S-1. Unit cell contents for compound 6.
Table S-I Atomic Parameters x, y, z and B_{eq} of compound 6. E.S.D.'s refer to the last digit printed.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>0.37931</td>
<td>0.29172(5)</td>
<td>0.45402</td>
<td>2.48(3)</td>
</tr>
<tr>
<td>C11</td>
<td>0.2934</td>
<td>0.1139</td>
<td>0.3004</td>
<td>3.62(25)</td>
</tr>
<tr>
<td>C12</td>
<td>0.4473</td>
<td>0.1119</td>
<td>0.5693</td>
<td>3.8(6)</td>
</tr>
<tr>
<td>N1</td>
<td>0.3129</td>
<td>0.4644</td>
<td>0.3328</td>
<td>3.8(8)</td>
</tr>
<tr>
<td>N2</td>
<td>0.4431</td>
<td>0.3588</td>
<td>0.5804</td>
<td>3.8(10)</td>
</tr>
<tr>
<td>C1</td>
<td>0.2429</td>
<td>0.4487</td>
<td>0.2033</td>
<td>3.8(8)</td>
</tr>
<tr>
<td>C2</td>
<td>0.2112</td>
<td>0.5693</td>
<td>0.1221</td>
<td>3.8(10)</td>
</tr>
<tr>
<td>C3</td>
<td>0.2456</td>
<td>0.7093</td>
<td>0.1769</td>
<td>3.8(9)</td>
</tr>
<tr>
<td>C4</td>
<td>0.3143</td>
<td>0.7184</td>
<td>0.3078</td>
<td>3.8(10)</td>
</tr>
<tr>
<td>C5</td>
<td>0.3449</td>
<td>0.6005</td>
<td>0.3875</td>
<td>3.8(10)</td>
</tr>
<tr>
<td>C6</td>
<td>0.4142</td>
<td>0.5950</td>
<td>0.3246</td>
<td>3.8(9)</td>
</tr>
<tr>
<td>C7</td>
<td>0.3401</td>
<td>0.7270</td>
<td>0.5891</td>
<td>4.4(11)</td>
</tr>
<tr>
<td>C8</td>
<td>0.5181</td>
<td>0.7044</td>
<td>0.7297</td>
<td>4.4(11)</td>
</tr>
<tr>
<td>C9</td>
<td>0.5537</td>
<td>0.5738</td>
<td>0.7872</td>
<td>4.4(11)</td>
</tr>
<tr>
<td>C10</td>
<td>0.5155</td>
<td>0.4510</td>
<td>0.7126</td>
<td>4.4(11)</td>
</tr>
<tr>
<td>C11</td>
<td>0.1370</td>
<td>0.5338</td>
<td>-0.0246</td>
<td>3.8(10)</td>
</tr>
<tr>
<td>C12</td>
<td>0.6358</td>
<td>0.5604</td>
<td>0.9287</td>
<td>3.8(10)</td>
</tr>
</tbody>
</table>

$B_{eq} = \frac{8}{3\pi} \sum_{ij} a_i a_j a_i a_j$

Table S-II Atomic Parameters x, y, z and B_{eq} of compound 8. E.S.D.'s refer to the last digit printed.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>0.28093(5)</td>
<td>0.21622(4)</td>
<td>0.08396(3)</td>
<td>1.577(14)</td>
</tr>
<tr>
<td>C11</td>
<td>0.3497</td>
<td>0.02234(25)</td>
<td>0.14384(21)</td>
<td>3.11(12)</td>
</tr>
<tr>
<td>C12</td>
<td>0.3388</td>
<td>0.3210</td>
<td>0.27818(19)</td>
<td>3.27(13)</td>
</tr>
<tr>
<td>N1</td>
<td>0.2048</td>
<td>0.1313</td>
<td>-0.0903</td>
<td>2.0(4)</td>
</tr>
<tr>
<td>N2</td>
<td>0.2304</td>
<td>0.3793</td>
<td>0.1769</td>
<td>3.8(9)</td>
</tr>
<tr>
<td>C1</td>
<td>0.1964</td>
<td>-0.0222</td>
<td>-0.1343</td>
<td>2.5(5)</td>
</tr>
<tr>
<td>C2</td>
<td>0.1033</td>
<td>-0.0665</td>
<td>-0.2545</td>
<td>2.5(5)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0005</td>
<td>0.0022</td>
<td>-0.3234</td>
