground state), but
again the initial untrained snake is unaware of this. For the
training data, we simulate an infinite chain with transla-
tional invariance using infinite time-evolving block deci-
mation [56] with bond dimension m = 80, and record all m
eigenvalues {ey,...,€,} of the reduced density matrix
when the chain is cut by half at a bond, i.e.,
d(4y,4,) = {€}p p- The result is shown in Fig. 3. In this
model the phase boundary is closed and located near the
center of the parameter space. For this reason we use a
closed (periodic) snake whose motion now also contains
translation and rotation.

In this Letter we have proposed the discriminative co-
operative networks, capable of self-consistently finding
transition points. The high efficiency of this scheme allows
us to explore 2D parameter spaces, where we utilized the
snake model from computer vision. Our method is, in spirit,
similar to the actor-critic scheme for reinforcement learning
[57] and the adversarial training scheme for generative
models [46].

The major limitation for the snake is the need for an
initial state that has overlap with the desired features to be
detected, so that it is able to probe a gradient. This was also
true for their use in computer vision. In applications to
phase diagrams, we have the clear advantage of some
known extreme limits at which we can fix the snake. We
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can also overcome this problem by scaling or moving
the snake.

Ch’ng et al. have proposed to train neural networks deep
inside the known phases with supervision, and then use
them to extrapolate the whole phase diagram [3]. Such a
method is, compared to our method, simpler and faster.
However, the data for supervised training have to be
carefully chosen, otherwise interpolation of the phase
boundary could be qualitatively incorrect [3]. On the
contrary, the snake can actively explore a much larger
area in the parameter space. For general phase transition
problems, one could use both methods complementarily.

Machine-learning applications usually assume the exist-
ence of big data. However, in science it might be expensive
to obtain these data. With the DCN scheme, it is possible
for a machine-learning agent to suggest parameters for the
physicist to carry out experiments or simulations, and
rapidly locate interesting phenomena. In this Letter we
put forward a proposal to realize this scheme.

The authors thank L. Wang, S.D. Huber, S. Trebst,
K. Hepp, M. Sigrist, and T. M. Rice for reading the
manuscript and helpful suggestions. Y.-H.L. thanks G.
Sordi and A.-M. Tremblay for stimulating discussions.
Y.-HL. is supported by ERC Advanced Grant
SIMCOFE and the Canada First Research Excellence
Fund. E. P. L. v. N. gratefully acknowledges financial sup-
port from the Swiss National Science Foundation (SNSF)
through Grant No. P2EZP2-172185. The authors used
TensorFlow [58] for machine learning.

"yehua.liu@usherbrooke.ca
Tevert@caltech.edu

[1] J. Carrasquilla and R. G. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

[2] L. Wang, Discovering phase transitions with unsupervised
learning, Phys. Rev. B 94, 195105 (2016).

[3] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami,
Machine Learning Phases of Strongly Correlated Fermions,
Phys. Rev. X 7, 031038 (2017).

[4] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst,
Machine learning quantum phases of matter beyond the
fermion sign problem, Sci. Rep. 7, 8823 (2017).

[5] E.P.L. van Nieuwenburg, Y.-H. Liu, and S.D. Huber,
Learning phase transitions by confusion, Nat. Phys. 13,
435 (2017).

[6] F. Schindler, N. Regnault, and T. Neupert, Probing many-
body localization with neural networks, Phys. Rev. B 95,
245134 (2017).

[7]1 S.J. Wetzel and M. Scherzer, Machine learning of explicit
order parameters: From the Ising model to SU(2) lattice
gauge theory, Phys. Rev. B 96, 184410 (2017).

[8] S.J. Wetzel, Unsupervised learning of phase transitions:
From principal component analysis to variational autoen-
coders, Phys. Rev. E 96, 022140 (2017).

[9] T. Ohtsuki and T. Ohtsuki, Deep learning the quantum phase
transitions in random two-dimensional electron systems,
J. Phys. Soc. Jpn. 85, 123706 (2016).

[10] P. Broecker, F. Assaad, and S. Trebst, Quantum phase
recognition via unsupervised machine learning, arXiv:
1707.00663.

[11] N. C. Costa, W. Hu, Z.J. Bai, R. T. Scalettar, and R.R. P.
Singh, Principal component analysis for fermionic critical
points, Phys. Rev. B 96, 195138 (2017).

[12] K. Ch’ng, N. Vazquez, and E. Khatami, Unsupervised
machine learning account of magnetic transitions in the
Hubbard model, Phys. Rev. E 97, 013306 (2018).

