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Text S1. Description of Individual Probability Distributions 
 
For the likelihood function without bias correction (see Text S2 for bias correction) we 
use 
 

𝒚|𝝀, 𝝈𝑹, 𝜂, 𝜏~𝑁(𝑲𝝀,𝑹)          (S1) 
 
where N is the normal distribution with mean Kλ (n × 1) and covariance R (n × n). Note 
that y is conditionally independent of all other parameters given λ, σR, η and τ.  
 
In order to estimate parameter values with Bayesian inference, prior uncertainty needs 
to be specified. In the hierarchical model, we need to include prior uncertainty for the 
joint parameter set Θ (see Equation 2 in the main text) using a series of distributions. 
The scaling factor λ is sampled from a truncated normal distribution (instead of a fixed 
value) as 
 

𝝀	~𝑁(𝝁𝝀, 𝛔2)	   (S2) 
 

where 𝝁𝝀 itself is sampled from a truncated normal distribution (Michalak, 2008; Miller et 
al., 2014) with a mean of 1 and a standard deviation of 0.5 so that 68% of the samples 
are within 50 ~ 150% from the mean (Ganesan et al., 2014; Jeong et al., 2016, 2017). σλ 
is modeled using a half Cauchy distribution, which is one of the recommended 
distributions for model variances (Gelman et al., 2014; Gelman and Hill, 2007; Korner-
Nievergelt et al., 2015). The hyper-parameterization (“hyper” meaning the upper level in 
the hierarchy) for σλ can formally be expressed as 
 

𝝈𝝀~ℎ𝐶𝑎𝑢𝑐ℎ𝑦	(0,1)    (S3) 
 

where hCauchy is the half-Cauchy distribution. σλ is sampled from a distribution with a 
heavy tail so that σλ can be optimized from a broad distribution (instead of being a fixed 
value such as 50% of the mean emission). Equation S3 suggests that if we generate 
random samples (large enough) from Equation S3 we get a median value close to 1. 
 
For the model-measurement covariance matrix R, we use an exponential covariance 
function (Jeong et al., 2016, 2017; Rasmussen and Williams, 2006), which can be 
written in general form as 

𝑅<,= = 𝜂? exp C− E
F
|𝑡< − 𝑡=|H + 𝛿<,=𝜎LM

?     (S4) 
 

where η, τ, and 𝜎LM are parameters that define the covariance function, t is the 
measurement time, and δ is the Kronecker delta function (value of 1 if i = j, otherwise 
zero). Note that here we use the L1 norm (i.e., |𝑡< − 𝑡=|) (Ganesan et al., 2014; Jeong et 
al., 2016, 2017). The subscript s in 𝜎LM indicates that 𝜎L is estimated for each site (Jeong 
et al., 2013, 2016, 2017).  
 
We model 𝜎LN  using the half Cauchy distribution as in σλ (Gelman et al., 2014; Gelman 
and Hill, 2007; Korner-Nievergelt et al., 2015). The scale parameter (in the hyper-
parameter sense) for the half Cauchy distribution for 𝜎LN  can be calculated using a first-
order approximation method (Jeong et al., 2012a, 2012b, 2013) and used as 
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𝜎LM~ℎ𝐶𝑎𝑢𝑐ℎ𝑦(0, 𝜎LO|P)   (S5) 
 

where 𝜎LO|P is the first-order estimate for 𝜎LP and includes errors from several sources 
(e.g., transport and background errors) combined in quadrature. In this study, 𝜎LO|P is 
derived by scaling the estimate for 𝜎LN  from the WGC site (Jeong et al., 2012b) in 
proportion to the mean measured mole fraction for each site relative to that of WGC. 
 
For η, we use non-informative prior as 
 

𝜂~𝑢𝑛𝑖𝑓(0, 𝐿)    (S6) 
 

where η is allowed to vary from 0 to L with an equal probability of 1/L. Since 𝜂 is 
generally estimated to be smaller than 𝜎LO|P we use 𝜎LO|P as an upper limit for L for 
efficient sampling (Jeong et al., 2016). 
 