<td>2.5(5)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0042</td>
<td>0.1394</td>
<td>-0.2764</td>
<td>1.8(4)</td>
</tr>
<tr>
<td>C5</td>
<td>0.1241</td>
<td>0.2088</td>
<td>-0.1615</td>
<td>1.5(4)</td>
</tr>
<tr>
<td>C6</td>
<td>0.2702</td>
<td>0.5133</td>
<td>0.0873</td>
<td>2.1(4)</td>
</tr>
<tr>
<td>C7</td>
<td>0.2655</td>
<td>0.6300</td>
<td>0.0383</td>
<td>2.5(5)</td>
</tr>
<tr>
<td>C8</td>
<td>0.2278</td>
<td>0.6137</td>
<td>-0.0835</td>
<td>2.3(5)</td>
</tr>
<tr>
<td>C9</td>
<td>0.1879</td>
<td>0.4820</td>
<td>-0.1524</td>
<td>1.8(4)</td>
</tr>
<tr>
<td>C10</td>
<td>0.1759</td>
<td>0.3620</td>
<td>-0.1016</td>
<td>1.7(4)</td>
</tr>
<tr>
<td>C11</td>
<td>-0.1440</td>
<td>0.1958</td>
<td>-0.3436</td>
<td>2.1(4)</td>
</tr>
<tr>
<td>C12</td>
<td>-0.3646</td>
<td>0.1772</td>
<td>-0.5337</td>
<td>4.3(6)</td>
</tr>
<tr>
<td>C13</td>
<td>0.1755</td>
<td>0.4809</td>
<td>-0.2799</td>
<td>2.1(5)</td>
</tr>
<tr>
<td>C14</td>
<td>0.2445</td>
<td>0.3811</td>
<td>-0.4522</td>
<td>3.4(6)</td>
</tr>
<tr>
<td>01</td>
<td>-0.2068</td>
<td>0.2833</td>
<td>-0.2987</td>
<td>3.2(4)</td>
</tr>
<tr>
<td>02</td>
<td>-0.2018</td>
<td>0.1368</td>
<td>-0.4590</td>
<td>2.8(3)</td>
</tr>
<tr>
<td>03</td>
<td>0.1210</td>
<td>0.5673</td>
<td>-0.3294</td>
<td>4.1(4)</td>
</tr>
<tr>
<td>04</td>
<td>0.2416</td>
<td>0.3860</td>
<td>-0.3315</td>
<td>2.6(3)</td>
</tr>
</tbody>
</table>

$B_{eq} = \frac{8}{3\pi} \sum_{ij} a_i a_j a_i a_j$
Table S-III. Thermal Parameters for Compound 6. Values are anisotropic except for Hydrogen, for which U*100 is given.

<table>
<thead>
<tr>
<th></th>
<th>u11(U)</th>
<th>u22</th>
<th>u33</th>
<th>u12</th>
<th>u13</th>
<th>u23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>3.457(22)</td>
<td>1.739(23)</td>
<td>4.14(3)</td>
<td>-0.15(12)</td>
<td>1.928(20)</td>
<td>-0.26(13)</td>
</tr>
<tr>
<td>C11</td>
<td>5.8 (3)</td>
<td>2.45 (23)</td>
<td>5.4 (3)</td>
<td>-0.78(21)</td>
<td>2.87 (23)</td>
<td>-1.05(22)</td>
</tr>
<tr>
<td>C12</td>
<td>4.98 (24)</td>
<td>2.62 (24)</td>
<td>6.1 (3)</td>
<td>0.38(20)</td>
<td>2.88 (23)</td>
<td>0.80(22)</td>
</tr>
<tr>
<td>N1</td>
<td>4.3 (8)</td>
<td>3.4 (9)</td>
<td>6.3 (10)</td>
<td>-0.2 (7)</td>
<td>2.5 (7)</td>
<td>0.5 (8)</td>
</tr>
<tr>
<td>N2</td>
<td>3.4 (6)</td>
<td>0.9 (6)</td>
<td>2.9 (6)</td>
<td>-0.2 (5)</td>
<td>1.9 (5)</td>
<td>0.7 (5)</td>
</tr>
<tr>
<td>C1</td>
<td>4.5 (9)</td>
<td>2.8 (9)</td>
<td>4.2 (9)</td>
<td>-0.5 (8)</td>
<td>2.8 (8)</td>
<td>0.6 (8)</td>
</tr>
<tr>
<td>C2</td>
<td>4.4 (10)</td>
<td>4.9 (13)</td>
<td>6.2 (12)</td>
<td>0.0 (9)</td>
<td>3.4 (9)</td>
<td>1.2 (10)</td>
</tr>
<tr>
<td>C3</td>
<td>4.0 (9)</td>
<td>3.2 (10)</td>