[13] W.-I. Rao, Z. Li, Q. Zhu, M. Luo, and X. Wan, Identifying
product order with restricted Boltzmann machines,
arXiv:1709.02597v1 [Phys. Rev. B (to be published)].

[14] Z. Li, M. Luo, and X. Wan, Extracting critical exponent by
finite-size scaling with convolutional neural networks,
arXiv:1711.04252v1.

[15] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[16] D.-L. Deng, X. Li, and S.D. Sarma, Machine
learning topological states, Phys. Rev. B 96, 195145
(2017).

[17] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, On the
equivalence of restricted Boltzmann machines and tensor
network states, Phys. Rev. B 97, 085104 (2018).

[18] X. Gao and L.-M. Duan, Efficient representation of
quantum many-body states with deep neural networks,
Nat. Commun. 8, 662 (2017).

[19] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Many-body quantum state tomography with
neural networks, arXiv:1703.05334 [Nat. Phys. (to be
published)].

[20] Z. Cai and J. Liu, Approximating quantum many-body wave
functions using artificial neural networks, Phys. Rev. B 97,
035116 (2018).

[21] Y. Nomura, A.S. Darmawan, Y. Yamaji, and M. Imada,
Restricted Boltzmann machine learning for solving strongly
correlated quantum systems, Phys. Rev. B 96, 205152
(2017).

[22] 1. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and J. I.
Cirac, Neural-Network Quantum States, String-Bond States,
and Chiral Topological States, Phys. Rev. X 8, 011006
(2018).

[23] L. Wang, Exploring cluster Monte Carlo updates
with Boltzmann machines, Phys. Rev. E 96, 051301
(2017).

[24] L. Huang, Y.-F. Yang, and L. Wang, Recommender engine
for continuous-time quantum Monte Carlo methods, Phys.
Rev. E 95, 031301 (2017).

[25] L. Huang and L. Wang, Accelerated Monte Carlo simu-
lations with restricted Boltzmann machines, Phys. Rev. B
95, 035105 (2017).

[26] H. Fujita, Y. O. Nakagawa, S. Sugiura, and M. Oshikawa,
Construction of Hamiltonians by machine learning of
energy and entanglement spectra, Phys. Rev. B 97,
075114 (2018).

[27]1 J. Liu, Y. Qi, Z.Y. Meng, and L. Fu, Self-learning
Monte Carlo method, Phys. Rev. B 95, 041101 (2017).

176401-5


https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.7566/JPSJ.85.123706
http://arXiv.org/abs/1707.00663
http://arXiv.org/abs/1707.00663
https://doi.org/10.1103/PhysRevB.96.195138
https://doi.org/10.1103/PhysRevE.97.013306
http://arXiv.org/abs/1709.02597v1
http://arXiv.org/abs/1711.04252v1
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1038/s41467-017-00705-2
http://arXiv.org/abs/1703.05334
http://arXiv.org/abs/1703.05334
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevE.95.031301
https://doi.org/10.1103/PhysRevE.95.031301
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.97.075114
https://doi.org/10.1103/PhysRevB.97.075114
https://doi.org/10.1103/PhysRevB.95.041101

PHYSICAL REVIEW LETTERS 120, 176401 (2018)

[28] J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning
Monte Carlo method and cumulative update in fermion
systems, Phys. Rev. B 95, 241104 (2017).

[29] X.Y. Xu, Y. Qi, J. Liu, L. Fu, and Z. Y. Meng, Self-learning
quantum Monte Carlo method in interacting fermion sys-
tems, Phys. Rev. B 96, 041119 (2017).

[30] Y. Nagai, H. Shen, Y. Qi, J. Liu, and L. Fu, Self-learning
Monte Carlo method: Continuous-time algorithm, Phys.
Rev. B 96, 161102 (2017).

[31] M. Rupp, A. Tkatchenko, K.-R. Miiller, and O.A. von
Lilienfeld, Fast and Accurate Modeling of Molecular
Atomization Energies with Machine Learning, Phys. Rev.
Lett. 108, 058301 (2012).

[32] F. A. Faber, A. Lindmaa, O.A. von Lilienfeld, and R.
Armiento, Machine Learning Energies of 2 Million Elpasolite
(ABC,Dg) Crystals, Phys. Rev. Lett. 117, 135502 (2016).

[33] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R.
Ramprasad, Accelerating materials property predictions
using machine learning, Sci. Rep. 3, 2810 (2013).