We use the exponential distribution (Ganesan et al., 2014; Jeong et al., 2016, 2017) for τ 
as 
 

𝜏~exp	( E
FU
)    (S7) 

 
where τp is the hyper parameter for τ, which is assumed to be 7 days (typical synoptic 
time scale for transport). 
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Text S2. Bias Correction  
 

As described in Section 2.4 of the main text, we correct bias during the inversion 
process treating the bias correction through a stochastic parameter (i.e., D from 
Equation 1 in the main text). Following Jeong et al. (2017), we modify the likelihood 
function in Equation S1 to 

𝒚|𝝀, 𝝈𝑹, 𝜂, 𝜏, 𝑫	~	𝑁(𝑲𝝀 + 𝑫,𝑹)          (S8) 
 
where we sample from a normal distribution with a mean of 𝑲𝝀 + 𝑫 instead of 𝑲𝝀, 
reflecting stochastic bias corrections during the inversion. It is worth noting that using 
this stochastic method, the uncertainty associated with bias correction is fully 
propagated into the inversion system. 
 
The stochastic parameter D is sampled as 
 

𝑫	~	𝑢𝑛𝑖𝑓	(−5, 5)     (S9) 
 
where we use a uniform prior to sample for D. As a hyper-parameter in the form of [a, b], 
we used [-5, 5] (in the units of ppb) based on the prior information obtained from a 
simple linear regression method. Following Xiang et al. (2013), we calculated the bias 
using the intercept of linear regression analyses of predicted and measured mole 
fractions and found the maximum bias was ~3 ppb. Based on this, we use a larger 
interval (i.e., [-5, 5]) than 3 ppb. 
 
The posterior distribution of estimated D is summarized in Figure S6 where the bias 
varies by season and site. Note that as demonstrated in Jeong et al. (2017) and also as 
shown in Equation S8, the values of D represent the total bias that includes the 
background bias, measurement offset and other potential biases that are not captured 
by our transport model. Because the bias at each site is estimated as a single offset 
value for each month that includes the combination of the background bias, 
measurement offset and other uncaptured transport biases in an additive fashion, it is 
difficult to distinguish one bias source from another. However, we note that as reported 
in Xiang et al. (2013), the background curtain may be a significant source of bias. We 
also note that some of our sites in the Central Valley (ARV and STB) have calibration 
uncertainties that limit measurement accuracy to 1 ppb, within a factor of 2 of estimated 
bias for those sites. With respect to transport, we reinforce previous comments by 
Bagley et al. (2017) that some sites may not be well represented by the closest available 
measurements (e.g., wind profiler data), and potential undiagnosed errors may exist 
depending on the site. Finally, we acknowledge that seasonal variation in bias adds 
another layer of complexity to resolving the total bias into different sources. Although our 
stochastic method fully propagates biases through our inversion system, separation of 
bias sources requires further studies and deserves in-depth analysis in the future. The 
values for D estimated from the inverse optimization using Equation S8 are generally 
comparable to values obtained from the simple regression analysis. The low bias in the 
predictions estimated from the regression was noticeable at ARV (1.1 – 2.7 ppb), CIT 
(0.34 – 1.7 ppb), SBC (0.2  - 0.7 ppb) and STB (~1 ppb) during spring and summer. At 
the annual scale, the stochastic bias correction (i.e., Equation S8) inversion yielded 
slightly lower annual total N2O emissions compared to those of the simple regression-
based method (79 vs. 87 Gg N2O/yr in median values). For the case based on the 
simple regression method, the calculated bias was corrected before the inversion. 
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Text S3. Convergence and Accuracy of MCMC Samples 

The Markov chain Monte Carlo (MCMC) sampler based on the JAGS system (Just 
Another Gibbs Sampler, Plummer, 2003) generated 50000 samples from the posterior 
distribution using two chains after discarding the 2000 burn-in samples. To check MCMC 
representativeness of the posterior distribution, we use visual inspection of trace plots 
and probability density plots. We also calculate the Gelman-Rubin statistic (also known 
as  “potential scale reduction factor”) (Gelman and Rubin, 1992). The value of one for 
the Gelman-Rubin statistic suggests the chains are fully converged. Values that are 
significantly larger than one indicate lack of convergence.  