<td>5.9 (11)</td>
<td>0.2 (8)</td>
<td>1.6 (8)</td>
<td>2.4 (10)</td>
</tr>
<tr>
<td>C4</td>
<td>3.4 (7)</td>
<td>1.9 (8)</td>
<td>2.9 (7)</td>
<td>-0.7 (7)</td>
<td>1.5 (6)</td>
<td>-0.8 (7)</td>
</tr>
<tr>
<td>C5</td>
<td>5.1 (11)</td>
<td>3.4 (10)</td>
<td>6.8 (12)</td>
<td>0.2 (8)</td>
<td>4.3 (10)</td>
<td>1.3 (9)</td>
</tr>
<tr>
<td>C6</td>
<td>2.2 (7)</td>
<td>1.6 (8)</td>
<td>5.1 (10)</td>
<td>0.2 (6)</td>
<td>1.2 (7)</td>
<td>0.3 (7)</td>
</tr>
<tr>
<td>C7</td>
<td>5.9 (11)</td>
<td>1.9 (9)</td>
<td>8.8 (14)</td>
<td>-1.5 (9)</td>
<td>3.6 (11)</td>
<td>-2.4 (10)</td>
</tr>
<tr>
<td>C8</td>
<td>5.1 (10)</td>
<td>6.1 (14)</td>
<td>6.2 (12)</td>
<td>-0.8 (11)</td>
<td>3.4 (9)</td>
<td>-2.3 (12)</td>
</tr>
<tr>
<td>C9</td>
<td>3.2 (8)</td>
<td>4.3 (12)</td>
<td>3.8 (10)</td>
<td>-0.4 (8)</td>
<td>0.9 (7)</td>
<td>-0.2 (8)</td>
</tr>
<tr>
<td>C10</td>
<td>3.2 (8)</td>
<td>5.0 (12)</td>
<td>4.3 (10)</td>
<td>0.5 (8)</td>
<td>1.9 (8)</td>
<td>0.9 (9)</td>
</tr>
<tr>
<td>C11</td>
<td>3.6 (9)</td>
<td>12.8 (22)</td>
<td>2.2 (10)</td>
<td>1.2 (11)</td>
<td>0.4 (8)</td>
<td>0.6 (12)</td>
</tr>
<tr>
<td>C12</td>
<td>5.3 (10)</td>
<td>4.0 (11)</td>
<td>4.8 (11)</td>
<td>-1.0 (9)</td>
<td>3.3 (9)</td>
<td>-1.3 (9)</td>
</tr>
<tr>
<td>H1</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11A</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11B</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11C</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12A</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12B</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12C</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S-IV. Thermal Parameters for Compound 8. Values are anisotropic except for Hydrogen, for which $U*100$ is given.

<table>
<thead>
<tr>
<th></th>
<th>$u_{11}(U)$</th>
<th>u_{22}</th>
<th>u_{33}</th>
<th>u_{12}</th>
<th>u_{13}</th>
<th>u_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>2.013 (17)</td>
<td>2.341 (16)</td>
<td>1.520 (16)</td>
<td>0.666 (14)</td>
<td>0.356 (14)</td>
<td>0.422 (13)</td>
</tr>
<tr>
<td>C11</td>
<td>4.92 (16)</td>
<td>4.23 (14)</td>
<td>3.36 (14)</td>
<td>2.34 (13)</td>
<td>1.03 (12)</td>
<td>1.63 (12)</td>
</tr>
<tr>
<td>C12</td>
<td>5.47 (17)</td>
<td>4.45 (14)</td>
<td>1.66 (12)</td>
<td>0.97 (13)</td>
<td>0.59 (12)</td>
<td>0.15 (11)</td>
</tr>
<tr>
<td>N1</td>
<td>2.8 (4)</td>
<td>3.4 (4)</td>
<td>1.4 (4)</td>
<td>1.1 (4)</td>
<td>0.4 (3)</td>
<td>0.2 (3)</td>
</tr>
<tr>
<td>N2</td>
<td>2.4 (4)</td>
<td>2.4 (4)</td>
<td>2.8 (4)</td>
<td>0.8 (3)</td>
<td>0.8 (4)</td>
<td>0.2 (3)</td>
</tr>
<tr>
<td>C1</td>
<td>4.1 (6)</td>