[34] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld,
and A.J. Millis, Machine learning for many-body physics:
The case of the Anderson impurity model, Phys. Rev. B 90,
155136 (2014).

[35] L.-F. Arsenault, O. A. von Lilienfeld, and A.J. Millis,
Machine learning for many-body physics: efficient solution
of dynamical mean-field theory, arXiv:1506.08858.

[36] A.P. Bartdk, S. De, C. Poelking, N. Bernstein, J.R.
Kermode, G. Csdnyi, and M. Ceriotti, Machine learning
unifies the modeling of materials and molecules, Sci. Adyv.
3, e1701816 (2017).

[37] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke,
and K.-R. Miiller, Bypassing the Kohn-Sham equations with
machine learning, Nat. Commun. 8, 872 (2017).

[38] O. Landon-Cardinal and D. Poulin, Practical learning
method for multi-scale entangled states, New J. Phys. 14,
085004 (2012).

[39] C. Bény, Deep learning and the renormalization group,
arXiv:1301.3124.

[40] P. Mehta and D. J. Schwab, An exact mapping between the
Variational Renormalization Group and Deep Learning,
arXiv:1410.3831.

[41] H. W. Lin, M. Tegmark, and D. Rolnick, Why does deep
and cheap learning work so well? J. Stat. Phys. 168, 1223
(2017).

[42] D. Rolnick and M. Tegmark, The power of deeper networks
for expressing natural functions, arXiv:1705.05502.

[43] M. Koch-Janusz and Z. Ringel, Mutual information, neural
networks and the renormalization group, arXiv:1704.06279.

[44] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active
contour models, Int. J. Comput. Vis. 1, 321 (1988).

[45] D.E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature
(London) 323, 533 (1986).

[46] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial networks, arXiv:1406.2661.

[47] The source code can be found in https://github.com/rhinech/
snake.

[48] We have preprocessed each configuration by flipping all its
spins when the net magnetization ) ;s; is negative.

[49] S. Ruder, An overview of gradient descent optimization
algorithms, arXiv:1609.04747.

[50] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
arXiv:1502.03167.

[51] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Boson localization and the superfluid-insulator
transition, Phys. Rev. B 40, 546 (1989).

[52] W. Krauth, M. Caffarel, and J.-P. Bouchaud, Gutzwiller
wave function for a model of strongly interacting bosons,
Phys. Rev. B 45, 3137 (1992).

[53] Additionally, we have tested that the snake is capable of
finding the lobe from an initially circular (periodic) con-
figuration.

[54] D.P. Kingma and J. L. Ba, Adam: A method for stochastic
optimization, in International Conference on Learning
Representations, San Diego (2015), https://iclr.cc/archive/
www/doku.php%3Fid=iclr2015:accepted-main.html.

[55] F. Pollmann, A.M. Turner, E. Berg, and M. Oshikawa,
Entanglement spectrum of a topological phase in one
dimension, Phys. Rev. B 81, 064439 (2010).

[56] G. Vidal, Classical Simulation of Infinite-Size Quantum
Lattice Systems in One Spatial Dimension, Phys. Rev. Lett.
98, 070201 (2007).

[57] V.R. Konda and J. Tsitsiklis, Actor-critic algorithms, SIAM
J. Control Optim. 42, 1143 (2003).

[58] M. Abadi et al., TensorFlow: Large-scale machine learning
on heterogeneous distributed systems, arXiv:1603.04467.

176401-6


https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.96.041119
https://doi.org/10.1103/PhysRevB.96.161102
https://doi.org/10.1103/PhysRevB.96.161102
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1038/srep02810
https://doi.org/10.1103/PhysRevB.90.155136
https://doi.org/10.1103/PhysRevB.90.155136
http://arXiv.org/abs/1506.08858
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1088/1367-2630/14/8/085004
https://doi.org/10.1088/1367-2630/14/8/085004
http://arXiv.org/abs/1301.3124
http://arXiv.org/abs/1410.3831
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1007/s10955-017-1836-5
http://arXiv.org/abs/1705.05502
http://arXiv.org/abs/1704.06279
https://doi.org/10.1007/BF00133570
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://arXiv.org/abs/1406.2661
https://github.com/rhinech/snake
https://github.com/rhinech/snake
https://github.com/rhinech/snake
http://arXiv.org/abs/1609.04747
http://arXiv.org/abs/1502.03167
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.45.3137
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1137/S0363012901385691
https://doi.org/10.1137/S0363012901385691
http://arXiv.org/abs/1603.04467