Figure S10 shows the Gelman-Rubin statistics for the scaling factor (λ) for the mid-
month of each season. As shown in Figure S10, the Gelman-Rubin statistics for λ is 
close to one for all elements of the scaling factor vector, showing the chains converged 
well. Figure S11 shows the Gelman-Rubin statistics for σR (parameter for model-
measurement mismatch uncertainty) for four sites in the Central Valley and SoCAB with 
all sites showing good convergence. Other parameters also showed similar results in the 
convergence test. The burn-in period (i.e., preliminary period for the parameter to move 
from the initial values to the posterior region) typically requires several hundreds to 
several thousand steps. In this study, we use 2000 steps for the burn-in period, and the 
trace and density plots show that the burn-in period has been successfully passed. As 
an example, the trace and density plots for σR at WGC and CIT are shown in Figure S12 
where the two chains are smooth (without staying on the same value for a long time) and 
overlap each other suggesting convergence has been achieved.  

To check the accuracy of the chain we estimate the standard error (SE) for the MCMC 
posterior estimate, which is calculated as the standard deviation (SD) of the chain 
divided by the square root of the effective sample size (ESS). ESS can be calculated by 
dividing the number of points in the chain by the autocorrelation time (Kass et al., 1998). 
Thus, SE represents the estimated standard deviation for the sample mean in the chain 
(Kruschke, 2015). Since SE is estimated on the scale of the parameter, it is useful to 
assess the accuracy of the posterior mean estimate for the parameter. For example, 
Figure S12 shows the SE values for σR at CIT and WGC as well as density plots. As 
shown in the figure, compared to the mean (and the 95% confidence interval), the SE 
values are small indicating the posterior mean values are estimated accurately.  
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Table S1. WRF-STILT boundary layer – land surface model combination* used for 
predicting N2O mole fractions at each site for each month between June 2013 and May 
2014.  