<td>2.3 (5)</td>
<td>3.6 (6)</td>
<td>2.2 (5)</td>
<td>0.8 (5)</td>
<td>0.8 (4)</td>
</tr>
<tr>
<td>C2</td>
<td>4.3 (6)</td>
<td>3.0 (5)</td>
<td>2.4 (5)</td>
<td>1.8 (5)</td>
<td>0.9 (5)</td>
<td>0.1 (4)</td>
</tr>
<tr>
<td>C3</td>
<td>3.6 (6)</td>
<td>2.6 (5)</td>
<td>2.2 (5)</td>
<td>0.6 (4)</td>
<td>0.8 (4)</td>
<td>0.1 (4)</td>
</tr>
<tr>
<td>C4</td>
<td>2.7 (5)</td>
<td>2.1 (4)</td>
<td>1.9 (5)</td>
<td>0.7 (4)</td>
<td>0.8 (4)</td>
<td>0.4 (4)</td>
</tr>
<tr>
<td>C5</td>
<td>2.3 (6)</td>
<td>1.7 (4)</td>
<td>2.0 (5)</td>
<td>1.0 (4)</td>
<td>0.9 (4)</td>
<td>0.6 (4)</td>
</tr>
<tr>
<td>C6</td>
<td>3.6 (6)</td>
<td>2.5 (5)</td>
<td>1.3 (5)</td>
<td>1.1 (4)</td>
<td>0.1 (4)</td>
<td>-1.3 (4)</td>
</tr>
<tr>
<td>C7</td>
<td>4.4 (6)</td>
<td>1.9 (5)</td>
<td>3.1 (6)</td>
<td>1.2 (5)</td>
<td>1.2 (5)</td>
<td>-0.3 (4)</td>
</tr>
<tr>
<td>C8</td>
<td>4.1 (6)</td>
<td>2.1 (5)</td>
<td>2.7 (5)</td>
<td>1.0 (4)</td>
<td>1.1 (5)</td>
<td>0.7 (4)</td>
</tr>
<tr>
<td>C9</td>
<td>2.6 (5)</td>
<td>1.4 (4)</td>
<td>2.6 (5)</td>
<td>0.8 (4)</td>
<td>0.7 (4)</td>
<td>-0.1 (4)</td>
</tr>
<tr>
<td>C10</td>
<td>2.0 (5)</td>
<td>2.8 (5)</td>
<td>1.1 (4)</td>
<td>0.7 (4)</td>
<td>0.0 (4)</td>
<td>-0.3 (4)</td>
</tr>
<tr>
<td>C11</td>
<td>2.7 (5)</td>
<td>2.6 (5)</td>
<td>2.3 (5)</td>
<td>0.3 (4)</td>
<td>0.6 (4)</td>
<td>0.6 (4)</td>
</tr>
<tr>
<td>C12</td>
<td>5.1 (7)</td>
<td>7.6 (8)</td>
<td>3.1 (6)</td>
<td>2.7 (7)</td>
<td>-0.7 (6)</td>
<td>1.1 (6)</td>
</tr>
<tr>
<td>C13</td>
<td>4.2 (6)</td>
<td>1.0 (4)</td>
<td>3.4 (5)</td>
<td>1.4 (4)</td>
<td>1.1 (5)</td>
<td>1.5 (4)</td>
</tr>
<tr>
<td>C14</td>
<td>6.5 (8)</td>
<td>3.7 (6)</td>
<td>2.0 (5)</td>
<td>0.6 (6)</td>
<td>1.5 (5)</td>
<td>0.0 (4)</td>
</tr>
<tr>
<td>O1</td>
<td>4.7 (4)</td>
<td>5.0 (4)</td>
<td>2.6 (4)</td>
<td>2.9 (4)</td>
<td>0.1 (3)</td>
<td>-0.2 (3)</td>
</tr>
<tr>
<td>O2</td>
<td>4.4 (4)</td>
<td>4.5 (4)</td>
<td>1.2 (3)</td>
<td>1.7 (3)</td>
<td>-0.3 (3)</td>
<td>-0.1 (3)</td>
</tr>
<tr>
<td>O3</td>
<td>6.7 (5)</td>
<td>6.7 (5)</td>
<td>3.5 (4)</td>
<td>3.2 (4)</td>
<td>2.2 (4)</td>
<td>2.4 (4)</td>
</tr>
<tr>
<td>O4</td>
<td>5.2 (4)</td>
<td>3.2 (3)</td>
<td>2.3 (4)</td>
<td>1.4 (3)</td>
<td>2.3 (3)</td>
<td>1.2 (3)</td>
</tr>
<tr>
<td>H1</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12A</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12B</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12C</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14A</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14B</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14C</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>