 ARV CIT & STR SBC WGC & STB‡ 

June NA† MYNN2-Noah MYNN2- Noah MYJ– LSM 

July NA MYNN2- Noah MYNN2- Noah MYJ - LSM 

August NA MYNN2- Noah MYNN2- Noah MYJ - LSM 

September NA MYNN2- Noah MYNN2- Noah NA 

October MYNN2- Noah MYNN2- Noah MYNN2- Noah MYNN2- Noah 

November YSU- Noah MYNN2- Noah YSU- Noah MYNN2- Noah 

December YSU- Noah MYNN2- Noah YSU- Noah MYNN2- Noah 

January YSU- Noah MYNN2- Noah YSU- Noah MYNN2- Noah 

February MYNN2- Noah MYNN2- Noah MYNN2- Noah MYNN2- Noah 

March MYNN2- Noah MYNN2- Noah MYNN2- Noah MYNN2- Noah 

April MYNN2-LSM MYNN2- Noah MYNN2- Noah MYNN2- LSM 

May MYNN2-LSM MYNN2- Noah MYNN2- Noah MYNN2- LSM 

*For each combination, WRF was run independently. 
†“NA“ indicates that observations were not available during that month. 
‡For STB, the STILT run was performed only for April and May when the measurements 
were available.  
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Figure S1. Identified natural forest pixels (~10 km) in California using the Moderate 
Resolution Imaging Spectroradiometer (MODIS) land cover type data product 
(MCD12Q1, year 2012). 
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Figure S2. Derived natural forest N2O emissions for California (nmol/m2/s) based on the 
Global Emissions InitiAtive (GEIA) emission model. 
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Figure S3. Regridded (at 10 km resolution) GEIA ocean N2O emissions (nmol/m2/s) for 
the entire modeling domain. 
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Figure S4. WRF modeling domain used in the inversion study. The actual inversion 
domain covers 130°W - 105°W and 20°N - 59.9°N for longitude and latitude, 
respectively. d01, d02, d03, d04 and d05 represent the WRF modeling domains of 36, 
12, 4, 1.3, and 1.3 km, respectively. 
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Figure S5. Predicted monthly mean mole fractions for ocean and forest as a fraction (%) 
of the total prediction by site and month. The top two panels show the ocean fraction 
before (prior) and after (posterior) inversion, respectively, and the bottom two panels 
show the forest fraction before and after inversion. Except for the coastal site, STR, the 
fraction for both forest and ocean is less than ~10%. Because most of the measurement 
sites are inland where the footprint influence of ocean emissions is weak, ocean signals 
are small except for STR. Note that although the total ocean emission from the prior 
emission map is comparable to the state total emission, ocean emissions are weighted 
by the weak footprint in the ocean (as compared to those on land), yielding generally 
less than 10% of the total mole fraction at most sites. 
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Figure S6. Summary for the posterior distribution of the bias correction parameter (i.e., 
D in Equation 1) for the mid-month of each season by site (shown for sites with 
measurements). The values at the bottom of each density plot represent the 95% 
confidence intervals.    
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Figure S7. Correlations (between -1 and 1 or -100% and 100%) of posterior emissions 
between 15 different regions for the mid-month of each season. The anti-correlations in 
posterior emissions are only less than 20%. The numbers on the axis represent the 
region number, and the values in the parentheses represent the largest anti-correlation 
(negative value) for the given month. 
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Figure S8. Comparison of measured and predicted N2O mole fractions and estimated 
N2O background by site. For measurements, we first calculate the bias corrected local 
mole fractions (i.e., total mole fraction - background -	𝑫X where 	𝑫X is the optimized bias 
correction from Equation 1 in the main text) because we use local mole fractions in the 
inversion (to be compared with predictions). Then the estimated background is added to 
both measured (local) and predicted mole fractions for comparison. The error bar (in 
grey) represents the model-measurement uncertainty (i.e., median values (1σ) from 
Figure 2 in the main text). 
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Figure S9. Example (April result) posterior distribution (histogram) of the N2O prior 
uncertainty (i.e., σλ) for the major regions (Regions 3, 7, 8 and 12) based on the 50000 
samples  (upper panel) and region-average posterior σλ for the major regions by month 
(lower panel). Although the posterior σλ estimates for individual 0.3° pixels within each 
region vary, here we present the region average value. 
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Figure S10. Gelman-Rubin statistics for the scaling factor vector (λ) for the mid-month of 
each season. The x-axis shows each element of the 197 scaling factors. For all scaling 
factors, the Gelman-Rubin statistics are close to one, suggesting the chains have 
successfully converged. 
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Figure S11. Gelman-Rubin statistics for σR at four sites in the Central Valley and SoCAB 
for the mid-month of each season. For all sites, the Gelman-Rubin statistics are close to 
one, suggesting the chains have successfully converged. 
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Figure S12. Example trace and density plots for the model-measurement mismatch 
uncertainty parameter (σR) at WGC and CIT (for mid-month of each season). The two 
colors in each plot represent the two different chains. In the trace plots (first and third 
columns), the two chains are smooth and overlap each other suggesting the chains have 
converged well. For the posterior density (second and fourth columns), the two densities 
from two different chains overlap very well, suggesting the two chains are representative 
of the posterior distribution. In the density plots, we also include the standard error (SE) 
for the MCMC estimates using the parameter scale (here in units of ppb for σR). The SE 
values are very small compared to the mean estimates. 
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